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Abstract. Upcoming large redshift surveys potentially allow precision mea-
surements of the galaxy power spectrum. To accurately measure P (k) on
the largest scales, comparable to the depth of the survey, it is crucial that
finite volume effects are accurately corrected for in the data analysis. Here
we derive analytic expressions for the one such effect that has not previ-
ously been worked out exactly: that of the so-called integral constraint. We
also show that for data analysis methods based on counts in cells, multiple
constraints can be included via simple matrix operations, thereby render-
ing the results less sensitive to galactic extinction and misestimates of the
shape of the radial selection function.

1. Introduction
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Observational data on galaxy clustering are rapidly increasing in both quan-
tity and quality, which brings new challenges when it comes to data analysis.
As to quantity, redshifts had been published for a few thousand galaxies
15 years ago. Today the number is ∼ 105, and ongoing projects such as the
AAT 2dF Survey and the Sloan Digital Sky Survey (SDSS) will raise it to
106 within a few years. Comprehensive reviews of past redshift surveys are
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given by e.g. Efstathiou (1994), Vogeley (1995), Strauss & Willick (1995)
and Strauss (1996), the last also including a detailed description of 2dF and
SDSS. As to quality, more accurate and uniform photometric selection cri-
teria (enabled by e.g. the well-calibrated 5-band photometry of the SDSS)
reduce potential systematic errors.

This increased data quality makes it desirable to avoid approximations
in the data analysis process and to use methods that can constrain cos-
mological quantities as accurately as possible, without bias. Here we will
focus on how to correct for the finite volume of a survey. As is well known,
this causes the measured power spectrum to be a convolution of the true
power spectrum with some window function which depends on the survey
geometry and the data analysis method used. Exact expressions have been
derived (see e.g. Feldman, Kaiser & Peacock 1994, hereafter “FKP”) for
the window function and its normalization for the case where the number
density of galaxies is assumed to be known a priori, but the more realistic
case where the mean galaxy density is determined from the survey itself has
thus far only been treated approximately (Peacock & Nicholson 1991; Park
et al. 1994). The main purpose of this paper is to derive exact expressions
for this important correction.

The methods for power spectrum estimation that have been proposed
in the literature fall into two categories:

1. Direct Fourier methods
2. Pixelized methods

The direct Fourier methods make use of the exact position of each galaxy,
whereas the other methods start by “pixelizing” the data set (by com-
puting counts in cells or expansion coefficients for some set of functions),
thereby reducing the problem to manipulating large vectors and matrices.
In Section 2, we will derive the finite-volume correction for direct Fourier
methods. The corresponding correction for pixelized methods is given in
Section 3.

2. Finite Volume Correction for Direct Fourier Methods

2.1. THE POWER SPECTRUM ESTIMATION PROBLEM

It is customary (see e.g. FKP) to model the observed galaxy distribution
as a 3D Poisson process n(r) =

∑
i δ(r− ri) with intensity λ(r) = n̄(r)[1 +

δr(r)]. The function n̄ is the selection function of the galaxy survey under
consideration, i.e., n̄(r)dV is the expected (not the observed) number of
galaxies in a volume dV about r. The density fluctuations δr are modeled
as a homogeneous and isotropic (but not necessarily Gaussian) random field
with power spectrum P (k), and the power spectrum estimation problem is
to estimate P (k) given a realization of n(r).
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2.2. THE DIRECT FOURIER APPROACH

Due to space limitations, the method summary below is very brief, and the
interested reader is referred to FKP and Tegmark (1995, hereafter “T95”)
for more detailed introductions to the various methods.

All direct Fourier methods not involving random numbers1 are specified
by choosing a weight function ψ(r) in real space and a set of weights wi in
Fourier space, as defined below. They all involve the following two steps:

1. At a grid of points ki in Fourier space, fluctuation amplitudes are
estimated by

F̂ (ki) ≡
∫ [

n(r)

n̄(r)
− 1

]
ψ(r)e−iki·rd3r

=
∑

j

ψ(rj)

n̄(rj)
e−iki·rj − ψ̂(ki). (1)

(Here and throughout, hats denote Fourier transforms.)
2. The power P at some given k-value, say k∗, is estimated by squar-

ing these fluctuation amplitudes, subtracting off their shot noise bias,
rescaling them to correct for the integral constraint, and averaging
them with some weights wi that add up to unity:

P̃ (k∗) ≡
∑

i

wi

[
|F̂ (ki)|2 − σ2

s(ki)

N(ki)

]

. (2)

As we will show in Section 2.6, the new and exact expressions for the shot
noise and integral constraint corrections (when n̄ is normalized so that

F̂ (0) = 0) are

σ2
s(k) =



1 +

∣∣∣∣∣
ψ̂(k)

ψ̂(0)

