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ABSTRACT

We study the persistence of warps in galactic discs in the presence of massive halos.
A disc is approximated by a set of massive rings, while a halo is represented by a
conventional n-body simulation. We confirm the conclusion of Nelson & Tremaine
(1995) that a halo responds strongly to an embedded precessing disc. This response
invalidates the approximations made in the derivation of classical ‘modified tilt’ modes.
We show that the response of the halo causes the line of nodes of a disc that starts
from a modified tilt mode to wind up within a few dynamical times. We explain
this finding in terms of the probable spectrum of true normal modes of a combined
disc–halo system.
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1 INTRODUCTION

At least 50 percent of spiral galaxies have warped discs, and
it is likely that all galactic discs are slightly warped. Given
the importance of the warp phenomenon and the fact that it
is now nearly 40 years since the first warp, that of the Milky
Way, was discovered, it is remarkable that there is still no
generally accepted explanation of the phenomenon. Several
recent reviews survey the literature of subject (e.g., Binney,
1992; Nelson & Tremaine, 1996).

To a first approximation most warped discs may be rep-
resented by an ensemble of rigid, concentric rings. Each ring
is spinning and coupled to the other rings and to non-disc
material by gravity. The gravitational torques on the rings
cause their spin angular momenta to precess, and the fun-
damental problem posed by the phenomenon of warps is to
understand how, despite this precession, the orientations of
rings are coordinated, as they must be if the disc is to remain
smooth and thin.

An explanation that has enjoyed considerable popular-
ity is that the rings are sufficiently tightly coupled to one
another by gravity that they can precess together in the
non-spherical gravitational potential of a massive halo as if
they formed a rigid body (Toomre 1983; Dekel & Shlosman
1983). Since in this model the height of the disc above the
halo’s equatorial plane varies sinusoidally in time, the disc is
said to have an excited normal mode. The mode in question
is a modification of a trivial zero-frequency solution of the
linearized equations of motion of an isolated system of rings.
This zero-frequency mode corresponds to a simple tilt of the
system of rings with respect to the coordinate system em-
ployed. Hence it is called the ‘modified tilt’ mode of the disc.
The modified tilt modes of discs were thoroughly studied by
Sparke & Casertano (1988). They found that some well-
observed warps could be successfully modelled by modified
tilt modes.

Unfortunately, modified tilt modes are artificial in that
they rest on the assumption that the halo potential, which is
responsible for the precession of the disc, is unaffected by the
disc’s precession. In reality halo objects will tend to pick up
energy from the time-varying potential of the disc, and any
increase in the halo’s energy is likely to be at the expense
of the energy of the disc’s modified tilt mode. Nelson &
Tremaine (1995) estimated the rate of energy transfer from
the disc to the halo and found it to be surprisingly large.
They concluded that in realistic circumstances a modified
tilt mode will be damped within one dynamical time of the
disc.

In this paper we use numerical simulations to test and
clarify the semi-analytic work of Nelson & Tremaine. What
they calculated was the rate at which halo stars would ac-
quire energy if (a) the warped disc precessed precisely as pre-
dicted by Sparke & Casertano, and (b) if the time-averaged
potential governing the motion of halo particles is spheri-
cal. The latter assumption is obviously unphysical and im-
posed only in order to facilitate the calculations. However,
intuitively one feels that the final result should not be sen-
sitive to this assumption. By contrast the first assumption,
that the disc precesses according to the prediction of Sparke
& Casertano, is incompatible with the large energy trans-
fer rate obtained by Nelson & Tremaine, since this demon-
strates that effects neglected by Sparke & Casertano are in
fact large.

