
ar
X

iv
:c

on
d-

m
at

/0
30

13
78

v1
 [

co
nd

-m
at

.s
of

t]
 2

1
Ja

n
20

03

Dynamical geometry for multiscale dissipative

particle dynamics

G. De Fabritiis a, P. V. Coveney b

aCentre for Computational Science, Queen Mary, University of London,

Mile End Road, London E1 4NS, UK

bCentre for Computational Science, Department of Chemistry,

University College London, 20 Gordon Street, London WC1H 0AJ

Abstract

In this paper, we review the computational aspects of a multiscale dissipative parti-
cle dynamics model for complex fluid simulations based on the feature-rich geometry
of the Voronoi tessellation. The geometrical features of the model are critical since
the mesh is directly connected to the physics by the interpretation of the Voronoi
volumes of the tessellation as coarse-grained fluid clusters. The Voronoi tessellation
is maintained dynamically in time to model the fluid in the Lagrangian frame of
reference, including imposition of periodic boundary conditions. Several algorithms
to construct and maintain the periodic Voronoi tessellations are reviewed in two
and three spatial dimensions and their parallel performance discussed. The inser-
tion of polymers and colloidal particles in the fluctuating hydrodynamic solvent is
described using surface boundaries.

1 Introduction

The non-equilibrium behaviour of complex fluids continues to present a major
challenge for both theory and numerical simulation. Such fluids include multi-
phase flows, particulate and colloidal suspensions, polymers, amphiphilic flu-
ids, including emulsions and microemulsions, and other fluids where Brownian
motion is important. Over the last decade several strategies have been intro-
duced both from a microdynamical point of view and from a continuum or
macro-dynamical point of view. This article is particularly focused on meso-
scopic/particulate approaches, but the Voronoi tessellation has been employed
for similar applications to model colloidal particles and polymers by solving
conventional Navier-Stokes like equations with moving boundary conditions
(see [1] and references therein).

Preprint submitted to Elsevier Science 25 July 2011

http://lanl.arxiv.org/abs/cond-mat/0301378v1

A recent contribution to the family of bottom-up approaches is the dissipative
particle dynamics (DPD) method introduced by Hoogerbrugge and Koelman
in 1992 [2]. Successful applications of the technique have been made to colloidal
suspensions [3], polymer solutions [4] and binary immiscible fluids [5]. Dissi-
pative particle dynamics has been shown to produce the correct macroscopic
(continuum) theory; that is, for a one-component DPD fluid, the Navier-Stokes
equations emerge in the large scale limit, and the fluid viscosity can be com-
puted [6,7]. However, even though dissipative particles have generally been
viewed as clusters of molecules, the cluster of molecules are not considered
as a thermodynamic system itself. In a following development of the DPD
model, Flekkøy and Coveney [8,9,10] and Serrano and Español [11] derived
a new model which provides a precise definition of the term ‘mesoscale’ and
enables us to retrieve numerically the specific thermodynamics of the solvent
in the sense that the exact Gibbs equilibrium is approached, the entropy is an
increasing function in time, and the total energy is exactly conserved [12]. In
this approach, the fluid dissipative particles are defined as cells on a Voronoi
lattice with variable sizes and masses; the Voronoi tessellation must be up-
dated at each time step under the dynamics of the model. The scheme enables
one to select any desired local scale for the mesoscopic description of a given
problem. Indeed, the method may be used to deal with situations in which
several different length scales are simultaneously present.

In this article, we discuss the computational aspects of the model and its com-
putational overhead due to the Voronoi tessellation; in particular, we present
the development of an efficient C++ code for the implementation of the new
fluid particle model. Our discussion concentrates on the challenging aspects of
maintaining the Voronoi tessellation over time, with various kinds of boundary
conditions.

2 Multiscale dissipative particle dynamics

In our case, we follow the model described in detail in [11,12], but we apply
its isothermal version, which has the advantage of greater simplicity. In fact,
if heat diffusion is not important for the system under consideration, then the
isothermal model furnishes an efficient alternative, because several simplifica-
tions are possible in the equations (for instance, the Itô-Stratonovich terms
all vanish). Defining the state of a fluid particle by its position, mass and
momentum x = {ri, Mi,Pi}, the resulting equations for the isothermal model
are

dri =vidt,

2

dMi =
∑

j

ρi + ρj

2
Cij ·vijdt,

dPi =
∑

j

Aij

2
(pji1 + Πi + Πi1) · eijdt + dP̃i

+
∑

j

ρi + ρj

2

vi + vj

2
Cij ·vijdt. (1)

where vi = Pi/Mi is the velocity, ρi = Mi/Vi is the mass density, and d is the
spatial dimension. For a general variable x, we write xij = xi−xj . The pressure
pi is given through the equilibrium equations of state once the temperature
T is assigned. We have also introduced geometric quantities arising from the
Voronoi construction: Aij is the area (length in 2D) of the face between cells
(i, j), eij = (ri − rj)/rij with rij = |ri − rj| is the unit vector normal to the

face (i, j) and, finally, Cij =
Aij

rij

(
Acm −

ri+rj

2

)
is a geometrical vector parallel

to the face (i, j). The dissipative stress tensor is

Π
αβ
i =

ηi

Vi

1

2

∑

j

Aij [e
α
ijv

β
j + e

β
ijv

α
j] −

1

D
δαβ

∑

j

Aijeij ·vj

 , (2)

while the fluctuations in momentum are

dP̃i =
∑

j

1

2
Aijdσ̃j · eij , (3)

where the stress tensor is

dσ̃i =
(
4kBTi

ηi

Vi

) 1

2

dW
S

i +

(
2DkBTi

ξi

Vi

) 1

2

tr[dWi]. (4)

