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ABSTRACT

The complete set of data from the Tenerife 10 GHz (8◦ FWHM) twin-horn, drift
scan experiment is described. These data are affected by both long-term atmospheric
baseline drifts and short term noise. A new maximum entropy procedure, utilising the
time invariance and spatial continuity of the astronomical signal, is used to achieve a
clean separation of these effects from the astronomical signal, and to deconvolve the
effects of the beam-switching. We use a fully positive/negative algorithm to produce
two-dimensional maps of the intrinsic sky fluctuations. Known discrete sources and
Galactic features are identified in the deconvolved map. The data from the 10 GHz
experiment, after baseline subtraction with MEM, is then analysed using conventional
techniques and new constraints on Galactic emission are made.

Key words: cosmic microwave background: methods: data analysis: Galaxy: general.

1 INTRODUCTION

Anisotropy of the cosmic microwave background (CMB) ra-
diation provides one of the key constraints against which
cosmological models can be tested. However, the detection
of anisotropy at a level ∆T/T ∼ 10−5 is a challenging ob-
servational problem. Attainment of these sensitivity levels is
only possible by making differential measurements, switch-
ing between two different sky patches or by using interfer-
ometric techniques. The data from the telescope consist of
the true sky brightness distribution convolved in some in-
strument beam, with an additional random noise contribu-
tion. Combined with the often non-uniform scan strategies
of CMB experiments this makes the task of deconvolution to
obtain a two-dimensional map of the intrinsic fluctuations a
non-trivial proposition. Here we describe the analysis proce-
dures that have been developed and applied to the Tenerife
drift scan data (Davies et al. 1987, Watson et al. 1992, Han-
cock et al. 1994, Gutiérrez et al. 1997) in order to produce
2-D maps of the intrinsic fluctuations, while at the same
time providing scans free from atmospheric baseline varia-
tions. Although the implementation described here is spe-
cific to the Tenerife instruments, some of the techniques are
more generally applicable to other CMB data sets (see e.g.
Maisinger et al 1997) and offer a useful means of comparing
between observations from telescopes with different beam
patterns and scan strategies.

In order to demonstrate the technique we consider

here the analysis of the total data set from the original
(FWHM∼ 8◦) Tenerife twin horn radiometer experiment
(Davies et al. 1992). Although the instrument configura-
tion differs from that of the current telescopes (Davies
et al. 1996a) and is less sensitive to cosmological signals
(Watson et al. 1992), this experiment has surveyed a sub-
stantial fraction of the full sky, making it interesting to at-
tempt a 2-D mapping. While a partial analysis of a limited
RA range, along a strip at Dec = +40◦ has been given else-
where (Davies et al. 1987), we here present a thorough anal-
ysis of all of the data, covering a selection of declinations
ranging from −15◦ to +45◦. At the operating frequency of
10.4 GHz our maps will be sensitive to synchrotron and free-
free emission in addition to the CMB and discrete radio
sources. These maps can be used to constrain contaminat-
ing signals in higher frequency observations by virtue of the
differing spectral dependencies of the CMB and the fore-
grounds. Testing the procedures on known structures will
also give us improved confidence when analysing the higher
frequency 15 and 33 GHz data to obtain 2-D maps of the
CMB.

In Section 2 we present an analysis scheme utilising
a maximum entropy based regularising function, to enable
a clean separation of the astronomy from spurious atmo-
spheric effects and to provide a deconvolved 2-D image of
the microwave sky. In Section 3 we present details of the
observations and the implementation of the algorithm. In
Section 4 we test the positive/negative maximum entropy
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2 A.W. Jones et al.

method with simulations of the observations. Section 5 de-
tails the application of the algorithm to the data from the
Tenerife experiment. Sections 6, 7 and 8 describe the sepa-
ration of cosmological and astronomical signals, the applica-
tion of suitable significance tests and the interpretation and
conclusions that were reached.

2 MAXIMUM ENTROPY DECONVOLUTION

In general the data from a CMB experiment will take the
form of the true sky convolved with the instrumental re-
sponse matrix with any baseline variations or noise terms
added on. We assume that the observations obtained from
a particular experiment have been integrated into discrete
bins. For the i-th row and the j-th column the data, y

(j)
i ,

recorded by the instrument can be expressed as the instru-
mental response matrix R

(j)
i (i′, j′) acting on the true sky

x(i′, j′):

y
(j)
i =

∑

(i′,j′)

R
(j)
i (i′, j′)x(i′, j′) + ǫ

(j)
i , (1)

where i′ and j′ label the true sky row and column position
respectively. The ǫ

(j)
i term represents a noise term, assumed

to be random, uncorrelated Gaussian noise.
It is immediately clear from Equation 1 that the inver-

sion of the data y
(j)
i to obtain the two-dimensional sky dis-

tribution x(i′, j′), is singular. The inverse R−1 of the instru-
mental response function does not exist, unless the telescope
samples all of the modes on the sky and consequently there is
a set of signals, comprising the annihilator of R, which when
convolved with R gives zero. Furthermore, the presence of
the noise term ǫ will effectively enlarge the annihilator of R
allowing small changes in the data to produce large changes
in the estimated sky signal. It is therefore necessary to use
a technique that will approximate this inversion.

2.1 Positive and negative data reconstruction

The method that we adopt is based upon the Maximum En-
tropy Method (hereafter MEM) which is described in more
detail in a companion paper (Maisinger et al 1997). The
problem with the MEM method in its standard form is that
it contains a logarithmic term that does not allow the in-
clusion of negative features in the data. Laue, Skilling and
Staunton (1985) proposed a two channel MEM, which in-
volved splitting the data into positive and negative features
and then reconstructing each separately but not taking into
account any continuity constraint between the two. This
method is inappropriate for differencing experiments as the
positive and negative features originate from the beam shape
and not from separate sources. White and Bunn (1995) have
proposed adding a constant onto the data to make it wholly
positive. They use the Millimetre-wave Anisotropy Experi-
ment (MAX) data to reconstruct a 5◦ × 2◦ region of sky. As
simulations we have performed show, this method introduces
a bias towards positive (or negative if the data are inverted)
reconstruction. The reason for this is that the added con-
stant has to be small enough so that numerical errors are
not introduced into the calculations but a lower constant
will give less range for the reconstruction of negative fea-
tures and so the most probable sky will be a more positive

one. We propose a new method to overcome both of these
problems.

