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ABSTRACT

The phase-transition induced collapse of a neutron star to a more compact

configuration (typically a “strange” star) and the subsequent core bounce is

often invoked as a model for gamma-ray bursts. We present the results of

numerical simulations of this kind of event using realistic neutrino physics and a

high density equation of state. The nature of the collapse itself is represented

by the arbitrary motion of a piston deep within the star, but if any shock is

to develop, the transition, or at least its final stages, must occur in less than

a sonic time. Fine surface zoning is employed to adequately represent the

acceleration of the shock to relativistic speeds and to determine the amount

and energy of the ejecta. We find that these explosions are far too baryon-rich

(Mejecta ∼ 0.01M⊙) and have much too low an energy to explain gamma-ray

bursts. The total energy of the ejecta having relativistic Γ ∼> 40 is less than

1046erg even in our most optimistic models (deep bounce, no neutrino losses or

photodisintegration). However, the total energy of all the ejecta, mostly mildly

relativistic, is ∼ 1051erg and, if they occur, these events might be observed.

They would also contribute to Galactic nucleosynthesis, especially the r-process,

even though the most energetic layers are composed of helium and nucleons, not

heavy elements.

Subject headings: gamma rays: bursts — stars: neutron
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1. Introduction

A major goal in modern model building for cosmological gamma-ray bursts is finding

a source which provides both the high energies (∼> 1051erg for symmetric explosions) and

high Lorentz factors (Γ ∼> 100) required to explain the observations (e.g., Mészáros &

Rees 1993). One often proposed source for this energy is an explosion resulting from the

phase transition of a neutron star to a “strange” or “hybrid” star (Ramaty et al. 1980;

Ramaty, Lingenfelter & Bussard 1981; Brecher 1982; Ellison & Kazanas 1983; Bonazzola

1986; Michel 1988; Haensel, Paczynski & Amsterdaamski 1991; Ma & Xie 1996; Ma & Luo

1996; Shaviv & Dar 1996, Qin et al. 1997). Though there is some variation in the models -

sometimes a critical mass is achieved for an accreting neutron star, sometimes only a single

star is involved - all take note of the large gravitational binding energy of a neutron star and

speculate that some fraction of this can be tapped and converted into an outgoing shock

wave when the inner core abruptly makes the transition to a more compact state. Because

the density is so high, neutrino losses are small, except very near the surface; similarly

photodisintegration losses are negligible, so the “prompt shock” mechanism that fails to

give mass ejection in standard supernova models (e.g. Bethe 1990), might, in this case,

deliver large amounts of momentum to the surface layers. Models for strange or “hybrid”

stars predict central core densities nearly 5 times greater and radii 10-20% smaller than

neutron stars of the same mass (Rosenhauer, Staubo, & Csernai 1991). A rough estimate of

the potential energy released, E ∼
GM2

R
∆R
R

, predicts energies on the order of 1052erg, easily

sufficient for gamma-ray burst models (e.g., Ma & Xie 1996).

However, to get the required high Lorentz factors (Γ), this energy must be concentrated

into a thin layer near the neutron star surface so that only a small amount of mass is

ejected.1 Competing with this sink for the gravitational energy is an increase in the internal

energy that occurs when matter moves to higher gravitational potential, so the shock

does not carry an energy equal to the entire change in gravitational potential. And of

course the matter ejected will have a distribution of kinetic energies with most of the mass

concentrated at low energies. In this paper, we show that while the phase-transitions of

neutron stars can indeed impart total energies to their ejecta in excess of 1050erg, they fail

to deposit enough energy at high Γs to explain gamma-ray bursts. The phase-transition

induced collapse of neutron stars is therefore not a viable gamma-ray burst mechanism.