Here, dWi is a matrix (d× d) of independent Wiener increments, i.e. dW
(α,β)
i

has zero mean and variance dt and is uncorrelated to any other random vari-

ables, dW
S

i = 1
2
(dWi + dWt

i) −
1
d
tr [dWi] 1 is a symmetric traceless matrix.

The SDEs (1) can be integrated numerically using any stochastic integrator,
such as Euler, Heun or higher order schemes [13]. For our simulations, we used
an integrator based on a generalisation of the Trotter formula to the stochastic
case [14] which proved to be simple to apply and very efficient.

3

3 Voronoi tessellation

The model is centrally based on the Voronoi tessellation. The Voronoi tessel-
lation is simply defined by a set of points P = {p1, ..., pN} in Euclidean space;
a partition of the space assigning every point to its nearest site is called a
Voronoi tessellation. The Voronoi cell V (pi) consists of all the points at least
as close to pi as to any other site

V (pi) = {x : |pi − x| ≤ |pj − x| , ∀ j 6= i}.

The Voronoi tessellation can be computed through the Delaunay triangulation,
which is the triangulation that maximises the minimum internal angle among
the triangles [15]. In terms of the fluid dissipative particles, the Delaunay tri-
angulation indicates the neighbourhood of each fluid particle in the tessellation
and the Voronoi tessellation indicates its spatial extension (see Figure 2). By
first triangulating the set of points P with the Delaunay triangulation, the
Voronoi tessellation can then be constructed by using the Delaunay-Voronoi
duality [15], i.e. to each Delaunay vertex corresponds a Voronoi region and
to each Delaunay edge corresponds a Voronoi boundary surface or line in two
dimensions.

The physical model requires maintenance of the Voronoi tessellation for each
time step following the dynamics in the Lagrangian frame of reference and
specification of the boundary conditions for the tessellation. In our opinion,
direct coding of the construction of the Voronoi tessellation is not desirable.
This still is in its own right a research field in computational geometry in
order to obtain a stable and efficient triangulation. It involves writing exact
number types to check the validity of predicates on points (for instance the
insphere property for four points) and combinatorial aspects to handle the data
structure. Nevertheless, writing an inefficient and unstable code to construct
the Voronoi tessellation is quite simple, but the result will likely be orders of
magnitude slower and unstable in most practical situations. Whilst there are
several public libraries [16,17] that are able to compute the Voronoi-Delaunay
tessellation for a given set of points. However, the algorithmic complexity of
the construction is at best N log N , where N is the number of points, and
thus it is crucial to use an efficient library to match that complexity. We were
unable to find any library able to dynamically change the tessellation and
impose periodic boundary conditions.

Previously, in our research group, the Triangle library [16] was employed for
the construction of the Voronoi tessellation [18]. Although the Triangle li-
brary does not support three dimensional Voronoi tessellations, it is the fastest
library known to us in two dimensions. Triangle is based on the divide-and-
conquer algorithm [15], which allows one to compute the tessellation given the

4

complete list of points. It furnishes as well an incremental algorithm, which
provides the functions to construct the tessellation point by point.

With Triangle the Voronoi tessellation was maintained over time by deleting
the set of points P from the tessellation, determining the new positions of
the points and then computing the tessellation for the new points, for every
time-step. Given the algorithmic complexity of the construction of Voronoi
tessellations, this is clearly not an efficient way to maintain the tessellation
over time; it is desirable to be able to locally restore the tessellation at each
time-step, thus avoiding deleting and then re-computing the entire tessellation.

Subsequent awareness of the Computational Geometry Algorithms Library
(CGAL) [17] gave us a homogeneous environment for two and three dimen-
sional tessellations. CGAL incorporates a wide-range of function modifiers,
including the insertion or removal of specific points in a tessellation, thus of-
fering a highly flexible code for the construction and maintenance of a Voronoi
tessellation over time. Consequently, we are currently employing the CGAL
library for the development of the Voronoi DPD code in two and three spatial
dimensions.

4 Boundary conditions

In this section, we describe possible implementations of periodic and wall
boundary conditions in two and three dimensions based on the insertion-
removal of image cells (points) around the simulation box. The insertion of
polymers and colloidal particles is described using boundary surfaces. We
present these algorithms in two dimensions because our three dimensional
implementation is a straightforward application of the same techniques. The
library takes care of the extra complexity of handling the three dimensional
tessellation. Differences are pointed out in Section 4.4.

4.1 Periodic boundary conditions

Boundary conditions can be implemented by inserting ‘image points’ around
the boundaries of the space domain. We call image points the points of the
tessellation which lie outside the simulation box and represent images of cen-
tres of fluid particles inside the simulation box. The simplest way to achieve a
periodic tessellation is to copy the simulation region to the eight surrounding
boundary regions (see Figure 3).