We consider the image to be the difference between two
positive, additive distributions:

x(ξ) = u(ξ) − v(ξ),

so that the expression for the cross entropy becomes:

S =
∑

i′,j′

[

ψi′,j′ − 2mi′,j′ − xi′,j′ ln

(

ψi′,j′ + xi′,j′

2mi′,j′

)]

, (2)

where ψi′,j′ = (x2
i′,j′ +4m2

i′,j′)
1/2. The entropy term consti-

tutes our prior information about the fluctuations and repre-
sents the minimum amount of information obtainable from
the data. mi′,j′ can be considered as a level of ‘damping’
imposed on xi′,j′ rather than a default model as in standard
MEM. A large value of m allows large noisy features to be
reconstructed whereas a small value of m will not allow the
final sky to deviate strongly from the zero mean. However,
m does not include any correlations between pixels and so
no ‘smoothing scale’ is introduced into the reconstruction.
The final reconstruction will contain no information on small
angular scales because the experiment is not sensitive to
these scales and not because the MEM approach biases the
data. The detailed derivation of Equation 2 can be found
in Maisinger et al. (1997). In a Bayesian sense we have now
defined our prior and we can calculate the probability of
obtaining our reconstructed sky x (the hypothesis) given y
(the data):

Pr(x|y) ∝ Pr(x)Pr(y|x), (3)

We can maximise Pr(x|y) to obtain the most likely 2-D im-
age of the microwave sky.

3 APPLICATION TO THE DATA

As a demonstration of the power of maximum entropy we
will now apply it to the beam switching experiment sited
at 2400m on the island of Tenerife. The old version of the
instrument operated at 10.4 GHz during the years 1984-85
and is a drift scan experiment (Davies et al. 1992). Repeated
scans were built up at a set of declinations, −17.3, −2.4,
+1.1, +7.3, +17.5, +27.2, +37.2, +39.4, +42.6 and +46.6
degrees, with the deepest integrations centred on Decs +1.1◦

and +39.4◦.
Approximately half of the time was devoted to mainte-

nance and calibration runs, while further observing time was
lost due to poor weather conditions. The instrument was left
running over a continuous period of up to 2× 24 hours and
thus a single scan contains a maximum of 2 full coverages in
right ascension, with data being taken over a period of up
to 3 calendar days. Data were taken by adjusting the wag-
ging mirror to observe the chosen declination and allowing
the Earth’s rotation to sweep the beams in right ascension.
Each wagging cycle consisted of a 4 second integration with
the beams directed to the East, followed by a 4 second inte-
gration to the West. At each position the beam difference,
(TC − TE) ± σE or (TW − TC) ± σW (C, E and W denote
the centre, East and West beam positions respectively), and
then the corresponding difference in beam difference
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10 GHz observations 3

Table 1. Observations with the 8.3◦ FWHM 10.4 GHz experi-
ment.

Declination Number Mean scan RMS length
of scans length (hours) (hours)

+46.6◦ 15 14.1 3.1
+42.6◦ 16 22.0 9.7
+39.4◦ 42 14.1 6.3
+37.2◦ 18 14.6 7.6
+27.2◦ 17 11.3 3.9
+17.5◦ 16 21.1 10.3
+07.3◦ 13 9.7 3.3
+01.1◦ 52 15.8 11.1
−02.4◦ 6 10.7 4.9
−17.3◦ 20 8.4 4.2

(TC − 1

2
(TE + TW )) ± σ (4)

where
(

σ = 1
2

√

σ2
E + σ2

W

)

, were calculated. Over each 82

second cycle, containing 6 pairs of secondary differences, the
second difference and its standard deviation were recorded,
along with a calibration signal. The data were calibrated
and edited as described in Davies et al. (1992), resulting in
a final data set with the properties given in Table 1 which
shows the declinations surveyed, the number of coverages at
each declination and the mean and standard deviation of the
scan lengths in hours. The data for each scan were binned
in 1◦ intervals in RA to convert them to a more tractable
form. Binning the scans reduces the effects of short term
receiver and atmospheric noise, but does not affect the long
term drifts seen in individual scans.

3.1 The data scans: long period baseline drifts.

As an illustration of the nature of the data, we show in
Figure 1 the set of all scans for Dec = +46.6◦. Immedi-
ately evident at RA ≈ 308◦ is the strong Galactic plane
crossing with characteristic shape due to the triple beam
pattern, while at RA ≈ 70◦ a weaker crossing can just be
discerned. A constant term has been subtracted from each
scan in order to bring the non-Galactic plane sections to a
mean of approximately zero. However, in e.g. scan 5 of this
set (numbered upwards from the bottom), which is shown
on an increased scale in Fig. 2, a slow variation in baselevel,
amplitude (peak to peak) ∼ 2 mK, is distinctly evident.
As discussed in Davies et al. (1992), most of the scans ob-
tained show these variations, to a greater or lesser degree,
and therefore their removal is an important part of the anal-
ysis. These long period baselines vary both along a given
scan and from day to day, clearly indicating that they are
due in the main to atmospheric effects, with a possible con-
tribution from diurnal variations in the ambient conditions.
We note that the timescale for these baselevel variations
appears to be several hours. We examine this quantitatively
by calculating the transfer function of the experiment, which
defines the scales of real structures on the sky to which the
telescope is sensitive. Variations produced on scales other
than these will be entirely the result of non-astronomical
(principally atmospheric) processes and should be removed.

As the Earth rotates the beams are swept in RA over

Figure 1. The 15 scans obtained at Dec = 46.6◦ displayed as a
function of right ascension. Each plot shows the second difference
in mK after binning into 1◦ bins. A running mean has been sub-
tracted from each scan. Long scans are displayed modulo 360◦.