∣∣∣∣∣

2


 cs(0) − 2Re

{
ψ̂(k)∗

ψ̂(0)∗
cs(k)

}

, (3)

N(k) =



1 +

∣∣∣∣∣
ψ̂(k)

ψ̂(0)

∣∣∣∣∣

2


 f(0) − 2Re

{
ψ̂(k)∗

ψ̂(0)∗
f(k)

}

, (4)

where the functions cs and f are defined by

cs(k) ≡
∫
ψ(r)2

n̄(r)
e−ik·rd3r, (5)

f(k) ≡
∫
ψ(r)2e−ik·rd3r. (6)

1Including a random mock survey as in equation (2.1.3) in FKP can never give minimal
error bars, since inclusion of random numbers will always increase the variance of the
estimator.
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If the survey is volume limited, then n̄ is independent of r, cs(k) = f(k)/n̄,
and σ2

s(k)/N(k) = 1/n̄.

2.3. WEIGHTING THE GALAXIES

Four different choices of the galaxy weighting function ψ have appeared in
the literature:

ψ(r) =

{
1 inside survey volume

0 outside survey volume
(7)

ψ(r) = n̄(r) (8)

ψ(r) =
n̄(r)

1 + n̄(r)P
(9)

ψ(r) = eigenfunction of

[
∇2 − γ

n̄(r)

]
. (10)

The first choice, i.e., weighing all galaxies in a survey volume equally, was
employed by e.g. Fisher et al. (1993). The second choice was used for e.g.
the APM survey (Baugh & Efstathiou 1994) — since redshifts were not
measured, the radial galaxy weighting by default became the selection func-
tion (moreover, modes could of course only be computed in the directions
perpendicular to the line of sight). The third choice is that advocated by
Feldman, Kaiser & Peacock (1994, hereafter FKP), where P denotes an a
priori guess as to the power in the band under consideration, and minimizes
the variance in the limit when k−1 ≪ the depth of the survey. The fourth
choice corresponds to the method of T95, and gives the narrowest window
function for a given variance (the constant γ determines the tradeoff).

2.4. WEIGHTING THE FOURIER MODES

As to the weights in Fourier space, wi, a common choice (e.g. FKP) is to
perform a straight average of all modes in a spherical shell with its radius
centered on k∗, although when the survey volume is anisotropic, a weighted
average giving smaller error bars can generally be obtained by solving a
quadratic programming problem (T95).

2.5. WINDOW FUNCTIONS

The expectation value of a power estimate P̃ that has been corrected for
the shot noise bias and the integral constraint can always be written as

〈P̃ 〉 =

∫
W (k)P (k)dk, (11)
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where the function W , known as the window function, has the property
that ∫

∞

0
W (k)dk = 1. (12)

We can therefore think of P̃ (k∗) as measuring a weighted average of the
true power spectrum, with W specifying the weights (for most methods,
but not all, these weights are strictly non-negative as well). The window
function for a general direct Fourier method is derived in Section 2.6, and
is found to be

W(k) ∝
∑

i

wi

∫
|ψ̂i(k)|2k2dΩk, (13)

where ψi is given by equation (18) and the angular k-integral is carried
out over a spherical shell of radius k. In the limit where k−1 ≪ L, where
L is the smallest survey dimension, the 3D window function simplifies to
W(k) ∼∝

∑
i wi

∫
|ψ̂(k − ki)|2k2dΩk.

2.6. DERIVATION OF THE INTEGRAL CONSTRAINT CORRECTION

If we knew the selection function n̄(r) a priori, before counting the galaxies
in our survey, we would be able to probe the power on the largest scales.
For modes of wavelength much larger than the survey volume, this would
essentially correspond to counting the difference between the observed and
expected number of galaxies in our sample. Of course, we do not know n̄
a priori, so our most accurate way of normalizing the selection function
is by using the galaxies in the survey itself. When n̄ is normalized in this
way, naive application of equation (1) will give the artifact F̂ (k) → 0 as
k → 0 because fluctuations on the scale of the survey are forced to zero by
definition (Peacock & Nicholson 1991).

Let us assume that we know the shape of the selection function but not
its normalization. To reflect this, we write

n̄(r) = ηn̄0(r), (14)

where n̄0 is our guess as to the shape and η is an unknown normalization
constant. If we had used n̄0 in place of the correct n̄ in equation (1), we

would in general not obtain the desired result 〈F̂ (ki)〉 = 0 but rather

〈F̂ (ki)〉 = (η − 1)ψ̂(k), which would enter equation (2) as a systematic
positive power bias. It is the need to eliminate this problem that forces us
to impose an integral constraint. Let η̂ denote our estimate of η. We will
choose η̂ so that this bias vanishes, i.e., so that the integral constraint

∫ [
n(r)

η̂n̄0(r)
− 1

]
ψ(r)d3r = 0 (15)
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holds, or explicitly,