1To reach a mean Γ of 100, a 2 × 1051erg explosion must eject less than 10−5
M⊙.
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2. Simulations

To simulate the collapse and subsequent explosion of neutron stars, we use two separate

hydrodynamic codes, one for the bounce and shock formation in the inner core and another

to study shock propagation in the outer 0.001 to 0.01M⊙ where very fine zoning must be

employed. For the collapse and bounce phase of the simulation, we use the relativistic

supernova code described in Herant et al. (1994) and Fryer et al. (1998) which includes the

equation of state for high density matter developed by Lattimer & Swesty (1991), neutrino

processes and transport, general-relativistic effects and nuclear burning assuming nuclear

statistical equilibrium in a Lagrangian hydrodynamics code. We base our calculations on

a 1.4M⊙ neutron star initial model provided by Keil(1997). The inner 50% of the mass

is removed from the neutron star and replaced by an inner boundary. After the star has

recovered from this remapping (the stable radius using our code is within 5% of the initial

radius of Keil’s model), we move the inner boundary quickly, but not instantly to a smaller

radius to artificially simulate the phase transition.2 The outer zones in this calculation are

resolved down to 10−4M⊙ at the edge of the neutron star using over 450 variably massed

zones. The ultimate results of this calculation are an accurate estimate of the total mass

ejected and a history of the inner boundary of this ejecta (r(t)), which we can use as a

piston for the high resolution models of the shock progression through the neutron star

crust.

To model the shock progression through this outer crust, we use the hydrodynamical

code KEPLER (Weaver, Zimmerman, and Woosley 1978). Densities are sufficiently low

(∼< 1012 g cm−3) in this material that an ordinary equation of state (ions, radiation,

electrons and pairs of arbitrary relativicity and degeneracy) can be used. Although the

code is Newtonian, not relativistic, it has the advantage that very fine mass zoning can be

employed while conserving momentum and energy to high accuracy. The code also has the

ability to compute approximate nucleosynthesis using a network of 19 isotopes.

¿From our bounce simulations, we derive a piston velocity for the outer 0.01−0.001M⊙

of ejecta (depending upon the model) which is then placed at the inner boundary of the

KEPLER simulation. Using ∼ 200 logarithmically binned zones, we are able to compute

shock velocities and nucleosynthetic yields with an outer resolution of 10−11M⊙. Later in

the paper we shall discuss the validity of our Newtonian results for a problem where the

motion is trans-relativistic.

2We vary both the depth of the final inner radius and the speed at which it drops.
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2.1. Bounce Results

Table 1 summarizes the results of a series of simulations in which we varied the depth

and speed at which the inner boundary was lowered. We assume that the inner boundary in

these simulations moves in rapidly (with its free-fall velocity) and have varied the strength

of the bounce. If the material collapses much more slowly, the bounce will be much weaker

and explosions may not occur at all.

A common misconception in gamma-ray burst work is that all of the potential

energy gained during the compression of a compact object is immediately injected into

the exploding material. From the mass-point trajectories of our most energetic explosion

(Figure 1)3 we see that, although there may be a great deal of potential energy released

as the neutron star converts to a strange star, only a small fraction of this potential

energy appears in the ejecta. The kinetic energy of the inner boundary is almost entirely

reprocessed into potential energy as the outer 40% of the neutron star expands (see Figure

1). This energy slowly leaks out of the neutron star as it re-experiences Kelvin-Helmholtz

evolution. This effect is akin to the process in core-collapse supernovae where, during the

explosion, the proto-neutron star collapses down to 50km, driving an explosion with only

20% of the gravitational energy that it will ultimately lose in becoming a cold 10km neutron

star. Hence, simple estimates of the energy, and nucleosynthetic yield of these explosions.

such as those by Ma & Xie (1996), begin by overestimating the available energy by a factor

of 5-10.

A more crucial misconception is the assumption that the explosion ejects only a tiny

fraction of the collapsing object. In table 1, we see that the mass ejected ranges from

0.001 − 0.2M⊙ (corresponding to 10-100 zones in our bounce simulations), much larger

than gamma-ray burst models require. Although we can increase the explosion energy

by altering the depth at which we lower the inner boundary, we do not change the shock

velocity significantly, but rather eject more material. Note that if the neutron star collapses

to a black hole, no matter is ejected, the neutrinos are trapped in the collapse and no

energy is ejected. Thus, the collapse model proposed by Qin et al. (1997) fails to produce

any explosion, let alone a gamma-ray burst.