However, this requires that the tessellation has to be computed for a total of

5

Algorithm 1 (PERIODIC BOUNDARY CONDITIONS)

(1) Insert the corner points of the simulation domain

(2) Triangulate (Move) N points

(3) for every finite Delaunay triangle (p1, p2, p3)

{
Compute the circumcircle C(V)
if C(v) intersects a boundary face(s)
{

Copy p1, p2 and p3 to the boundary region(s)
of the opposite face(s)

}
}

(4) Remove the corner points

9N points if N is the number of points to be triangulated in the simulation
region. It is obviously not necessary to triangulate this number of image points
to maintain the periodic boundary conditions and in light of the algorithmic
complexity of the construction of the tessellation, it is crucial to minimise
the number of image points. Clearly, it is only the points that lie ‘near’ a
boundary face that must be copied to the boundary regions. To isolate these
‘boundary points’ we use the following geometrical criterion: a point is in the
neighbourhood of the boundary if the presence of another point outside the
domain can affect its Voronoi region. This criterion can be implemented with
a simple algorithm. This is given in Algorithm 1.

In the first step of the algorithm, N points are triangulated in the simulation
region. In step 2, the following geometrical properties of the Delaunay-Voronoi
tessellation [15] are employed:

• Each node pi of the Delaunay triangulation corresponds to a Voronoi region
V (pi).

• If v is a Voronoi vertex at the junction of V (p1), V (p2), V (p3) then v is the
centre of the circle C(v) determined by the points p1, p2 and p3.

• C(v) is the circumcircle for the Delaunay triangle (p1, p2, p3) containing no
other points pi.

It follows from the Delaunay-Voronoi properties above that for a Delaunay
triangle (p1, p2, p3), if the circumcircle C(v) does not intersect a boundary face
of the domain, then no image point can affect the Voronoi regions V (p1), V (p2)
and V (p3) and hence, according to our geometrical criterion, p1, p2 and p3 do
not have to be copied to the boundary regions. However, if C(v) does intersect
a boundary face, then an image point can affect the Voronoi regions V (p1),

6

V (p2) and V (p3). Unfortunately, it is not possible to know if any boundary
points will produce an image point within C(v) until the tessellation for these
boundary points is constructed. Nevertheless, a good upper-bound can be
given on the number of points that must be copied by considering the worst
situation that for any Delaunay triangle (p1, p2, p3) whose circumcircle C(v)
interests a boundary face, an image point will always be located within C(v).
In this case p1, p2 and p3 must be copied to the boundary region of the opposite
face; if C(v) intersects the corner (i.e. two boundary faces), p1, p2 and p3 must
be copied to the boundary regions of the two opposite faces and also to the
boundary region of the opposite corner (see Figure 3).

The points which belong to the convex hull of the triangulation have their
Voronoi centre v positioned at infinity and thus it is not possible to compute
C(v) in these cases. The solution we applied is to insert the corner points of
the periodic boundary regions in order to create an external convex hull. After
the image points are calculated the corners points are removed. This is not
needed when the periodic boundary condition is already set and we want to
maintain it, because the image points will form the convex hull.

The periodic boundary tessellation produced by Algorithm 1 is shown in Fig-
ure 4. Thus Algorithm 1 avoids copying all the points and, in assuming the
worst case scenario that an image point is always located within C(v) for any
boundary point, this algorithm reduces the number of image points to the
minimum upper-bound possible.

4.2 Fixed (solid) wall boundary conditions

A possible way to implement fixed (solid) wall boundary conditions for the
Voronoi tessellation is to introduce image points into the boundary regions
which correspond to the reflection of the boundary points in their boundary
face(s) (see Figure 5). The interaction between a boundary particle and the
‘wall’ is then handled by the interaction between the particle and its ‘mirror-
image’ particle. We have successfully implemented fixed wall boundary condi-
tions for the Voronoi tessellation with Algorithm 2.

The algorithm follows the same principle as Algorithm 1; we first insert the
corner points of the simulation domain, and then triangulate our N points,
therefore enabling us to compute the circumcircle of every Delaunay trian-
gle in the simulation domain. Next in step 3, we isolate all of the boundary
points. However, the criterion for a boundary point for fixed wall boundary
conditions is more complicated than that for periodic boundary conditions.
For any circumcircle C(V) which intersects a boundary face, two additional
requirements must be satisfied before p1, p2 or p3 can be isolated as boundary

7

Algorithm 2 (FIXED WALL BOUNDARY CONDITIONS)

(1) Insert the corner points of the simulation domain

(2) Triangulate N points.

(3) for every finite Delaunay triangle (p1, p2, p3)

{
Compute the circumcircle C(V)
if [C(v) intersects a boundary face AND (p1, p2, p3) lies on the correct side of
the boundary]

{
for each Delaunay vertex, if the perpendicular projection of the vertex on

to the supporting line is also on the boundary face segment, reflect the vertex
in the boundary face

}
}

(4) Remove the corner points

points.