Figure 2. The data from scan 5 of Figure 1. displayed on an ex-
panded temperature scale against RA bin number. Long timescale
variations in the mean level are evident in the RAW scan (bot-
tom panel). The middle panel shows the baseline fit found by the
method of Section 2. The top panel shows the baseline corrected
scan. The bin numbers exceed 360 since the scan begins near the
end of an LST day, and the data are not folded modulo 360◦.

a band of sky centred at a constant declination. For our
present illustrative purposes, it is sufficient to approxi-
mate the beams as one-dimensional in RA, with the beam
centre and the East and West throw positions lying at
the same declination. The beamshape for each individual
horn is well represented by a Gaussian with dispersion
σ =FWHM/2

√
2 ln 2 = 3.57◦:

B(θ) = exp

(

− θ2

2σ2

)

, (5)

and the beam switching in right ascension, may be expressed
as a combination of delta functions:

S(θ) = δ(0) − 1

2
(δ(θb) + δ(−θb)), (6)

for a switch angle θb = 8.3◦ in RA. So, the beam pattern is

P (θ) = B(θ) ∗ S(θ).

Thus, the transfer function, (i.e. the Fourier transform of
the beam pattern) is just:
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Figure 3. The transfer function for the Tenerife experiments.

g(k) = 2
√

2πσ exp

(

−k2σ2

2

)

sin2
(

kθb

2

)

. (7)

In Figure 3, the transfer function for waves of period
θ = 2π/k is plotted. As a function of declination the θ co-
ordinate must be multiplied by a factor of sec δ because a
true angle θ on the sky covers ∼ θ/ cos δ in right ascension.
The peak response of the instrument is to plane waves of pe-
riod ∼ 22◦ sec δ, i.e. individual peaks/troughs with FWHM
∼ 7◦. The response drops by a factor 10 for structures with
periods greater than ∼ 7 hours and less than ∼ 40 minutes.
The long period cutoff is due to cancellation of the large-
scale structures in the beam differencing pattern, while the
short period cutoff is simply due to dilution of structures
within a single beam. The cutoff on large scales in particular
is significant for the analysis, since it tells us that variations
in the data on timescales >

∼7h sec δ are almost certainly due
to long timescale atmospheric effects, or terrestrial and en-
vironmental effects, rather than being intrinsic to the astro-
nomical sky. Thus identification and removal of such ‘base-
line’ effects (Davies et al. 1992) is important. By using the
whole data set to calculate the most probable astronomi-
cal sky signal with maximum entropy deconvolution, we can
simultaneously fit a long-timescale Fourier component base-
line to each scan. We can then stack together n days of data
at a given declination to obtain a final scan with a ∼ √

n
improvement in sensitivity to true astronomical features.

3.2 The beam

Note that in the case of the Tenerife experiments, it is not
necessary to re-define the beam matrix for each position in
RA (which requires a matrix R

(j)
i for the i-th bin in RA and

j-th bin in declination) since the beam is translationally
invariant in the RA direction. However, due to the large sky
coverage and spherical nature of the sky it is clear that the
beam shape projected into RA and Dec co-ordinates will be
a function of declination. We can write the beam matrix,
R(j)(i′, j′), for declination j as follows,

R(j)(i′, j′) = (8)

C

[

exp

(

− θ2C
2σ2

)

− 1

2

(

exp

(

− θ2E
2σ2

)

+ exp

(

− θ2W
2σ2

))]

where θC , θE , and θW represent the true angular separation
of the point (i′, j′) from the beam centre and the East and

West throw positions respectively. The normalisation of the
beam matrix is determined by C and is implemented with
respect to a single beam. The angles θC , θE , and θW can be
calculated using spherical geometry. If the beam is centred
at Dec. δ(j) and we let α0 be the (arbitrary) RA origin for the
definition of all the beams, for a source at a general (α, δ)
corresponding to the grid point (i′, j′) we have a distance
from the main beam centre of

θC = arccos
(

sin δ(j) sin δ + cos(α0 − α) cos δ(j) cos δ
)

. (9)

There are also two other beams (with half the amplitude
of the central beam), due to the beamswitching and mirror
wagging, a distance θb (the beamthrow) either side of the
central peak. These have RA centres given by the αE or αW

in

cos(αE or W − α0) =
cos θb − sin2 δ(j)

cos2 δ(j)
,

and (fairly accurately for the beamthrow used in practice)
declinations of δ(j) still. Thus their angular distances from
the source at (i′, j′) can be worked out from Equation 9,
yielding θE or W say, and the final R(j) entry computed from
Equation 8.

3.3 Implementation of MEM

For our data set tests have shown that we have random
Gaussian noise, for which the likelihood is given by:

Pr(y|x) ∝ exp

(

−χ2

2

)

, (10)

where χ2 is the misfit statistic (Equation 15). Thus in or-
der to maximise Pr(x|y) we simply need to minimise the
function

F = χ2 − αS (11)

where we have absorbed a factor of two into the Lagrangian
multiplier, α. Thus the process is to iterate to a minimum
in F by consistently updating the 2-D reconstructed sky
x(i′, j′), while at the same time building up a set of baselines
for each scan. The baselines are represented by a Fourier
series

b
(j)
ir = C

(j)
0r +

nmax
∑

n=1

[

C(j)
nr cos(

2nπi

l
) +D(j)

nr sin(
2nπi

l
)
]

(12)

for the r-th scan at the j-th declination with nmax baseline
coefficients to be fitted. The basis data vector index i runs
from 1 to 3×24h. Thus to obtain a minimum period solution
>
∼ 7h sec δ (Section 3.1) we must limit the number of baseline
coefficients, nmax in Equation 12 to less than 9 (for the case
δ = 40◦).