Neutrinos play a minor role in the mass ejection in these objects simply because, by the

time the ejecta begins to get optically thin, 90% of the energy has already been converted

to kinetic energy. The opacity for neutrinos due to absorption onto free nucleons is (Herant

3In this model, the inner boundary falls inward from 7.5km to 4.5km. The inner boundary is then given

a kinetic energy per gram equivalent to the potential energy released and it drives the shock through the

infalling zones.
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et al. 1994):

κ = 8.5 × 10−18

(

ǫν

12.5MeV

)2

cm2/g, (1)

where ǫν is the neutrino energy. The optical depth (τ = κρ∆R) becomes one when the

shock has reached 50 km and the density is ∼ 1010g/cm3.

After the initial ejection of matter, neutrinos will continue to deposit energy outside

the neutrinosphere due to neutrino/anti-neutrino pair annihilation. We reiterate the fact

that neutrino/anti-neutrino annihilation requires nearly head-on neutrino collisions (Janka

1991) and will not be effective in driving a gamma-ray burst for our spherically symmetric

explosions4. The energy deposition near the neutrinosphere drives a wind which is far too

baryon rich to be a gamma-ray burst model (Duncan et al. 1986). This effect has been seen

in simulations for neutron star mergers (Janka & Ruffert 1996) and the accretion induced

collapse of white dwarfs (Woosley & Baron 1992, Fryer et al. 1998) and the resultant

winds are non-relativistic. However, these winds are likely to eject an additional 0.01M⊙ of

possibly neutron-rich material.

2.2. Shock Progression Through The Crust

As the shock progresses through the outer crust of the neutron star, it accelerates. For

non-relativistic shocks, the shock velocity is given by (Sedov 1959):

vshock ∝ t
ω−3

5−ω , (2)

where ω is given by the density structure of the medium through which the shock travels

(ρ ∝ r−ω). Shocks propogating through density profiles where ω > 3 accelerate. As the

shock propogates through the exponentially decreasing density profile of the neutron star

crust, it accelerates and quickly becomes relativistic. Analytic solutions of ultra-relativistic

shocks and semi-analytic solutions of mildly relativistic shocks also exist (Johnson & McKee

1971; McKee & Colgate 1973; Gnatyk 1985). For an exponentially falling density profile

(to high accuracy, the structure of the outer crust of a neutron star is an exponential

atmosphere) the product of the Lorentz factor (Γ) and the velocity of the shock (β = v/c

where c is the speed of light) is given by (Gnatyk 1985):

Γβ ∝ (ρrN+1)−α, (3)

4Angular momentum does not alter our results. The outer crust of the neutron star does not collapse

significantly before being ejected and their trajectories are not significantly effected by angular momentum.

Likewise, the explosion is too rapid to allow the development of convection and it will also not effect the

results.
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where N is a geometric factor set to 2 for spherical symmetry, and α is determined, via

simulations, to be ∼0.20.

Unfortunately, this solution does not apply to the velocity of the material after the

shock has passed through the material and the internal energy of the material begins

to convert back to kinetic energy5. Therefore, we are forced to simulate, to high spatial

resolution, the velocity of the ejecta. For this purpose, we use the code KEPLER. Although

KEPLER is not a relativistic code, we can determine the effective Lorentz factor of

the expanding material by setting Γ = Etot/(Mc2) where Etot is the total energy from

the simulation and M is the mass of the ejecta. Figure 2 plots the energy output of

our explosions as a function of material ejected with Lorentz factors greater than Γ0.

Comparing our simulations just after shock breakout with the analytic solutions shows that

this conversion holds quite well at this point in the simulation (see Figure 2).