Simulations of disc–halo interaction are demanding nu-
merically because the scales of the disc and halo are very
different. Some numbers appropriate to the Milky way will
illustrate this. The disc scale length is ∼ 3 kpc (Kent, Dame
& Fazio, 1991) while the halo probably extends at least to
the galactocentric distance r ≃ 50 kpc of the Magellanic
Clouds (Fich & Tremaine, 1991). Moreover, it is essential
for the halo mass and angular momentum to exceed those
of the disc by a considerable factor. On the other hand, the
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individual masses of halo particles should be smaller than
those of disc particles in order that the halo’s structure is
sufficiently well defined in the neighbourhood of the disc. In
particular, spurious stochastic acceleration of disc particles
by halo particles must be avoided, as must significant two-
body relaxation within the small fraction of the halo that lies
within the disc. The difficulty of satisfying these conflicting
requirements is illustrated by the simulations of Dubinski
& Kuijken (1995). They simulated a disc–halo system with
a direct n-body simulation in which 50 000 particles were
assigned to the halo and 40 000 particles were assigned to
the disc. Typically, their halo particles were more massive
than their disc particles by a factor in excess of 6. In such
a simulation the disc is inevitably so thick that one cannot
meaningfully determine whether any warp’s line of nodes is
straight or has a tendency to wind up.

Here we represent only the halo by an n-body simula-
tion, while modelling the embedded disc by a series of rigid
concentric rings. The latter approximation to disc dynamics
was introduced by Hunter & Toomre (1969) and has since
been widely used in theoretical work. However, it does not
seem before to have been directly coupled to an n-body sim-
ulation. It enables us to assign all our 100 000 particles to
the halo and to have a well defined line of nodes in a disc
whose 100 individual rings have masses that are larger than
those of halo particles by a factor of 100.

In Section 2 we set out the equation of motion of the
disc and halo system. In Section 3, we describe numerical
details and the initial conditions we have used for the halo
and the disc. In Section 4 we check that our simulations
can reproduce previous results and go on to show that a
dynamical halo causes a warp to wind up rapidly when it
starts from the configuration of the modified tilt mode for
the case of a frozen halo. In Section 5 we explain this re-
sult in terms of the probable normal-mode spectrum of the
coupled disc–halo system.

2 FORMALISM

2.1 Disc dynamics

The equation of motion of a disc star is

d2z

dt2
= −∂Φh

∂z
+ f, (1)

where Φh is the gravitational potential of the halo and f is
the vertical force on the particle from the disc. For small
excursions out of the xy-plane, the halo term in (1) can be
expanded as

∂Φh

∂z
=

∂Φh

∂z

∣

∣

∣

∣

z=0

+z
∂2Φh

∂z2

∣

∣

∣

∣

z=0

+O(z2)

≃ −(Fh − κ2
zz),

(2)

where

Fh ≡ −∂Φh/∂z|z=0

κ2
z ≡ ∂2Φh/∂z2|z=0.

(3)

When we express the total time derivative in (1) in terms of
partial derivatives we now have
(

∂

∂t
+ Ω

∂

∂φ

)2

z = Fh − κ2
zz + f, (4)

where Ω(r) is the circular frequency at radius r.

Following Hunter & Toomre (1969) we focus on the m =
1 distortions of the disc by assuming that z is of the form

z(t, r, φ) =
√

2
[

zc(t, r) cos(φ) + zs(t, r) sin(φ)
]

. (5)

With this assumption the disc may be considered to consist
of a nested sequence of rigid rings. Then

√
2zc(t, r) is the

height at which the ring of radius r passes over the posi-
tive x-axis at time t, while

√
2zs(t, r) is the height of the

corresponding passage over the y-axis. (The factors of
√

2
will ensure that the expression for the energy of the warp
is natural.) When we similarly decompose Fh(t, r, φ) and
f(t, r, φ) in the form (5), equation (4) yields coupled equa-
tions of motion for zc and zs:

∂2zc

∂t2
+ 2Ω

∂zs

∂t
− Ω2zc = Fhc − κ2

zzc + fc,

∂2zs

∂t2
− 2Ω

∂zc

∂t
− Ω2zs = Fhs − κ2

zzs + fs.

(6)

We calculate the vertical forces between the rings to
first order in zc and zs by splitting the force into two parts
f (a) and f (b) (Toomre, private communication). f (a) is the
force on a ring that lies in the xy-plane from other, tilted
rings, while f (b) is the force on a tilted ring when the other
rings lie in the xy-plane. For a ring of radius r, we have

f (a)(r, φ) =
∑

r′ 6=r

Gmr′

2π
z(r′, φ)

∫ 2π

θ=0

cos θdθ

∆(r, r′, θ)
,

f (b)(r, φ) = −
∑

r′ 6=r

Gmr′

2π
z(r, φ)

∫ 2π

θ=0

dθ

∆(r, r′, θ)
,

(7a)

where mr′ is the mass of the ring of radius r′ and

∆(r, r′, θ) ≡ (r2 + r′2 + a2 − 2rr′ cos θ)3/2. (7b)

Here a is the softening of the force that arises because the
disc has finite vertical thickness ∆z ≃ a.