For the rth scan, Equation 1 may be written

y
(j)
ir = y

pred(j)
i + b

(j)
ir + ǫ

(j)
ir , (13)

where the baseline variation b has now been included and

y
pred(j)
i =

∑

i′,j′

R(j)(i′, j′)x(i′ + i− i′0, j
′) (14)

is the signal we predict to be produced by the telescope in
the absence of noise and baseline offsets. The beam matrix R
is now defined with respect to an origin i′o in the i′ direction
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as it is translationally invariant in RA. So, the χ2 for the
problem is

χ2 =

ndecs
∑

j=1

nra
∑

i=1

w
(j)
i (y

pred(j)
i − y

obs(j)
i )2, (15)

for a total number of declinations ndecs, total number of
RA bins nra and observed data value y

obs(j)
i with weighting

factor w
(j)
i , which are a weighted average over the ns scans

with the baseline b
(j)
ir subtracted from each of the scans y

(j)
ir

(r is an index running over the ns scans). In the absence of

data w
(j)
ir , for each individual scan, is set to zero and when

data is present it is given by the inverse of the variance for
the data point. It is possible to compute y

pred(j)
i , since we

can use our knowledge of the geometry of the instrument to
calculate the expected response function R(j)(i′, j′) for each
i′, j′, at RA i and declination j, thus χ2 is fully defined.

If we know the value of the regularising parameter α and
the ‘damping’ term m then we know F and our best sky
reconstruction is that for which ∂F/∂xij = 0, ∀xij . This
is most easily implemented by applying one-dimensional
Newton-Raphson iteration simultaneously to each of the xij

to find the zero of the function G(x) = ∂F/∂x. This means
that we update x from the n-th to the (n + 1)-th iteration
by

xn+1
lm = xn

lm − γ







G(xn
lm)

∂G
∂xlm

∣

∣

∣

xn
lm






. (16)

Convergence towards a global minimum is ensured by
setting a suitable value for the loop gain γ and updating

xlm only if ∂G
∂xlm

∣

∣

∣

xn
lm

is positive (so that progress is always

towards a minimum). By simultaneously fitting for the pa-
rameters of the baselines, it is possible to calculate the best
reconstruction of the microwave sky along with an atmo-
spheric baseline for each scan. To fit for the baseline pa-
rameters C

(j)
0r , C

(j)
nr and D

(j)
nr as expressed in Equation 12 it

is sufficient to implement a simultaneous but independent
χ2 minimisation on each of these to obtain the baseline for
the r-th scan. From the Bayesian viewpoint minimising χ2

is just finding the maximum posterior probability by using
a uniform prior. This is also done with a Newton-Raphson
iterative technique with a new loop gain, γb.

3.4 Choosing alpha and m

In this MEM approach, the entropic regularising parameter
α controls the competition between the requirement for a
smoothly varying sky and the noisy sky imposed by our data.
The larger the value of α the more the data are ignored. The
smaller the value of α the more structure is reconstructed.
We wish to make a choice of α that will take maximum notice
of the data vectors containing information on the true sky
distribution, while using the ‘damping’ constraint and the
beam sensitivity to reject the noisy data vectors. In some
sense, one may think of the entropy term as using our prior
information that the sky does not contain large fluctuations
at some level to fill in for the information not sampled by the
response function, thereby allowing the inversion process to
be implemented.

Table 2. The parameters used in the MEM inversion.

Parameter Value
α 2 × 10−2

m 10µK
γ 0.01
γb 0.05

The optimum choice of α is somewhat controversial
in the Bayesian community and while several methods ex-
ist (Gull 1989, Skilling 1989) it is difficult to select one
above the others that is superior. We use the criterion that
χ2 − αS = N , where N is the number of data points that
we are trying to fit in the convolved sky. If any of the data
points are weighted to zero, as the galactic plane crossing is
in our case, these points should not be included in N . In-
creasing/decreasing α by a factor of ten decreases/increases
the amplitude of the fluctuations derived in the final analy-
sis by <

∼ 5 %. We decrease α in stages until χ2 − αS = N ;
experience has shown that a convergent solution is best ob-
tained with the typical parameter values given in Table 2
for the data set considered here. Below this value for α the
noisy features in the data have a large effect and the scans
are poorly fitted. Note that one cannot attach any signifi-
cance to the absolute value of α, since it is a parameter that
depends on the scaling of the problem.

There is less constraint on the choice of m, the ‘damp-
ing’ term. We choose m to be of similar size to the rms of
the fluctuations so that the algorithm has enough freedom
to reconstruct the expected features. Increasing/decreasing
m by an a few orders of magnitude from this value does not
alter the final result significantly so that the absolute value
of m is not important. This is different to a positive only
MEM because in that case m is chosen to be the default
model (the value of the sky reconstruction in the absence
of data) and is therefore more constrained by the problem
itself. In our case as m is the default model on the two chan-
nels and not on the final sky there is a greater freedom in
its choice.

4 TESTING THE ALGORITHM

Before applying the MEM algorithm to the real data, sim-
ulations were carried out to test its performance. Two-
dimensional sky maps were simulated using a standard cold,
dark matter model (Ho = 50km s−1 , Ωb = 0.1) with an
rms signal of 22µK per pixel (normalised to COBE sec-
ond year data, Qrms−PS = 20.3µK, see Tegmark & Bunn
1995). Observations from the sky maps were then simulated
by convolving them with the Tenerife beam. Before noise
was added the positive/negative algorithm was tested by
analysing the data and then changing the sign of the data
and reanalysing again. In both cases the same, but inverted,
reconstruction was found for the MEM output and so we
conclude that our method of two positive channels intro-
duces no biases towards being positive or negative. Various
noise levels were then added to the scans before reconstruc-
tion with MEM. The two noise levels considered here are
100µK and 25µK on the data scans, which represent the
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Figure 4. The solid line shows the sky simulation convolved with
the Tenerife 8◦ experiment. The bold dotted line in the top figure
shows the MEM reconstructed sky after reconvolution with the
Tenerife beam, averaged over simulations of the MEM output
from a simulated experiment with 25µK Gaussian noise added to
each scan. Also shown are the 68% confidence limits (simulation
to simulation variation; dotted lines) on this reconvolution. The
bold dotted line in the bottom figure shows the reconvolution
averaged over simulations with 100µK Gaussian noise added to
each scan. The 68% confidence bounds (dotted lines) are also
shown for this scan.