However, the material continues to accelerate after the shock breaks out of the neutron

star as internal energy is converted to kinetic energy. Although energy is conserved

globally, our conversion for Γ places more energy than the relativistic solution at high

Lorentz factors, overestimating the amount of highly relativistic material at late times (see

appendix). The exact energy output of these explosions, then, is bounded by the energy

distribution given at shock breakout and our overestimate of the final energy output. A

more accurate distribution requires relativistic simulations. Assuming the upper limit given

by our simulations, there is still very little energy (< 1046erg) ejected atΓ’s greater than 40

(see Figure 2). Thus, even in our most energetic explosion (which is probably much stronger

than reality), there is insufficient energy at high Lorentz factors to explain gamma-ray

bursts.

3. Observational Properties

The primary result of this work is simply that the energies produced via the

phase-transition of neutron stars at high Lorentz factors (Γ > 40) is at least 4-5 orders of

magnitude too low to explain cosmological gamma-ray bursts, and these explosions can

not explain the gamma-ray burst observations. Although the explosion resulting from a

phase-transition of a neutron star into a strange star is not sufficiently relativistic to be

a gamma-ray burst source, it does have a lot of energy (∼ 1051erg) at mildly relativistic

velocities. To estimate the luminosity profile of these explosions, we assume the ejecta loses

5The final velocity depends upon the equation of state and the effects of gravity, effects not modeled by

the semi-analytic solution
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its energy over its deceleration timescale (Rees & Mészáros 1992):

L = E(Γ)/tdec(Γ) (4)

where the deceleration timescale (tdec) is given by:

tdec(Γ) =
rdec(Γ)

2Γ2c
(5)

and the deceleration radius (rdec) is:

rdec(Γ) =

(

E(Γ)

4/3πρextΓ2

)1/3

. (6)

In these equations, Γ is the Lorentz factor, E(Γ) is the explosion energy at that Lorentz

factor, and ρext is the density of the interstellar medium (for our purposes, we assume a

number density of 1 cm−3). Under these assumptions, we can estimate the luminosity

of phase-transition induced explosions of neutron stars (see Figure 3). There is a small

peak at early times, but the luminosity “burst” quickly levels off at luminosities as high

as 1045erg/s and persists for roughly 30 days. Note that this luminosity is brighter than

a typical galaxy, but 6 orders of magnitude less than a supernova. Even if we assumed

that the all neutron stars undergo such phase transitions (∼ 1/100yr−1 per L∗ galaxy),

these objects would make only a fraction (10−9) of any magnitude limited supernova survey

due to their lower luminosity. If instead, only those neutron stars which accrete a sizable

amount of material (∼> 0.1M⊙) undergo this phase transition, the rate falls to roughly the

X-ray binary formation rate: ∼< 10−5yr−1 per L∗ galaxy (Kalogera & Webbink 1998). We

must rely on nucleosynthetic constraints to place limits on these transitions.

We follow nuclear processes throughout the explosion, assuming the electron fraction is

roughly 0.5 (Our bounce models predict that the neutrinos will reset the electron fraction

to this value) and assuming that the triple-α process dominates the helium burning. The

bulk of the ejecta from these simulations is helium (see Figure 4). Some iron and r-process

elements are produced, but only in the interior zones where the expansion is only mildly

relativistic. This result is an additional counter argument against those models that require

high iron fractions in the ejecta (Shaviv & Dar 1996).

The amount of r-process ejecta is difficult to estimate without a detailed calculation. In

the outer layers the expansion time scale is too short and the entropy too high to reassemble

alpha particles to iron group isotopes and above. In most of the ejected mass, as in Figure

4 around 1030g, elements just above the iron group will be ejected in a strong α-rich freeze

out from nuclear statistical equilibrium (Woosley & Hoffman 1992). There may be rare

species here such as 88Sr, 89Y, and 90Zr that limit the occurrences of these events (see also
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Woosley & Baron 1992; Woosley et al. 1994). For an amount of material of order 1027 -

1028g (Figure 4), a classical r-process may occur (Hoffman, Woosley, & Qian 1997), though

the ejecta would still be chiefly helium. Given a rate for neutron star phase-transitions

comparable to the X-ray binary formation rate (∼< 10−5/yr), the small amount of r-process

ejecta (∼< 10−5M⊙) contributes roughly 0.1% of the galactic r-process nucleosynthesis. Only

if nearly every neutron star formed in the galaxy experienced this phase transition would

the resultant ejecta dominate the r-process nucleosynthesis. At these rates, the contribution

to cosmic rays might also be appreciable.