η̂ ≡ 1

ψ̂(0)

∫
n(r)

n̄0(r)
ψ(r)d3r =

1

ψ̂(0)

∑

j

ψ(rj)

n̄0(rj)
. (16)

This is an unbiased estimator of the density normalization, since 〈η̂〉 = η,
the true value. Substituting n̄(r) = η̂n̄0(r) and equation (16) into equa-
tion (1), we obtain

F̂ (ki) =
1

η̂

[∫
n(r)

n̄0(r)
e−iki·rψ(r)d3r − ψ̂(ki)η̂

]

=
1

η̂

[∫
n(r)

n̄0(r)
e−iki·rψ(r)d3r − ψ̂(ki)

ψ̂(0)

∫
n(r)

n̄0(r)
ψ(r)d3r

]

=
η

η̂

∫
n(r)

n̄(r)
ψi(r)d

3r ≈
∫
n(r)

n̄(r)
ψi(r)d

3r, (17)

where the function ψi is defined by

ψi(r) ≡
[

e−iki·r − ψ̂(ki)

ψ̂(0)

]

ψ(r). (18)

Since we will have η̂ ≈ η with a relative accuracy ∆η̂/η of order 1/
√
N ,

where N is the number of galaxies in the survey, we can to a good approx-
imation treat η as a known constant from here on and take η/η̂ = 1 on the

last line of equation (17). Since ψ̂i(0) = 0, we now have 〈F̂ (ki)〉 = 0, so
we see that we have succeeded in eliminating the above-mentioned power
bias. The price for this is slightly more complicated equations. Let us now
derive the expressions for the shot noise correction and normalization given
in Equations (3) and (4).

Since η̂ ≈ η, we substitute the last expression of equation (17) into
Equation (3) of T95, treating n̄ = ηn̄0 as a known function, which gives

〈|F̂ (ki)|2〉 =
1

(2π)3

∫
|ψ̂i(k)|2P (k)d3k +

∫ |ψi(r)|2
n̄(r)

d3r, (19)

Comparing this with equation (11) and equation (2), we identify the three-
dimensional window function as

W (k) ∝ |ψ̂i(k)|2 (20)

and see that the shot noise correction is

σ2
s(ki) =

∫ |ψi(r)|2
n̄(r)

d3r

=

∫ ∣∣∣∣∣e
−iki·r − ψ̂(ki)

ψ̂(0)

∣∣∣∣∣

2
ψ(r)2

n̄(r)
d3r, (21)
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and expanding the square completes our derivation of equation (3). Per-
forming an angular integral of equation (20) completes the proof of equa-
tion (13). The normalization coefficient N(ki) of equation (2) is deter-
mined by the requirement that the window function integrate to unity, i.e.,
N(ki) =

∫
|ψ̂i(k)|2d3k/(2π)3. Using Parseval’s theorem, we obtain

N(ki) =

∫
|ψi(r)|2d3r

=

∫ ∣∣∣∣∣e
−iki·r − ψ̂(ki)

ψ̂(0)

∣∣∣∣∣

2

ψ(r)2d3r, (22)

and expanding the square as above completes our derivation of equation (4).

Figure 1.

The exact expression for
N(k) is plotted together
with the approximation
of Park et al for a
Gaussian weight function
ψ(r) ∝ exp[−(r/R)2/2],
R = 100h−1Mpc.

2.7. HOW IMPORTANT IS THIS CORRECTION?

Let us evaluate the integral constraint correction factor N(k) for a couple
of simple examples. We first note that for the special case of equation (7),

we have ψ(r)2 ∝ ψ(r). Hence f(k) ∝ ψ̂(k), and equation (4) reduces to

N(k) =



1 −
∣∣∣∣∣
ψ̂(k)

ψ̂(0)

∣∣∣∣∣

2


 f(0), (23)

which we recognize as the approximation of Park et al. (1994). For volume-
limited surveys, the prescriptions given by equations (8), (9) and (10) all
coincide, so we see that this approximation becomes exact for the volume-
limited case with these galaxy weighting schemes. For flux-limited surveys,
on the other hand, these schemes all give a decreasing weight function
ψ, since n̄ decreases with distance. For the simple Gaussian case ψ(r) =
exp[−(r/R)2/2]/π1/4R1/2, equation (4) gives

N(k) = 1 + e−(Rk)2 − 2e−
3

4
(Rk)2 , (24)
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whereas the approximation (23) gives

N(k) = 1 − e−(Rk)2 . (25)

A Taylor expansion shows that for kR ≪ 1, the latter overestimates N by
a factor of two, as illustrated in Figure 1.