two extrema of the data that we expect from the various
Tenerife configurations (100µK for the 10 GHz, FWHM=8◦

data and 25µK for the 15 and 33 GHz, FWHM=5◦ data).
Figure 4 shows the convolution of one simulation with

the Tenerife beam and the result obtained from MEM with
the two noise levels. The plots are averaged over 30 simula-
tions and the bounds are the 68% confidence limits (simu-
lation to simulation variation). As seen MEM recovers the
underlying sky simulation to good accuracy for both noise
levels, with the 25µK result the better of the two as ex-
pected. Figure 5 shows the reconstructed intrinsic sky from
two of the simulations after 60 iterations of the MEM algo-
rithm as compared with the real sky simulations convolved
in an 8◦ Gaussian beam. Various common features are seen
in the three scans like the maxima at RA 150◦, minima at
RA 170◦ and the partial ring feature between RA 200◦ and
260◦ with central minima at RA 230◦, Dec. +35◦. All fea-
tures larger than the rms are reconstructed in both the 25µK
and 100µK noise simulations. However, there is a some free-
dom in the algorithm to move these features within a beam
width. This can cause spurious features to appear at the
edge of the map when the guard region (about 5◦) around
the map contains a peak (this can be seen in the map as a
decaying tail away from the edge). For example, the feature
at RA 230◦, Dec 50◦ has been moved down by a few degrees
out of the guard region in the 100µK noise simulation so it
appears more prominently on the ring feature.

There is a tendency for the MEM algorithm to produce
superresolution (Narayan & Nityananda 1986) of the fea-
tures in the sky so that even though the experiment may not

Figure 5. The top figure is the simulated sky convolved with
an 8◦ Gaussian beam. The middle and bottom figures are the
reconstructed skies from that simulation after scans with 25µK
and 100µK noise levels respectively, simulating the Tenerife ex-
periment, were made and passed through MEM. They are all
convolved with a final Gaussian of the same size.

be sensitive to small angular scales the final reconstruction
appears to have these features in it. Care must be taken not
to interpret these features as actual sky features but instead
the maps should be convolved back down with a Gaussian
to the size of the features that are detectable. This has been
done with the two lower plots in Figure 5, so that a direct
comparison between all three is possible. By comparison of
these plots we are confident in saying that the reconstructed
sky obtained from the MEM algorithm does give us a good
description of the actual sky.

As an indicator of the error on the final sky reconstruc-
tion from the MEM, a histogram of the fractional difference
between the input and output map temperatures is plotted
in Figure 6. If the initial temperature at pixel (i, j) is given
by Tinput and the temperature at the same pixel in the out-
put reconstructed map (after convolution with a Gaussian
beam to avoid superresolution) is given by Trecon then the
value of

Trecon − Tinput
Tinput

(17)

is put into discrete bins and summed over all (i, j). The fi-
nal histogram is the number of pixels within each bin. The
output map has been averaged over pixels within the beam
FWHM as features can move by this amount. A graph cen-
tred on -1 would mean that the amplitude of the output sig-
nal is near zero while a graph centred on 0 would mean the
reconstruction is very accurate. As can be seen both graphs
(Figure 6 (a) and (c) for the 25µK and 100µK noise simula-
tions respectively) can be well approximated by a Gaussian
centred on a value just below zero. This means that the
MEM has a tendency to reconstruct the data with slightly
smaller amplitude which increases with the level of noise
(∼ 10% smaller for the 25µK simulation and ∼ 20% for
the 100µK simulation). This is expected from the entropy
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Figure 6. Histograms of the errors in the reconstruction of the

simulated sky maps. (a) shows the
Trecon−Tinput

Tinput
for the 25µK

noise simulation and (c) shows the integrated

∣

∣

∣

Trecon−Tinput

Tinput

∣

∣

∣

for (a). (b) and (d) are the corresponding plots for the 100µK
noise simulation.

‘damping’ property. From the integrated plots (Figure 6 (b)
and (d)) we can expect to reconstruct all features with bet-
ter than 50% accuracy a half of the time for the 25µK noise
simulation and a third of the time for the 100µK noise sim-
ulation. The next section describes the implementation of
the algorithm for the actual 8◦ Tenerife experiment data.

5 RECONSTRUCTING THE SKY AT 10.4 GHZ

To apply the deconvolution process described in Section 2
to the data in Section 3 one must decide on the required
dynamic range for the reconstruction and also select pa-
rameters that not only achieve convergence of the iterative
scheme, but also make the fullest use of the data. The am-
plitude of the fluctuations that we are interested in is at
least an order of magnitude smaller than the magnitude of
the signal produced during the major passage through the
Galactic plane region (∼ 45 mK at ∼ Dec. +40◦). Clearly,
any baseline fitting and reconstruction will be dominated by
this feature at the expense of introducing spurious features
into the regions in which we are interested. For this reason
the data (Table 3) corresponding to the principal Galactic
plane crossing are not used in the reconstruction.

In contrast, the anti-centre crossing (∼RA 60◦ at ∼Dec.
+40◦ ) corresponding to scanning through the Galactic
plane, but looking out of the Galaxy, is at an accept-
able level ( <

∼5 mK) and is a useful check on the perfor-
mance and consistency of the observations. With the pa-
rameters set as in Table 2, χ2 demonstrates a rapid conver-
gence. For example, the change in χ2 after 120 iterations of
MEM is ∆χ2/χ2 ≃ −9 × 10−4 while the change in χ2

base is
∆χ2

base/χ
2
base ≃ −2 × 10−4.

The fitted baselines are subtracted from the raw data

Table 3. The Galactic plane regions excised at each declination.