We are grateful to Wolfgang Keil for providing us with a neutron star model and many

useful discussions. Also, we would like to thank Thomas Janka and Ewald Müller for their

helpful insight on this problem. We would like to thank the hospitality of the Max-Planck

Institut für Astrophysik for hosting us over the duration of this project. This work was

supported by the NSF (AST 94-17161) and by NASA (NAG5 2843 and MIT SC A 292701).

SEW also acknowledges the support of an award from the A. V. Humboldt Foundation that

covered his research expenses while at the MPA in Garching.

A. Comparison of Newtonian and Special Relativistic Equations

In this paper we have used a Newtonian code to simulate relativistic motion. While we

compared the results of our code with analytic derivations for the shock progression and

found good agreement after the shock breaks out of the neutron star, we have assumed

without equal justification, that our Newtonian code remains accurate during the post-shock

expansion. Here we show that our results for Γ ≫ 1 ejecta are an upper limit (i.e., even less

material will be ejected at high Γ’s than in Figure 2).

After the shock has traversed the neutron star, matter continues to accelerate as

internal energy is converted to kinetic energy. Assuming no energy is lost via neutrino

radiation, the energy conservation equation can be written as the relativistically correct

expression (e.g. Marti and Müller 1994):

∂(ρhΓ2 − P − ρΓc2)

∂t
+ ▽(ρhΓ2v − ρc2Γv) = 0 (A1)

where ρ is the density, P , the pressure, v, the velocity, c, the speed of light, t, the time,

Γ ≡ 1/
√

1 − (v/c)2, h ≡ c2 + ǫ + P/ρ is the enthalpy, and ǫ, the internal energy per unit

mass. By using the special relativistic formula for mass conservation:

∂(ρΓ)

∂t
+ ▽(ρΓv) = 0, (A2)
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we derive a reduced form of the energy conservation equation:

∂(ρǫ)

∂t
+ (1 − Γ−2)

∂P

∂t
+ ▽(ρǫv) + ▽(Pv) + (2Γ(ρh) − ρc2)Γ−2dΓ

dt
= 0. (A3)

The first and third term in this equation correspond to changes in internal energy, the second

and fourth terms correspond to changes in pressure, and the final term is associated with

changes in kinetic energy. This equation can be compared to its Newtonian counterpart:

∂(1/2ρv2 + ρǫ)

∂t
+ ▽[v(1/2ρv2 + ρǫ + P )] = 0, (A4)

which, with a similar reduction using mass conservation becomes:

∂(ρǫ)

∂t
+ ▽(ρǫv) + ▽(Pv) + ρv

dv

dt
= 0. (A5)

In the limit as Γ, h/c2 ⇒ 1, the ∂P/∂t term in A3 disappears, and the last term in both

A3 and A5 become equal. As the material expands, internal energy is converted to kinetic

energy. To check our estimation of Γ (= Etot/(Mc2)) during this phase, we compare the

dependence of the rate of change of Γ on the rate of internal energy change for the case of

special relativity (A3):
dΓ

dt

)

SR

=
Γ[∂(ρǫ)/∂t + ▽(ρǫv)]

2(ρc2 + ρǫ + P ) − ρc2/Γ
(A6)

with its Newtonian counterpart (A5):

∂v

∂t
=

[∂(ρǫ)/∂t + ▽(ρǫv)]

ρv
. (A7)

Using our conversion assuming all the energy has been converted to kinetic energy

(Γ = Etot/(Mc2) ⇒ v2/(2c2)), we get the following transformation:

dΓ

dtSR

=
c−2d(v2/2)

Γ−1dtNewt

=
Γv

c2

dv

dtNewt

(A8)

and equation (A7) becomes:

dΓ

dt

)

Newt

=
Γ[∂(ρǫ)/∂t + ▽(ρǫv)]

ρc2
. (A9)

Comparing A6 and A9, it is evident that although our conversion works well for low Γ

material where the internal energy and pressure our negligible, we will overestimate the

increase in Γ when Γ >> 1 or when the internal energy and pressure become important.