Firstly, for a given Delaunay triangle (p1, p2, p3), if C(V) intersects a boundary
face, it is possible for (p1, p2, p3) to lie on the wrong side of the boundary.
For example, consider the fixed wall boundary conditions for the ‘C’ shaped
domain in Figure 5. Suppose we are isolating the particles that lie in the
neighbourhood of the first ‘shorter’ horizontal boundary face from the bottom
in Figure 5. It is possible for the circumcircle of a Delaunay triangle (p1, p2, p3)
lying above this boundary face to intersect this boundary and yet clearly
(p1, p2, p3) cannot physically lie in the neighbourhood of this boundary. Thus,
if C(V) intersects a boundary face, we must then check that p1, p2 and p3

lie on the correct side of the boundary; if we are traversing the boundary
faces in a clockwise direction then p1, p2 and p3 are on the correct side of the
boundary face if they lie to the right-hand side of the boundary. Similarly, an
anti-clockwise traversal of the boundary faces requires that p1, p2 and p3 lie to
the left-hand side of the boundary.

If these first two requirements are met, then we must check one final geo-
metrical property. We refer again to the first ‘shorter’ horizontal boundary
face up from the bottom of the ‘C’ shaped domain in Figure 5. Suppose for a
Delaunay triangle (p1, p2, p3), the circumcircle C(V) intersects this boundary
face and p1, p2 and p3 lie on the correct side of the boundary. Consider the
supporting line of this boundary face (that is, the infinite line which is parallel
to the boundary face segment and passes through it) and the perpendicular
projection of the Delaunay vertices p1, p2 and p3 onto this supporting line. For
the majority of cases, these three projections will also lie on the boundary face

8

segment in which case p1, p2 and p3 can be reflected in the boundary face and
are thus boundary points. However, for Delaunay triangles whose circumcircle
intersects the left-end of this boundary face, it is possible that some or even all
of these projections may not lie on the boundary face segment, that is, they do
not have a reflection in this boundary face and hence are not boundary points.
Thus, if C(V) intersects a boundary face and p1, p2 and p3 lie on the correct
side of the boundary, we must then determine if the perpendicular projection
of each Delaunay vertex onto the supporting line is also on the boundary face
segment. For those that are, they are boundary points.

Having isolated the boundary points with the above criterion, we then in-
sert the reflection of these points in their boundary face(s). We note that if
C(V) intersects a corner (i.e. two boundary faces) then the two additional
geometrical requirements detailed above must be applied separately to each
boundary. Finally in step 4 of Algorithm 2, we remove the corner points from
the simulation.

This algorithm can be applied to any two dimensional polygon that can be
described by a set of vectors. We show in Figure 5 the fixed wall boundary
tessellation for a ‘C’ shaped domain, obtained using Algorithm 2. We note
that for corners where the angle between the two boundary faces in the fluid
is greater than 1800, the actual corner is not produced exactly. This is because
near the corner, the insertion of an image point above one of the boundary
faces will affect the Voronoi region of the other boundary face (see Figure 5).
However, for realistic simulations involving tens of thousands of points, the
‘approximate’ corner obtained is perfectly sufficient.

4.3 Boundary surfaces

One final aim of this research is to add specificity to the model by inserting
polymers and colloidal particles in the fluctuating hydrodynamic solvent based
on the Voronoi dissipative particle dynamics model. Then, the rheological
properties of the resulting system can be computed via direct simulations of
shear flows.

Polymers and colloidal particles are inserted in the Voronoi tessellation using
surface boundaries formed by chains of Voronoi centres. This is represented in
Figures 6 and 7. The boundary surface are fixed giving a couple of Voronoi cen-
tres sufficiently close to form a Voronoi surface, which represents the boundary.
How close they need to be is computed from the typical scale of the system
or the smallest Voronoi fluid particle.

The physical meaning of the two Voronoi centres depends on their position.
The Voronoi cell internal to the polymer or the colloid is a coarse-grained

9

representation of a part of the polymer. The Voronoi centre in the fluid is a
fluid particle which does not slip on the colloidal/polymer surface.

This description of surface boundary could be used as well for wall boundaries,
with the disadvantage that an higher number of cells is needed to construct
the boundary compared to the approach presented in Section 4.2, but with the
advantage of an easy construction and maintenance of the boundary during
the dynamics. In fact, once the two cells forming the boundary surface are
kept at a fixed distance, then the maintenance of the tessellation does not
involve any particular extra work.

4.4 Efficiency of image point boundary conditions

The efficiency of the construction of periodic/solid boundary conditions us-
ing image points depends on the number of images that we need to insert.
Intuitively, this is a limitation when we tessellate a small number of points,
because in this case the surface:volume ratio is high. We quantitatively mea-
sured the number of images needed to impose boundary conditions in two and
three spatial dimensions.

The results are reported in Table 1. First, we note that while in two dimensions
we have 8 neighbour regions around the box, in three dimensions there are 26.
The effect of this geometrical change is evident. The number of shell points
represents the number of points that have at least one image. The number of
fluid particles which are in the core, and therefore not affected by boundary
conditions, is of course N = Nfp − Nshell, where Nfp is the number of fluid
particles. Each point in the shell could be copied to more than one neighbour
region. The number of images is the number of points that are actually inserted
outside the simulation box. The number of extra images gives the number
of point images that are not connected to any point inside the simulation
domain, i.e. their presence does not affect the periodic boundary at all. The
small number of extra images compared to the number of fluid particles shows
that the criterion used to select image points is very effective.