If Φd is the gravitational potential of the disc, the cir-
cular frequency Ω is given by

Ω =

√

1

r

(

∂Φh

∂r

∣

∣

∣

∣

z=0

+
∂Φd

∂r

∣

∣

∣

∣

z=0

)

≡
√

Ω2
h + Ω2

d.

(8)

By analogy with the vertical forces, we decompose Ω2
d into

contributions that are proportional to the two integrals that
appear in equations (7a):

Ω2
d(r) = S(a) + S(b), (9)

where

S(a)(r) ≡ −
∑

r′ 6=r

r′

r

Gmr′

2π

∫

cos θdθ

∆(r, r′, θ)
,

S(b)(r) ≡
∑

r′ 6=r

Gmr′

2π

∫

dθ

∆(r, r′, θ)
.

(10)



Galactic warps 3

Hence we have finally that equations (6) may be written

z̈ci + 2Ωiżsi − Ω2
i zci = Fhc − κ2

zizci

+
∑

j

zcjf
(a)
ij + zci

∑

j

f
(b)
ij

z̈si − 2Ωiżci − Ω2
i zsi = Fhs − κ2

zizsi

+
∑

j

zsjf
(a)
ij + zsi

∑

j

f
(b)
ij

(11a)

where,

f
(a)
ij ≡ Gmj

2π

∫ 2π

0

cos θdθ

∆(ri, rj , θ)
,

f
(b)
ij ≡ −Gmj

2π

∫ 2π

0

dθ

∆(ri, rj , θ)
.

(11b)

Equations (11a) lead naturally to a definition of the
warp’s energy

Ewarp = 1
2

∑

i

miż
2
i + V w

dh + V w
dd, (12)

where

ż2
i ≡ (żci)

2 + (żsi)
2 . (13)

and the two potential-energy terms are defined by

V w
dh ≡

Nr
∑

i=0

mi

[

1
2
z2

i

(

κ2
zi − Ω2

hi

)

− (Fhcizci + Fhsizsi)
]

,

V w
dd ≡ − 1

2

∑

i

mi

[

zci

(

∑

j

zcjf
(a)
ij + zci

∑

j

f
(b)
ij

)

+ zsi

(

∑

j

zsjf
(a)
ij + zsi

∑

j

f
(b)
ij

)

+ Ω2
diz

2
i

]

.

(14)

Here

z2
i ≡ z2

ci + z2
si. (15)

2.2 The halo

We represent the halo by an ensemble of particles that move
in the combined potential of the halo and disc. We expand
this potential and the halo’s density in spherical harmonics
as follows,

ρh(r, θ, φ) =
∑

l=0

l
∑

m=0

pm
l (cos θ)

× [Alm(r) cos(mφ) + Blm(r) sin(mφ)],

Φh(r, θ, φ) =
∑

l=0

l
∑

m=0

pm
l (cos θ)

× [Clm(r) cos(mφ) + Dlm(r) sin(mφ)].

(16)

Here the pm
l are defined in terms of the conventional Legen-

dre functions P m
l by

pm
l ≡

√

(l − |m|)!
(l + |m|)!P

m
l (17)

and the Clm are related to Alm by

Clm(r) = C1lm(r) + C2lm(r)

C1lm(r) ≡ − 4πG

2l + 1
r−l−1

∫ r

0

ds sl+2Alm(s)

C2lm(r) = − 4πG

2l + 1
rl

∫ ∞

r

ds s1−lAlm(s).

(18)

An expression for the Dlm in terms of the Blm is obtained
by replacing C with D and A with B in these expressions.