3. Finite Volume Correction for Pixelized Methods

3.1. PIXELIZED METHODS

Pixelized data analysis methods start by reducing the galaxy survey prob-
lem to one similar to that occurring in cosmic microwave background (CMB)
experiments: estimating a power spectrum given noisy fluctuation measure-
ments in a number of discrete “pixels”. After this, the remaining steps are
quite analogous to the CMB case, and involve mere linear algebra (oper-
ations such as matrix inversion, diagonalization, etc.). Let us define the
overdensity in N “pixels” x1, ..., xN by

xi ≡
∫ [

n(r)

n̄(r)
− 1

]
ψi(r)d

3r (26)

for some set of functions ψi. Although the specific choices of ψi are irrele-
vant for our present discussion, common choices are to either make these
functions fairly localized in real space (in which case the pixelization is a
generalized form of counts in cells) or fairly localized in Fourier space (in
which case one refers to the functions ψi as “modes” and to xi as expan-
sion coefficients). Let us group the pixels xi into an N -dimensional vector x.
All proposed pixelized methods assume that the mean and the covariance
matrix of this pixel vector are

〈x〉 = 0, (27)

〈xx
t〉 = C, (28)

where C depends in some known way on the power spectrum. Once the
problem has been cast in this form, the power spectrum can be estimated
using standard machinery, with either a brute force likelihood analysis (as
in e.g. White & Bunn), a Karhunen-Loève eigenmode analysis (Karhunen
1947, Vogeley & Szalay 1996; Tegmark, Taylor & Heavens 1997) or a direct
quadratic analysis (Hamilton 1997ab; Tegmark 1997).

3.2. DERIVATION OF THE INTEGRAL CONSTRAINT CORRECTION

For pixelized methods of power spectrum estimation, the procedure for
dealing with the integral constraint is quite analogous to that for direct
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Fourier methods. However, as we will now show, it is much simpler to
implement. For counts in cells, for example, one simply removes the mean
from all rows and columns of the covariance matrix C before proceeding
with the analysis. Because of this simplicity, one can, at an almost negligible
numerical cost, take a more ambitious approach and allow for more than
one unknown parameter in the selection function. For instance, one can
impose the constraints that the radial fluctuation average equals zero for
a few hundred different angular bins, thereby eliminating the sensitivity
to galactic extinction variations on this scale, as well as requiring that
the angular fluctuation average vanish for a number of radial bins to be
insensitive to errors in estimating the precise shape of n̄.

Let us parametrize the true selection function n̄ as

n̄(r) =
M∑

j=1

ηj n̄j(r), (29)

where n̄j are known functions and the “nuissance parameters” ηj, which
we group into an M -dimensional vector η, are a priori unknown. Let n̄0

denote some a priori estimate of n̄. Defining the “uncorrected” pixels as

x′i ≡
∫

n(r)

n̄0(r)
ψi(r)d

3r, (30)

we find that
〈x′〉 = Zη, (31)

where the N ×M -dimensional matrix Z is defined by

Zij ≡
∫
n̄j(r)

n̄0(r)
ψi(r)d

3r. (32)

This means that in general, 〈x′〉 6= 0, so the uncorrected data set does
not satisfy equation (27). Instead, its statistical properties depend on the
unknown nuissance parameters η. However, we can easily construct a new
“corrected” data set whose mean is independent of η. Let us define

x ≡ Πx
′, (33)

where
Π ≡ I − Z̃Z̃

t, (34)

and Z̃ is a matrix whose rows form an orthonormal basis (Z̃t
Z̃ = I) for the

space spanned by the rows of Z.2 Π is a symmetric (Πt = Π) projection

2Such a matrix Z̃ is readily constructed by orthonormalizing the rows of Z with a
Gram-Schmidt or Cholesky procedure (as in e.g. Tegmark & Bunn 1995).
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matrix (Π2 = Π) projecting onto the subspace orthogonal to the columns
of Z, i.e., ΠZ = 0. Our corrected data set x satisfies equation (27), since
〈x〉 = ΠZη = 0. Letting C

′ denote the covariance matrix of the uncorrected
data set, the corrected data will have the covariance matrix

C ≡ 〈xx
t〉 = ΠC

′
Π. (35)

Once x and C have been computed, the rest of the pixelized analysis pro-
ceeds just as if there had been no integral constraints. The only complica-
tion is that C is now singular, having rank N −M instead of N . As shown
in the Appendix of T97, the correct way to deal with this is to replace all
occurrences of C

−1 (which is of course undefined) by the “pseudo-inverse”
of C, defined as

Π

[
C + γZZ

t
]
−1

Π (36)

for some constant γ 6= 0. The result is independent of γ, but a good choice
for numerical stability is γ ∼ c/N , where c is the order of magnitude of a
typical matrix element of C.

The author wishes to thank Josh Frieman, Andrew Hamilton, Michael
Strauss and Michael Vogeley for helpful comments on the manuscript.
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