Obviously, it is important that the number of images, which represent a sig-
nificant computational overhead, is small compared to the number of points
in the box. This is easily obtained in two dimensions where for 1000 points
we have 190 images (less than 20%). However, in three dimensions, to have
the same percentage we need more than 50000 points. This severely limits
the performance of the current code with full periodic boundary conditions in
three dimensions.

10

5 Maintaining the Voronoi tessellation dynamically

The dynamical maintenance of the tessellation is based on the reconnection
algorithm (see [19]). The reconnection algorithm locally restores the Delaunay
property on a valid triangulation. It is very effective, but we need to guarantee
that after all the points are moved the tessellation does not present invalid
triangles (tetrahedra). It is not simple to assure this condition. Usually, by
reducing the time step it is possible to control the validity of the triangulation.
However, in our opinion this method is not really stable, and brings with it
the additional problem that the reduction of the time step effectively slows
down the code. In three dimensions, we prefer to locally restore the tessellation
moving one point by one. We are thus able to check that the triangulation
is still valid and then to use asynchronous dynamics to update different fluid
particles with different time steps. This last option is particulary interesting
for a multiscale model like this. In Appendix A, we detail the code for the
maintenance of the tessellation in two and three dimensions realised with the
CGAL library [17].

5.1 Local reconnection algorithm in two dimensions

Given the algorithmic complexity of the construction of a Voronoi tessellation
for N points (N log N), it is crucial that we are able to efficiently maintain the
Voronoi tessellation over time. We can make significant improvements by util-
ising the flexibility of the CGAL library. We are able to restore the Delaunay
Triangulation (and thus the Voronoi tessellation) locally with the following
algorithm (an implementation for the CGAL library is shown in Appendix
A), which is an extension of the algorithm used by CGAL for restoring the
Delaunay triangulation when individual points are inserted or removed.

We now consider the individual steps of the algorithm. In the first step we
ensure that no point can move outside its Voronoi region by restricting the
size of the time-step. This is achieved by iterating over the edges of the De-
launay triangles and computing the time-step for each edge such that neither
point can move more than a quarter the distance towards the other one by
setting δt to the minimum of all these values. After integrating the stochastic
Langevin equations of motion, we then update the position of each point in
step 2. It is clear that some triangles may now be invalid Delaunay triangles
and so we restore the triangulation to a Delaunay triangulation in step 3.
We achieve this as follows: every triangle in the simulation domain has three
neighbouring triangles, that is, three neighbouring vertices (by definition, the
triangles that belong to the convex hull have the infinite vertex as one of their
three neighbouring vertices). A triangle is a valid Delaunay triangle if it sat-

11

Algorithm 3 (RESTORE DELAUNAY)

(1) Compute δt such that no point can move outside its Voronoi region

(2) Move the points

(3) for every finite Delaunay triangle (p1, p2, p3)

{
Compute the circumcircle C(v)
if C(v) does not satisfy the empty circle property
{

Triangulate the quadrilateral formed by p1, p2, p3 and the point lying within
C(v) the other way round

}
}

isfies the empty circle property, that is, if none of its neighbouring vertices
lies inside its circumcircle. Therefore, we iterate over the finite triangles in the
triangulation and check the empty circle property for every triangle; for any
triangle (p1, p2, p3) which does not satisfy the empty circle property due to a
neighbouring vertex, say q, located within its circumcircle, we simply triangu-
late the quadrilateral formed by p1, p2, p3 and q the other way round. We note
that Algorithm 3 must be implemented such that any new triangles formed
are subsequently visited by the iteration process.

Clearly, there is far less work involved in restoring the Delaunay triangulation
than with re-computing the whole tessellation for every time-step. Indeed,
the above restore Delaunay algorithm is a very efficient way of maintaining a
two-dimensional Voronoi tessellation over time.

5.2 Reconnection algorithm in three dimensions

In three dimensions, instead of performing a sequence of geometrical flips of
the facets in order to locally restore the Delaunay property, we check the
validity of the insphere property for all the facets and eventually, if the test
fails, we move back the point to the preceding position, remove it and insert
in the new position. Algorithm 4 shows this procedure.

For a standard system of fluid particles (see section 6), the number of topolog-
ical events is usually small, around 10%, therefore the expensive remove-insert
procedure is performed only on a very few points. To improve performance the
remove-insert task can be used only in the case of invalid triangulation, flip-
ping the facets to restore the Delaunay property for the others. We note that
Algorithm 4 spends a large amount of its computational time without modi-

12

Algorithm 4 (RECONNECTION DELAUNAY)

(1) for every point

{
Move the point
Compute the insphere property for the facets around it
if does not satisfy the empty sphere property
{

Move back the point
Remove it
Insert the point in the new position
Return

}
}

fying anything in the triangulation if it does not not adjust the position of the
fluid particle. Because of this, the algorithm is very suited for a data-parallel
parallelisation. In fact, a processor acting on a fluid particle does not inval-
idate the memory of any other processor, while the few topological changes
can be stored in a queue and performed sequentially by each processor.