In the linear regime the vertical force on a ring is char-
acterized by the force components,

Fhc(r) =
1

r

∑

l

dp1
l (µ)

dµ

∣

∣

∣

∣

µ=0

Cl1

Fhs(r) =
1

r

∑

l

dp1
l (µ)

dµ

∣

∣

∣

∣

µ=0

Dl1

(19)

and by the frequency,

κ2
z(r) =

∑

l=0

(

Pl(0)
El0

r
+

d2Pl(µ)

dµ2

∣

∣

∣

∣

µ=0

Cl0

r2

)

, (20)

where

El0 ≡ −(l + 1)
C1l0

r
+ l

C2l0

r
. (21)

The halo’s contribution to the circular frequency is

Ω2
h =

1

r

∑

l=0

Pl(0)El0(r). (22)

2.3 The coupling between disc and halo

The potential of a ring of radius r′ may be written

Φ(r, θ, φ) =
∑

l=0

Φlζ
lPl(cos γ), (23a)

where the Φl are coefficients to be determined,

ζ ≡ min(r′, r)

max(r′, r)
, (23b)

and γ is the angle between the ring’s symmetry axis and the
direction (θ, φ). On the ring’s symmetry axis, γ = 0, we
have

Φ(r, γ = 0) = − Gmr′√
r′2 + r2

= − Gmr′

max(r′, r)

(

1 − 1
2
ζ2 + 1.3

222!
ζ4 − · · ·

)

.

(24)

Since Pl(1) = 1 for all l, the values of the Φl follow immedi-
ately from a comparison of equations (23a) and (24).

The addition theorem for associated Legendre functions
may be written

Pl(cos γ) =

l
∑

m=0

2

ǫcm
pm

l (cos θT )pm
l (cos θ)

× cos
[

m(φ − φT )
]

,

(25a)

where γ is the angle between the general directions (θT , φT )
and (θ, φ), and

ǫcm ≡
{

2 for m = 0,
1 otherwise.

(25b)
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We set (θT , φT ) equal to the polar angles of the ring’s sym-
metry axis

θT (r′) = sin−1

(

√

2(z2
c + z2

s )

r′

)

,

φT (r′) =
π

2
+ atan2 (zc,−zs) ,

(26)

and eliminate Pl(cos γ) between equations (23a) and (25a):

Φ(r, θ, φ) =
∑

l=0

Φlζ
l

l
∑

m=0

2

ǫcm
pm

l (cos θT )pm
l (cos θ)

× cos[m(φ − φT )]

=
∑

l=0

l
∑

m=0

pm
l (cos θ)

× [C′
lm cos(mφ) + D′

lm sin(mφ)],

(27a)

where

C′
lm(r) ≡ 2

ǫcm
Φlζ

lpm
l (cos θT ) cos(mφT ),

D′
lm(r) ≡ 2

ǫcm
Φlζ

lpm
l (cos θT ) sin(mφT ).

(27b)

2.4 Energy integrals

The potential energy of the system is V = Vhh + Vhd + Vdd,
where,

Vhh ≡ 1
2

∫

d3
r ρhΦh,

Vhd ≡
∫

d3
r ρhΦd = Vdh ≡

∫

d2
r ΣdΦh,

Vdd = 1
2

∫

d2
r ΣdΦd.

(28)

The requirement that Vhd = Vdh provides a non-trivial check
on the accuracy of the calculations.

2.4.1 Self potential energy of the halo

Vhh can be expressed in terms of the coefficients defined
above of the spherical-harmonic expansions of ρh and Φh:

Vhh =
∑

l=0

π

2l + 1

l
∑

m=0

∫

dr r2 [ǫcmAlmClm + ǫsmBlmDlm] , (29)

where ǫsm = 0, if m = 0 and 1, otherwise.

2.4.2 Interaction of the halo and the disc

Similarly, the energy of interaction of disc and halo can be
written

Vhd=
∑

l=0

2π

2l + 1

l
∑

m=0

∫

dr r2
(

ǫcmAlmC′
lm + ǫsmBlmD′

lm

)

. (30)

We decompose Vdh into two parts, a part V u
dh associated

with a flat disc that lies in the xy-plane, and a part V w
dh

associated with warping or tilting of the disc. We have

V u
dh =

∫ ∞

0

dr r

∫ 2π

0

dφΣd(r)Φh(r, 0, φ). (31)

Setting

Σd(r) =

Nr
∑

i=0

mi
δ(r − ri)

2πri
(32)

and using equation (16) we find

V u
dh =

Nr
∑

i=0

mi

∑

l=0

Pl(0)Cl0(ri). (33)

We calculate V w
dh by substituting equation (32) into the (28)

and expanding Φh in cylindrical polar coordinates (R,φ, z):

V w
dh =

∫

d2
r

Nr
∑

i=0

mi
δ(r − ri)

2πri
Φh(R, φ, z)

Φh(R,φ, z) = Φh(r, φ, 0) +
∂Φh

∂R
δR +

∂Φh

∂z
z

+ 1
2

∂2Φh

∂z2
z2 + · · ·

≃ Φh(r, φ, 0) − z2

2r

∂Φh

∂R
− Hhz + 1

2
κ2

hz2

(34)

On performing the integral over d2
r we recover the first of

equations (14).