Declination RA range excised (degrees)
+46.6◦ 275-340
+42.6◦ 275-340
+39.4◦ 275-340
+37.2◦ 275-340
+27.2◦ 280-320
+17.5◦ 265-310
+07.3◦ 255-310
+01.1◦ 255-310
−02.4◦ 260-310
−17.3◦ 255-300

set to provide data free from baseline effects, allowing the
scans for a given declination to be stacked together to pro-
vide a single high sensitivity scan. However, problems arise
when the baseline variations in the raw data are so extreme
as to prevent their successful removal in the MEM decon-
volution analysis. As noted in Davies et al. (1996a), this
problem is exaggerated at the higher frequencies where the
water vapour emission is higher. At these higher frequen-
cies it is clear that the variations in baseline are, in certain
cases, too extreme for removal and will therefore result in
artefacts in the final stacked scan. We are confident that
these artefacts result from poor observing conditions rather
than being intrinsic to the astronomy, because such prob-
lems occur only for days with severe baselines and appear in
a randomly distributed fashion for different days. Removal
of such data is essential if one is to obtain the necessary
sensitivity to detect CMB fluctuations. This involves the la-
borious task of examining each raw scan and its baseline and
deciding if the data are usable. In such cases where the data
is un-salvageable, then the data for the full 360◦ observation
are discarded. This ensures that there is no bias introduced
by selectively removing features in the scans. After this final
stage of editing, the baseline fitting must be repeated for the
full remaining data set. The MEM process will now be able
to search for a more accurate solution and will produce a
new set of more accurate baselines. The coverages of a given
declination can now be stacked together. Figure 7 shows the
stacked results at each declination compared with the re-
convolution of the MEM result with the beam. The main
Galactic crossing has been excluded from this data but the
weak Galactic crossing is clearly visible at RA=50◦-100◦.
Only data points on the sky with more than ten indepen-
dent measurements have been plotted and in the absence
of data the continuity between declinations has clearly been
used by the MEM to reconstruct the scans. At lower decli-
nations this crossing shows a complex structure with peak
amplitudes ∼ a few mK. The data with better sensitivities
are those at Dec.=+39.4◦and +1.1◦.

The sky is not fully sampled with this data set but the
MEM uses the continuity and ‘damping’ constraints on the
data to reconstruct a two-dimensional sky model. In Figure
8, the sky reconstruction is shown. Although a rectangular
projection has been used for display, the underlying com-
putations use the full spherical geometry for the beams (as
described in Section 3.2). The anti-centre crossings of the
Galactic plane are clearly visible on the right hand side of
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RA (degrees) RA (degrees)

Figure 7. The stacked scans at each declination displayed as a
function of right ascension. Again the plots are the second dif-
ference binned into 4◦ bins and the 68% confidence limits. The
main Galactic plane crossing has been excluded, and only posi-
tions on the sky in which we have more than ∼10 independent
measurements have been plotted. Also shown (solid line) is the re-
convolved result from MEM overlayed onto each declination scan.

Figure 8. MEM reconstruction of the sky at 10.4 GHz, as seen
by the Tenerife 8.4◦ FWHM experiment.

the image, while one should recall that the principal Galac-
tic crossing has been excised from the data. It is clearly seen
that there is apparent continuity of structure between ad-
jacent independent data scans which are separated by less
than the 8◦ beam width (see the higher declination strips
in the plot where the data are more fully sampled). Where
the data are not fully sampled (the lower declinations) the
MEM has reverted to zero as expected and this is seen as
‘stripping’ along declinations in the reconstructed map.

In the next section we compare our reconstructed sky,
reconvolved MEM scans and stacked data scans with the
expected CMB and foreground signals at this observing fre-
quency.

6 NON-COSMOLOGICAL FOREGROUND

CONTRIBUTIONS

6.1 Point sources

We have estimated the contribution of discrete sources to
the Tenerife 10 GHz data using the Kühr et al. (1981) cat-
alogue, the VLA calibrator list and the Green Bank sky
surveys (Condon & Broderick 1986); sources <

∼1 Jy at 10.4
GHz were not included in the analysis. We have modelled the
response of our instrument to these point sources by convert-
ing their fluxes into antenna temperature (1 Jy is equivalent
to 12 µK for our experiment), convolving these with the
triple beam of our instrument and sampling as for the real
data (see the details in Gutiérrez et al. 1995). The two main
radio sources at high Galactic latitude, which we expect
to see in the Tenerife scans are 3C 273 (RA=12h26m33s,
Dec.=+02◦19′43′′) with a flux density at 10 GHz ∼ 45
Jy; this object should contribute with a peak amplitude
∆T ∼ 500 µK in the triple beam to our data at Dec.=+1.1◦,
and 3C84 (RA=3h16m30s, Dec.=+41◦19′52′′) with a flux
density at 10 GHz ∼ 51Jy. Figure 9 presents a comparison
between our MEM result reconvolved in the Tenerife triple
beam, the data and the predicted contribution of the ra-
dio source 3C273. We will show below how a diffuse Galac-
tic contribution near the position of this point source ac-
counts for the differences in amplitude and shape of the ra-
dio source prediction and our data. The radio sources 3C
273 and 3C84 have also been detected in the deconvolved
map of the sky shown in Figure 8. For example, 3C 273 is
seen with an amplitude of 1200 ± 140µK. Also clearly de-
tected are 3C345 (RA=16h41m18s, Dec.=+39◦54′11′′)and
4C39 (RA=9h23m56s, Dec.=+39◦15′23′′) in both the recon-
volved scans and the deconvolved map. Many other sources
are seen in the deconvolved map but these may be swamped
by the Galactic emission so we cannot say with confidence
that any originate from point sources. These could originate
from the diffuse Galactic emission or from the CMB. For
example, features at Dec.∼+40◦, RA∼180◦, Dec.∼+17.5◦,
RA∼240◦and Dec.∼+1.1, RA∼ 220◦ do not correspond to
any known radio sources (see Figure 7). The additional con-
tribution by unresolved radio sources has been estimated to
be ∆T/T ∼ 10−5 at 10.4 GHz (Franceschini et al. 1989) in
a single beam, and so will be less in the Tenerife switched
beam, and is not considered in the analysis presented here.

6.2 Diffuse Galactic contamination

The contribution of the diffuse Galactic emission in our data
can be estimated in principle using the available maps at fre-
quencies below 1.5 GHz. We have used the 408 MHz (Haslam
et al. 1982) and 1420 MHz (Reich & Reich 1988) surveys;
unfortunately the usefulness of these maps is limited because
a significant part of the high Galactic latitude structure ev-
ident in them is due to systematic effects (Davies, Watson
& Gutiérrez 1996b). Only in regions (such as crossings of
the Galactic plane) where the signal dominates clearly over
the systematic uncertainties, is it possible to estimate the
expected signals at higher frequencies. With this in mind,
we have converted these two maps to a common resolution
(1◦x 1◦in right ascension and declination respectively) and
convolved them with our triple beam response.
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Figure 9. Comparison between the MEM reconstructed sky con-
volved in the Tenerife beam (solid line), the predicted point source
contribution at Dec.=1.1◦ (dashed line) and the Tenerife data
(dotted line with one sigma error bars shown). The source ob-
served is 3C273 (RA= 12h26m33s, Dec.= +02◦19′43′′).