5.3 Asynchronous time dynamics

The physical model does not present any restrictions regarding its temporal
update. In principle, but not actually implemented in the code, we can add
multiscaling in time to multiscaling in space. To each fluid particle is associated
a length scale given by its volume, while its time scale can be fixed by its
velocity. Therefore, we can set the time scale for each fluid particle and move
it on this basis. Sequential temporal updating has already been studied in
particle based methods and solved with a hierarchy of time scales of power
of two [20]. In practice, given the time scale for fluid particle i, dti, and the
largest time scale dts, then the time steps are chosen such that

dti =
dts
2n

i

,

where ni refers to the time bin of particle i. Synchronisation is maintained at
the end of each large time step dts. Then a new large time scale is computed,
and so on. The Voronoi local maintenance algorithm can take advantage of
this time advancement given its locality.

13

6 Simulation set-up

In previous dissipative particle models, a priori length and time scales were
fixed by the cut-off radius [2,6,21]. For this model, the only limiting condition
is that the number of molecules Nk in each DP must be large enough such
that 1/Nk ≪ 1. For the purpose of the present paper we have chosen to work
with an average number of molecules per dissipative particle larger than 500
hundred. There are of course no upper bounds to the number of molecules
we may assign inside a DP, but when this number is sufficiently large, the
fluctuations disappear and the model becomes a standard Lagrangian hydro-
dynamics code. The input parameters are the size of the simulation box L, the
number of dissipative particles NDP , the molar mass mol, the temperature T
and the density ρ.

In our three-dimensional simulations, we set up the parameters appropriate
for argon. A set of numerical values for water and argon are expressed in cgs
units in Table 2. The equation of state contains the contribution of the inter-
molecular potential in the pairwise approximation. The size of the simulation
box is set up depending on the number of DPs and the number of molecules
per DP and the tessellation initialised with the Voronoi tessellation composed
of regular hexagons or a random configurations of points (three dimensions)
in periodic boundary conditions.

We ran a set of equilibrium simulations to benchmark the code in order to
establish the computational limits of the model and the Voronoi tessellation
on our machine. Because of the thermodynamic consistency of the model, the
temperature obtained from the internal energy of the fluid particles is equal to
the kinetic temperature, i.e. the temperature of the set of particles, computing
the total kinetic energy with zero mean and converting the internal energy to
the temperature. We use the set of equations (1). In three dimensions, the
equilibrium simulations are performed starting from an isothermal-isobaric
configuration with fixed internal energy corresponding to 300K for argon but
with zero momentum and equal pressures for all fluid particles. The number
of fluid particles is 1000, while the number of molecules per fluid particle is
set by varying the size of the system. In these simulations, we set an average
of about 500 molecules per DP and a three dimensional simulation box with
side 2650 × 10−8cm. The simulations showed that the DPD temperature of
the system increases until it reaches 300K beyond which value the dissipative
term causes the extra kinetic energy to be dissipated, operating like a ther-
mostat. This gives strong support for the fluctuation-dissipation relations in
three dimensions as well, confirming for the three-dimensional model what has
been tested already in two dimensions [9,11]. The temperature is one of the
first quantities to reach equilibrium. For momentum, mass density, pressure,
volume, etc. the equilibrium distributions can be analytically computed and

14

the predictions confirmed via a more extensive series of numerical simulations
which have been reported elsewhere [12].

7 Parallel implementation and performance in two dimensions

Whereas a parallel code can be written in two and three spatial dimensions
following exactly the same strategy, we have so far implemented and tested
the parallel performances of the model only in two dimensions. In fact, the
parallel code uses the same Algorithm 1 to isolate boundary points as the
sequential code. However, whereas in the sequential code the image points are
the points in the boundary region of the opposite face, in the case of the par-
allel implementation they are the boundary points on an adjacent processor.
The use of image points gives a straightforward parallel implementation with
a message passing paradigm that in this case has been accomplished using the
MPI (Message Passing Interface) [22] standard library. The big advantage of
the image points solution is that this parallelisation is independent of the li-
brary used. The library is used as a software engine to compute the tessellation
only.

The model contains three phases of communication:

• to construct the tessellation using the sequential code for periodic boundary
conditions, but communicating the ghost region to the adjacent processor;

• to move the particles to the corresponding processor when the particles fall
outside the processor’s domain due to the position update;

• to preserve the force symmetry between two particles in different domains
due to the stochastic force term in the Langevin equations.

The performance analysis of the code is reported for a Cray T3E (256 pro-
cessors Alpha 600MHz) in Figure 8 and Table 3. All the benchmarks are run
with the same configuration of 128000 fluid particles (Npart) for 50 iterations.

The simulation is a relaxation towards equilibrium of the isothermal model
[9] starting from a random initial configuration. The timings have been taken
measuring the CPU-clock time for the routines: move updates the position
and communicates the particle outside the boundary, construct constructs the
tessellation, integration integrates the Langevin equations and communicates
the stochastic force, comm is the total time of communication without the time
for buffering and total measures the total time without Input-Output. All the
times measured are inclusive of communication, which is reported separately
for comparison; the time for one processor is the time of the sequential version
without any overhead due to buffering.