2.4.3 Self potential of the disc

We similarly decompose the self potential energy of the into
two parts, the energy V u

dd of an isolated flat disc, and the
energy V w

dd associated with vertical displacements of the disc.
Since V u

dd is fixed, it may be neglected. V w
dd is given by the

second of equations (14).

2.4.4 Total energy

The total energy is simply the sum of the warp energy, equa-
tion (12), and the energy of the halo in the presence of an
unperturbed disc:

Etot = Ewarp + Ehalo, (35a)

where

Ehalo ≡ 1
2

Np
∑

i=1

miv
2
i + Vhh + V u

hd. (35b)

3 NUMERICAL DETAILS

The coupled equations of motion of the rings and parti-
cles were integrated with a symplectic leap-frog scheme that
was developed according to the theory of Saha & Tremaine
(1992).

3.1 Representing the disc

The disc is made up of 100 rings uniformly spaced in radius
between r1 and r100 with r100/r1 = 18. Their masses mi are
determined by the disc’s surface-density profile Σd(r) and
the radii ri of the rings. In most simulations we adopted
the surface density profile of Sparke & Casertano (1988):

Σd(r) = Σ0e
−r/Rd ×







1 r ≤ Rt,

cos2
(

π
2

(r−Rt)
(R0−Rt)

)

Rt < r ≤ R0

0, r > R0.

(36)

Thus interior to Rt the disc is exponential with scale length
Rd, while beyond Rt its surface density tapers smoothly to
zero.
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Figure 1. (a) The masses of the disc (solid curve) and the halo
(dotted curve) inside a sphere of radius r. (b) The axis ratio c/a
as a function of semi-major axis a. The open and full points are
for the halo prior to and after insertion of the disc, respectively.

3.2 The halo

The bulge and halo are represented by Np = 105 particles.
Since a general distribution function for a flattened halo will
depend on a non-classical third integral for which no analytic
expression is available, our halo model is constructed not
from a distribution function but by allowing an approximate
equilibrium configuration to relax towards an equilibrium.
We construct an approximate equilibrium as follows. We
start with a spherical system whose density profile varies
approximately as r−2. Specifically

ρ(r) =

{

ρ0
e−r/rt

1 + r2/r2
c

for r ≤ r∞

0 otherwise,

(37)

where rc is a suitable small radius, rt = 50rc and r∞ = 65rc.
The isotropic distribution function f(E) of this system is
obtained from Eddington’s formula [eq. (4-140a) of Binney
& Tremaine, 1987] and sampled by standard procedures.

This spherical system is next flattened by multiplying
each z coordinate by q < 1. We now multiply the z-velocity
of each particle by a factor α and multiply all x- and y-
velocities by a factor β to ensure that the tensor virial theo-
rem is satisfied. Specifically we require that the components
Tii of the kinetic-energy satisfy 2Tii = −Wii, where Wii

is a component of Chandrasekhar’s potential-energy tensor.
Since Tzz ∝ α2 and Txx = Tyy ∝ β2, one easily finds that

α2 = −Wzz

2T 0
zz

,

β2 = −Wxx + Wyy

4T 0
zz

,

(38)

where T 0
zz is any non-vanishing component of the kinetic-

energy tensor of the original spherical system.

The distribution of halo particles that has been pro-
duced as described above is only in approximate dynamical
equilibrium and has yet to be modified by the gravitational
potential of the embedded disc. Consequently, we integrated
the equations of motion of the halo particles for a time tm
during which the mass of a flat embedded disc is ramped
from zero to its final value according to the formula

Md(t) = 1
2

[

1 − cos(πt/tm)
]

Md(tm), (39)

where tm = 20/Ω(Rd). Fig. 1a shows for our standard model
the masses of the disc and the halo that lie inside a sphere of
radius r. Fig. 1b shows the axis ratio c/a of the isodensity
surface in the halo that has semi-major axis a.