This implies that we are overestimating the amount of mass at high Γ’s, making it even less

likely that these explosions are gamma-ray bursts. However, this simple comparison does

not give an exact value for Γ. We will provide piston velocities for anyone who would like

to simulate this explosion using a relativistic code.
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Table 1. Neutron Star Collapse Simulations

Collapse Model Ejected Mass Kinetic Energy Energy (Γ > 40)

Strong Explosiona 0.017M⊙ ∼ 5 × 1051 1046erg

Weak Explosionb 0.001M⊙ ∼ 3 × 1050 1045erg

Black Holec 0 0 0

aIn this simulation, the inner boundary falls inward from 7.5km to 4.5km

assuming free-fall conditions. It then rebounds with a kinetic energy per gram

equal to the potential energy (1053erg/0.6M⊙). This is an overestimate of the

energy released as some of the energy certainly goes into internal energy. The

inner boundary slowly decelerates as it expands (from gravity) until it reaches

6km, where it stops and is held fixed for the duration of the simulation.

bIn this simulation, the inner boundary falls inward from 7.5km to 5.0km

assuming free-fall conditions. It is then held fixed.

cIn this simulation, the inner boundary falls inward from 7.5km to 4.5km

assuming free-fall conditions. It is then held fixed but the infalling cells are accreted

when they reach densities above 5 × 1014g/cm3.
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Fig. 1.— Mass-point trajectories of our most energetic collapse simulation. In this

simulation, the inner boundary falls inward from 7.5km to 4.5km assuming free-fall

conditions. It then rebounds with a kinetic energy per gram equal to the potential energy

(1053erg/0.6M⊙). This is an overestimate of the energy released as some of the energy

certainly goes into internal energy. The inner boundary slowly decelerates as it expands

(from gravity) until it reaches 6km, where it stops and remains constant for the duration

of the simulation. This simulation is almost certainly more energetic than we would expect

from a true phase-transition induce collapse. Note that almost 0.02M⊙ is ejected with nearly

1051erg, but that nearly the entire star beyond the inner boundary expands beyond its initial

radius (Figure 1b). In fact, the ejecta contains less the 10% of the potential energy released.
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Fig. 2.— Energy of ejected material with Γβ greater than Γ0β0. Both the analytic derivation

and our simulation are compared at a time prior to shock break-out and the conversion of

internal energy to kinetic energy. The two curves lie nearly directly on top of each other,

confirming our method to convert from the total energy in the simulations to the value for

Γ. Note that even for the most energetic explosion less than 1046 erg is ejected at Γ’s greater

than 40. The strong and weak explosions correspond to the strong and weak explosions in

Table 1.
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Fig. 3.— Luminosity vs. time for our explosions. The luminosity remains above 1045erg/s

for up to 30 days for our most energetic explosion. We use the output from the simulations,

summing the contribution of each zone of material to the luminosity. The highly relativistic

material decelerates quickly and dominates the luminosity at short timescales whereas the

massive ejecta at low velocities dominates the lightcurve at late times. Again, the strong

and weak explosions correspond to the strong and weak explosions in Table 1.
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Fig. 4.— Nucleosynthetic yield for our most energetic explosion. We have assumed here that

the initial electron fraction is roughly 0.5 (our bounce simulations predict that the absorbed

neutrino flux resets the electron fraction to this value) and that the triple-α process is the

dominant helium burning mechanism. Most of the ejecta, especially the highly relativistic

ejecta, is helium, but some r-process nucleosynthesis can occur.