We can compare this contribution at 408 and 1420 MHz,
with our data at 10.4 GHz to determine the spectral index
of the Galactic emission in the region where these signals
are high enough to dominate over the systematic effects in
the low frequency surveys. We assume a power law spectra
(T ∝ ν−β) for the signal with an index independent of the
frequency, but varying spatially. The signals in the Galac-
tic anti-centre are weaker than those for the Galactic plane
crossing and are mixed up with several extended structures,
but even in this case we can draw some conclusions about
the spectral index in this region; we obtain β = 3.0±0.2 be-
tween 408/1420 MHz and β = 2.1±0.4 between 1420/10400
MHz which indicates that free-free emission dominates over
synchrotron at frequencies >

∼ 1420 MHz. One of the stronger
structures in the region away from the galactic plane is in
RA∼ 12h − 13h, Dec∼ 0◦ and therefore the main contri-
bution should be to our data at Dec=1.1◦. This structure
at 408 MHz, assuming an spectral index β = 2.8, gives a
predicted peak amplitude at 10.4 GHz of ∼ 500 µK; we be-
lieve that this is responsible for the distortion between our
measurements at Dec=1.1◦and the predictions for the radio
source 3C 273.

7 STATISTICAL ANALYSIS

We have analysed the statistical properties of the signals
present in our data using the likelihood function and a
Bayesian analysis. This method has been widely used in the
past by our group (see e.g. Davies et al. 1987) and incorpo-
rates all the relevant parameters of the observations: exper-
imental configuration, sampling, correlation between mea-
surements, etc. The analysis assumes that both the noise
and the signal follow a Gaussian distribution fully deter-
mined by their respective auto-correlation function (ACF).
The source of dominant noise in our data is thermal noise
in the receivers which is independent in each data-point
(Davies et al. 1996a) and therefore it only contributes to
the terms in the diagonal of the ACF matrix. We have re-
stricted our analysis to data in which we have a minimum
number of 10 independent measurements for the full RA
range (Dec. 7.3◦ does not have enough data) and to data

Table 4. Statistics of the data used in the analysis. 95% confi-
dence limits are shown.

Dec. RA σ (µK) Indep. (
l(l+1)

2π
Cl)

1/2 (10−5) (µK)

+46.6◦ 161◦-250◦ 116 15 ≤ 8.5
+42.6◦ 161◦-250◦ 117 14 ≤ 10.3

+39.4◦ 176◦-250◦ 81 42 1.8+2.3
−2.0

+37.2◦ 161◦-250◦ 113 17 5.7+3.2
−2.9

+27.2◦ 161◦-240◦ 139 11 4.5+3.0
−3.9

+17.5◦ 171◦-240◦ 144 12 4.3+3.0
−4.4

+1.1◦ 171◦-230◦ 96 58 5.0+3.3
−3.0

for which we have a point source prediction (Dec. −17.3◦ is
not covered by the Green Bank survey). This region repre-
sents approximately 3000 square degrees on the sky. Table 4
presents the sensitivity per beam in the RA range used in
this analysis. Also column 4 gives the mean number of inde-
pendent measurements which contribute to each point. We
emphasize that this statistical analysis has been performed
directly on the scan data, and not on the MEM deconvolved
sky map produced during the baseline subtraction process.
Thus, for this section, any effects of using a MEM approach
are restricted to the baselines subracted from the raw data,
which will not contain or affect any of the astronomical in-
formation to which the likelihood analysis is sensitive.

We made two different analyses: the first considers the
data of each declination independently, and the second con-
siders the full two-dimensional data set for the analysis. Due
to the spherical nature of the sky we expand the fluctuations
using spherical harmonics Y m

l (see for example Efstathiou
1989),

∆T

T
(θ, φ) =

∑

l,m

am
l Y

m
l (θ, φ). (18)

A likelihood analysis was performed assuming a Harrison-
Zel’dovich spectrum, thus the parameter fitted for was the
cosmic quadrupole normalisation for the spherical harmonic
expansion, QRMS−PS (see Smoot et al. 1992). Since the l
range sampled is small we can easily get an equivalent flat
band pass estimate for Cl (Cl =< |am

l |2 >) and this is what
is shown in the Table 4. The experiment has a peak sensitiv-
ity to an l of about 12. The fifth column of Table 4 gives, for
the one-dimensional analysis, the amplitude of the signal de-
tected with the one-sigma confidence level. The confidence
limits on these signals were found by integration over a uni-
form prior for the likelihood function. These analyses ignore
correlations between measurements at adjacent declinations.
Therefore a full likelihood analysis, taking this correlation
into account, should constrain the signal more efficiently. It
should be noted that the two dimensional analysis assumes
that the signal has the same origin over the full sky coverage
but this may not be the case because of the differing levels
of Galactic signal between declinations and across the RA
range. In Figure 10 the likelihood function resulting from
this analysis is shown. It shows a clear, well defined peak at
( l(l+1)

2π
Cl)

1/2 (10−5) = 2.6+1.3
−1.6 (95 % confidence level). This

value would correspond to a value of QRMS−PS = 45.2+23.8
−27.2

µK. Our results are compatible with the constraints on the
signal in each declination considered separately but it is clear
that the two dimensional likelihood analysis improves the
constraints on the amplitude of the astronomical signal.
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Figure 10. The likelihood function from the analysis of the full

data set. There is a clearly defined peak at (
l(l+1)

2π
Cl)

1/2 (10−5) =

2.6+1.3
−1.6 (95% confidence level).