3.3 Scalings

Table 1 lists the numerical values of the parameters that appear
in the defining equations of the disc and halo

Our unit of time is determined by these choices: (i) r1 =
rc = 1; (ii) the halo mass is unity and the disc mass is 0.1; (iii)
Newton’s constant G = 1. The circular frequency at Rd is then
Ω(Rd) = 0.04 and the rms speed of halo particles is v0 = 0.19.
Consequently the halo’s dynamical time is tdyn ≡ 1

2
r∞/v0 ≃ 170.

4 RESULTS OF THE SIMULATIONS

4.1 The case of a static halo

We first check that our rings are capable of reproducing the results
of Sparke & Casertano (1988) by freezing the configuration of the
halo once the disc mass has been ramped up to its full value.
Equation (5) of Sparke & Casertano was solved for the pattern
speed Ωp and vertical displacement z(r) of the modified tilt mode
of our disc in this fixed halo. The equations of motion (11a) of
the disc were then integrated from this initial condition. Fig. 2
shows that the numerical solution is exactly as it should be for a
normal mode: the disc maintains it shape to high accuracy while
precessing at the derived pattern speed. Fig. 3 shows that the
warp energy is conserved to high accuracy – it decreases by 5
parts in 105 during 13 revolutions of the ring at r = Rd.

These results demonstrate that we have accurately modelled
the disc–halo interaction and are correctly following the dynamics
of the disc.

4.2 Forced precession of the disc

Next we check the calculation of Nelson & Tremaine (1995) by
evolving the halo while the disc is caused to precess at a steady
rate in a given warped configuration. The latter was the ap-
proximate normal-mode configuration considered by Nelson &
Tremaine.

Fig. 4 shows the consequent evolution of the halo energy that
is defined by equation (36). The disc’s warp energy is Ewarp ≃
3×10−4, so, in so far as the straight line of slope Ėh = 2.8×10−7

that is plotted in Fig. 5 provides an adequate approximation to
the dependence of Ehalo on time, the decay rate of the warp is
Γ = Ėhalo/Ewarp = 9 × 10−4 and Γ/Ω(Rd) = 0.02. This value
of Γ lies exactly in the middle of the range of values for the same
quantity that Nelson & Tremaine plot in their Fig. 2.

This calculation suggests both that we are integrating the
equations of motion of the halo particles accurately, and that the
approximations employed by Nelson and Tremaine to estimate
the effect of the warp on the halo are not misleading.



6 J.J. Binney, I.G. Jiang and S.N. Dutta

Table 1. Parameters

Disc Halo
r1 r100 Rd Rt R0 Md rc rt r∞ Mh

1 18 4.5 15.75 18 0.1 1 50 65 1

Figure 2. Plots of z(t, r, φ = Ωpt) for t = 0 (curve) and t = 2000
(triangles) when the disc is allowed to evolve from the configura-
tion of a normal-mode for time t in a frozen halo (2000Ωp = 164◦).
The open squares show z(t, r, φ = Ωpt + 1

2
π) at t = 2000. (The

corresponding values of z for t = 0 are identically zero.)

4.3 A live disk in a live halo

Fig. 5 shows the evolution of the curve of nodes of live disc that
evolves in a live halo from an initial condition that is a normal-
mode in the sense of Sparke & Casertano. It is apparent that the
warp winds up within a few dynamical times. Fig. 6 shows, as a
function of time, the rms vertical displacement |z| = (z2

c + z2
s )1/2

for this simulation. This does not evolve dramatically. Only in
the innermost third of disc is there any tendency for the rms
displacement to decrease with time. In the outermost quarter of
the disk the rms displacement clearly increases slightly through
the duration of the simulation. It turns out that the growth in
|z| at large radii predominates in the sense that Ewarp tends to
increase.