15

The important point which we wish to stress here is that although the con-
struction and maintenance of the Voronoi tessellation represents a significant
computational overhead due to the algorithmic complexity of NlogN , with
this parallel implementation the speed-up obtainable is very promising. This
is an intrinsic feature of the model. Each fluid particle interacts only with its
nearest neighbour, thereby reducing the amount of communication. Previous
standard dissipative particle methods [6,23] lacked this strong locality feature,
interacting with many more neighbouring particles and severely limiting the
parallel performance [24,25].

Looking at the speed-up index, it is worth noting that the super-linearity
shown was expected because the algorithmic complexity of the construction
is not linear, but Nlog(N). The construction of the tessellation for N/2 takes
less than half of the time spent for N dissipative particles.

The present parallel implementation may suffer from load imbalance depend-
ing on the nature of the multiscaling in a given application. If the length scale
is set by the polymer molecule and the polymer density is uniform in the
simulation region then the parallel implementation should be well balanced.
A different situation may arise in the case of multiscaling due to the flow
structure, when some processors may have a higher computational load than
others. In this case the parallel performance will drop to the slowest proces-
sor’s performance. A dynamic repartitioning of the simulation region among
processors should reduce this effect, but the repartitioning routine would ne-
cessitate further communication, thereby producing an additional overhead.

8 Computational limits

In the preceding sections, we described several algorithms that we have used
to implement boundary conditions and dynamic reconstruction of the tessel-
lation. We showed as well the good parallel performance of the model due to
the locality of its interactions. Now we want to estimate the computational
limits of this model in view of future applications to complex fluids flows. The
CGAL library version 2.3 is used for these runs.

In two dimensions, a sequential code can easily handle 50,000 fluid particles.
Considering the good parallel performance, it is possible to run very large scale
simulations. The situation in three dimensions is quite different. The poor ef-
ficiency of periodic boundary conditions limits the overall performance of the
code. In Table 4, we report the computational time in seconds for a set of runs
with increasing number of fluid particles, for 10 iterations. The simulation is
a simple equilibration of the fluid particle system. We also report the aver-
age number of topological events (reconnections) that are performed for each

16

iteration, the time to move and maintain all the fluid particles, the Eulerian
time corresponding to the time needed to solve the Langevin equations once
the tessellation and the volumes have been computed, and finally the time to
impose boundary conditions.

Table 4 suggests that while the maintenance of the tessellation is reasonable
compared to the time needed to integrate the Langevin equations, the bound-
ary conditions do not allow to increase the size of the simulation to more than
few thousands fluid particles. For the maintenance task, a non-local reconnec-
tion algorithm, which restores the Delaunay property after the entire set of
points are moved, would be at least 3 times faster in the move task. However,
the stability would be affected and the possibility of asynchronous time update
is also lost. Instead, our code proved to be very stable. Further optimisations
are of course possible using local flips and remove-insert procedures only in
pathological configurations.

9 Conclusions

Within the framework of fluctuating hydrodynamics codes for complex fluids,
we have described our present algorithmic approach to multiscale dissipative
particle dynamics. The algorithms to dynamically maintain the Voronoi tessel-
lation, impose boundary conditions and develop parallel codes for the Voronoi
dissipative particle dynamics model have been described in two and three spa-
tial dimensions. The use of publicly available computational libraries [16,17] is
an advantage compared to direct coding because the evolution of the library
is automatically incorporated into the model. This is an important factor at
this stage of research in computational geometry where a really stable and
efficient library is still under development. In this context, CGAL offers a first
interesting approach, delivering a usable and powerful tool for scientists.

The reconnection algorithm used to dynamically maintain the tessellation in
two dimensions is stable as long as it is applied on a valid albeit not Delaunay
triangulation. This is not easy to guarantee even reducing the time step. In
three dimensions, our approach in Section 5.2 has a limited additional cost,
but offers the advantage of great stability. The overall efficiency is good for
running simulations in real applications.

Boundary conditions are evidently not yet efficiently addressed in three di-
mensions. Periodic boundaries take most of the time in the simulation. The
image points approach for boundaries is appealing because it provides at the
same time periodic, fixed wall boundary and a domain decomposition parallel
implementation, but it does not perform efficiently due to the large number of
image points and the complexity and cost of the point removal from the tes-

17

sellation in three dimensions. However, it is possible to use periodic boundary
in the x direction and a wall surface boundary on the y and z to significantly
reduce the amount of image points. This corresponds to flowing a fluid in a
duct, where shear flows can be applied to compute the rheological properties
of the fluid.