We may compare the results obtained here with the am-
plitude of the CMB structure found in Hancock et al. (1994)
at higher frequencies. They found QRMS−PS ∼ 21µK in an
5◦ FWHM switched beam and taking into account the ex-
tra dilution we expect a slightly lower level in an 8◦ FWHM
switched beam, assuming a n = 1 power spectrum. We thus
see that it is likely that the majority of the signal in the 10
GHz, FWHM=8deg data is due to Galactic sources. If we
assume that the majority of the signal found here is Galac-
tic synchrotron or free–free and we use a spatial spectrum of
Cl ∝ l−3 (estimated from the Haslam et al. 1982 maps) to
predict the expected galactic contamination in a 5◦ FWHM
beam at 10 GHz, then using a full likelihood analysis we
find that we expect an rms temperature across the scans of
∆Trms = 55+32

−26 µK. We note that this is an upper limit on
the Galactic contribution to the 5◦ data as the variability
of the sources has been ignored when the subtraction was
performed (this results in a residual signal from the point
sources in the data during the likelihood analysis) and the
analysis also includes regions where the Galactic signal is ex-
pected to be higher (for example the North Polar Spur). The
5◦ FWHM Tenerife scans are centred on Dec. 40◦ and it can
be seen from Table 4 that this is the region with the lowest
Galactic contamination. The results reported in Gutierrez
et al (1997), for the 5◦ FWHM, 10 GHz Tenerife experi-
ment, show that the signal found was QRMS−PS < 33.8
µK (corresponding to a signal of ∆Trms < 53 µK) which
is consistent with our prediction (also taking into account
the more significant contribution from the CMB at 5 deg).
This comparison allows us to restrict the maximum Galactic

contribution to the signal found in Hancock et al. 1994 to be
∆Trms ∼ 18− 23µK at 15 GHz and ∆Trms ∼ 2− 4µK at 33
GHz depending on whether the contamination is dominated
by synchrotron or free-free emission.

8 CONCLUSIONS

We have presented here a new method for analysing the data
from microwave background experiments. As seen from sim-
ulations performed in Section 4, the positive/negative MEM
algorithm performs very well recovering the amplitude, po-
sition and morphology of structures in both the reconvolved
scans and the two-dimensional deconvolved sky map. We
conclude that no bias, other than the ‘damping’ enforce-
ment, is introduced into the results from the methods de-
scribed here, as the bare minimum of prior knowledge of
the sky is required. A simultaneous baseline fit is also pos-
sible. Even with the lowest signal to noise ratio (the 100µK
noise simulation which corresponds to our worse case in the
Tenerife experiments) all of the main features on the sky
were reconstructed. Using this method we are able to put
constraints on the galactic contamination for other experi-
ments at higher frequencies which is essential when trying
to determine the level of CMB fluctuations present.

It is clear that this approach works well and provides
a useful technique for extracting the optimum CMB maps
from both current and future multi-frequency experiments.
This will become of ever increasing importance as the qual-
ity of CMB experiments improves. At present we are using
this method to analyse the new data from the three beam
switching Tenerife experiments at 10 GHz, 15 GHz and 33
GHz with angular resolutions of ∼ 5◦. We hope the two
dimensional results from these will be available shortly.
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Figure captions
Figure 1: The 15 scans obtained at Dec = 46.6◦ dis-

played as a function of right ascension. Each plot shows the
second difference in mK after binning into 1◦ bins. A run-
ning mean has been subtracted from each scan. Long scans
are displayed modulo 360◦.

Figure 2: The data from scan 5 of Figure 1 displayed
on an expanded temperature scale against RA bin number.
Long timescale variations in the mean level are evident in
the RAW scan (bottom panel). The middle panel shows the
baseline fit found by the method of Section 2. The top panel
shows the baseline corrected scan. The bin numbers exceed
360 since the scan begins near the end of an LST day, and
the data are not folded modulo 360◦.

Figure 3: The transfer function for the Tenerife experi-
ments.

Figure 4: The solid line shows the sky simulation con-
volved with the Tenerife 8◦ experiment. The bold dotted line
in the top figure shows the MEM reconstructed sky after
reconvolution with the Tenerife beam, averaged over sim-
ulations of the MEM output from a simulated experiment
with 25µK Gaussian noise added to each scan. Also shown
are the 68% confidence limits (dotted lines) on this reconvo-
lution. The bold dotted line in the bottom figure shows the
reconvolution averaged over simulations with 100µK Gaus-
sian noise added to each scan. The 68% confidence bounds
(dotted lines) are also shown for this scan.

Figure 5: The top figure is the simulated sky convolved
with an 8◦ Gaussian beam. The middle and bottom figures
are the reconstructed skies from that simulation after scans
with 25µK and 100µK noise levels respectively, simulating
the Tenerife experiment, were made and passed through
MEM. They are all convolved with a final Gaussian of the
same size.

Figure 6: Histograms of the errors in the reconstruc-
tion of the simulated sky maps. (a) shows the

Trecon−Tinput

Tinput

for the 25µK noise simulation and (c) shows the integrated
∣

∣

∣

Trecon−Tinput

Tinput

∣

∣

∣
for (a). (b) and (d) are the corresponding

plots for the 100µK noise simulation.
Figure 7: The stacked scans at each declination dis-

played as a function of right ascension. Again the plots are
the second difference binned into 4◦ bins and the 68% con-
fidence limits. The main Galactic plane crossing has been
excluded, and only positions on the sky in which we have
more than ∼10 independent measurements have been plot-
ted. Also shown (solid line) is the reconvolved result from
MEM overlayed onto each declination scan.

Figure 8: MEM reconstruction of the sky at 10.4 GHz,
as seen by the Tenerife 8.4◦ FWHM experiment.

Figure 9: Comparison between the MEM reconstructed
sky convolved in the Tenerife beam (solid line), the predicted
point source contribution at Dec.=1.1◦ (dashed line) and
the Tenerife data (dotted line with one sigma error bars
shown). The source observed is 3C273 (RA= 12h26m33s,
Dec.= +02◦19′43′′).

Figure 10: The likelihood function from the analysis
of the full data set. There is a clearly defined peak at
( l(l+1)

2π
Cl)

1/2 (10−5) = 2.6+1.3
−1.6 (95% confidence level).
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