5 CONCLUSIONS

We have used a program that uses rings to represent the disc and
particles to represent the halo to model the dynamics of a disc
that is embedded in a live massive halo. We have checked the
correctness of the program as regards the disc and its interaction
with the halo by showing that when the halo is frozen, and the
disc is started in a Sparke–Casertano normal mode, it precesses
rigidly as the normal-mode calculations require. We have checked
the correctness of the program as regards the halo by showing that
when the disc is rigid and forced to precess at a constant rate, the
halo acquires energy at the rate predicted by Nelson & Tremaine
(1995).

When the halo is live and the disc is started from the con-
figuration of a normal mode, the warp is not rapidly damped as

Figure 3. Warp energy [equation (12)] as a function of time for
a disc evolving in a frozen halo.

Figure 4. The energy of the halo [equation (36)] when a warped
disk is forced to precess at a constant rate. The dotted line is
the fit used in the text. Notice that Ewarp/Ehalo ∼ 0.02, so
calculating energies to the required accuracy is computationally
challenging.

Nelson & Tremaine predicted, but winds up within a few dynam-
ical times, whilst retaining or even enhancing its ‘warp energy’.
How may this result be understood?

We have to consider two distinct dynamical systems: (a)
the disc in a frozen halo, and (b) the disc in a live halo. Let us
call (a) the Frozen System and (b) the Live System. The tight
coupling between the disc and halo that is demonstrated by the
calculation of Nelson & Tremaine already implies that the normal
modes of the live system are not close to the normal modes of the
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Figure 5. A warp in a live halo rapidly winds up even though its initial configuration would be a normal mode if the halo were static.
Here we plot at several times the curve of nodes that is defined by φ(r) = π + atan2[zc(r),−zs(r)] for a live disc that evolved in a live

halo from a configuration that was a normal mode in the sense of Sparke & Casertano.

frozen system. Hence, if we were to express the configuration that
corresponds to any low-order normal mode of the frozen system
as a linear combination of normal modes of the live system, the
sum would not be dominated by a single term. The configuration
described by the sum would evolve significantly on a timescale
that is inversely proportional to the biggest frequency difference
∆ωmax between the normal modes that have non-negligible am-
plitudes in the sum. The rapidity with which a warp of the live
system winds up from a normal-mode configuration of the frozen
system implies that ∆ωmax is large.

To understand why this should be so, consider the probable
form of the normal modes of the live system. At any radius the
density of the halo has a strong tendency to peak at the vertical
location of the disc, because the latter is extremely dense. Equiv-

alently, a substantial input of energy is required to displace the
disc from the halo’s local equator. By contrast, relatively little
energy is required to tip the outer disc and halo with respect to
the inner disc and halo – the outer and inner parts of a flattened
galaxy are kept in angular alignment principally by the interac-
tion between the mass quadrupole of the outer galaxy with the
inner galaxy’s potential quadrupole, which is attenuated by the
cube of the ratio of the characteristic radii of the inner and outer
parts of the galaxy.

Now it is generally true that deformations of a system that
are associated with small energy increments are associated with
low-frequency normal modes, while those that are associated with

large energy increments are associated with high-frequency nor-
mal modes. So a normal mode that displaces the disk from the
local equator of the halo will have a much higher frequency than
one that tips the outer parts of the galaxy with respect to the
inner parts.

To generate a normal mode of the frozen system we have
to do two things: First, we generate the warp in the disc by
rotating the outer galaxy with respect to the inner galaxy. Then,
we eliminate the twist just introduced into the halo by displacing
the halo with respect to the disc at both large and small radii.
Thus, when expressed as a sum over normal modes of the live
system, a normal mode of the frozen system involves both high-
frequency and low-frequency terms in an essential way. From this
it follows that it will wind up rapidly, essentially at the frequency
of the high-frequency normal modes.

The argument we have just given explains why our initial
warped configurations rapidly wind up. It also suggests that true
normal modes of the full live system may involve configurations
of the disc that are very similar to those of Sparke–Casertano
normal modes. It is in their halo configurations that these true
normal modes would differ essentially from Sparke-Casertano nor-
mal modes. It is likely that these differences in halo structure will
give rise to the true normal modes having significantly lower fre-
quencies than do Sparke-Casertano normal modes. We hope soon
to return to this prediction.
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Figure 6. The rms vertical displacement |z| = (z2
c + z2

s )1/2 as a function of radius for the simulation whose curves of nodes are shown
in Fig. 5.
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