Alternative implementations of three dimensional periodic boundary condi-
tions can be envisaged. Although, we have not actually implemented it, it
is nevertheless interesting to consider here an alternative option. Imposing
periodic boundary conditions on a bounded region of space can be thought
as actually bending the Euclidian space of the region to form a torus. This
is actually equivalent to changing the topology of the region which, in fact,
might lead to problems of finite size effects (in case the triangulation becomes
locally non-euclidian). We have implemented boundary conditions by impos-
ing periodicity on the Euclidian space around a box of fixed size. This makes
use of image points outside the box in order to obtain the periodic bound-
ary. A second alternative is to use a three dimensional torus, without image
points, but directly connecting the fluid particles from one side to the other. Of
course, this necessitates some care when handling the coordinates. A possible
implementation of this solution requires changing the insphere function which
is used to construct the tessellation. This is related to the distance function,
which could be implemented as dtorus(P1,P2) := norm((P1−P2)mod(L/2)),
where L = {Lx, Ly, Lz} represents the three linear dimensions of the box and
the modulus operation mod is applied to each component. This function must
consider the toroidal topology, in order that points close to the boundary of
the previous Euclidian box are still considered close as they are in the torus.
This implementation would require substantial modifications of the CGAL
library.

Acknowledgements

G.D.F. thanks Queen Mary, University of London, and Schlumberger Cam-
bridge Research for funding his Ph.D studentship. We thank CGAL for help
and support, and P. Español and M. Serrano for useful discussions and ex-
change of preprints.

A Maintaining the Voronoi tessellation

In two dimensions, we are able to restore the Delaunay triangulation after
every time-step with the algorithm listed below, which is an extension of the
restore delaunay function in Delaunay triangulation 2.h. We first compute the

18

time-step such that no Delaunay vertex can move outside its Voronoi region.
This helps to ensure that we have a valid triangulation, but it does not guar-
antee it. We integrate the stochastic Langevin equations of motion and then
update the position of each vertex by calling the CGAL set point function.
For each vertex v, we then circulate around the incident faces, checking that v
is not located inside the circumcircle of each neighbour of v (external flip) and
that no vertices adjacent to v lie inside the circumcircle of each face (internal
flip). For any invalid Delaunay triangle, we simply triangulate the quadrilat-
eral the other way by calling the CGAL flip function. Thus we are able to
efficiently restore the two dimensional Voronoi tessellation locally.

void restore_delaunay(Vertex_handle vh) {

int i;

Face_handle f=vh->face(),next,start(f);

do {

i=f->index(vh);

if(!is_infinite(f)) {

if(!internal_flip(f,cw(i))) external_flip(f,i);

if(f->neighbor(i)==start) start=f;

}

f=f->neighbor(cw(i));

} while(f!=start);

}

void external_flip(Face_handle& f, int i) {

Face_handle n=f->neighbor(i);

if(ON_POSITIVE_SIDE !=

side_of_oriented_circle(n,f->vertex(i)->point())) return;

flip(f,i);

external_flip(f,i);

i=n->index(f->vertex(i));

external_flip(n,i);

}

bool internal_flip(Face_handle& f, int i) {

Face_handle n=f->neighbor(i);

if(ON_POSITIVE_SIDE !=

side_of_oriented_circle(n,f->vertex(i)->point())) return false;

flip(f,i);

return true;

}

19

In three dimensions, the in sphere property is checked for all the facets inci-
dents to a given vertex vh. If a topological event is found then the point is
removed and inserted again. The facets are inserted in a set in order to avoid
double checking the same facet. An implementation is listed below.

typedef std::set<Facet,compare_facets> Facets_cont;

bool move_reconnection(Vertex_handle& vh,const Vector& dr) {

Point old_point=vh->point();

Point new_point=old_point;

move(new_point,dr);

vh->set_point(new_point);

if (check_topological_event(vh))

{vh->set_point(old_point);move(vh,dr);return false;}

return true;

}

bool check_topological_event(const Vertex_handle& vh) const {

Facets_cont facets;

composing_facets(vh,facets);

Facets_cont::iterator fi=facets.begin(),fiend=facets.end();

for (;fi!=fiend;fi++) if (facet_in_sphere(*fi)) return true;

return false;

}

void composing_facets(const Vertex_handle& vh,Facets_cont& facets)

const {

std::set<Cell_handle> cells;

this->incident_cells(vh,cells);

std::set<Cell_handle>::iterator ci=cells.begin(),cend=cells.end();

for(;ci!=cend;ci++)

{

facets.insert(Facet(*ci,0));

facets.insert(Facet(*ci,1));

facets.insert(Facet(*ci,2));

facets.insert(Facet(*ci,3));

}

}

bool facet_in_sphere(const Facet& f) const {

return (ON_BOUNDED_SIDE==

side_of_sphere(f.first,

(*(f.first->mirror_vertex(f.second))).point()));

20

}

References

[1] X.-F. Yuan and M. Doi, Colloids and surfaces A 144, 305 (1998).

[2] P. J. Hoogergrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).

[3] E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot, Phys.
Rev. E 54, 5143 (1997).

[4] A. G. Schlijper, P. J. Hoogerbrugge, and C. W. Manke, J. Rheol. 39, 567 (1995).

[5] P. V. Coveney and K. E. Novik, Phys. Rev. E 54, 5143 (1996).

[6] P. Español and P. Warren, Europhys. Lett. 30, 191 (1995).

[7] C. A. Marsh, G. Backx, and M. Ernst, Phys. Rev. E 56, 1676 (1997).

[8] E. G. Flekkøy and P. V. Coveney, Phys. Rev. Lett. 83, 1775 (1999).

[9] E. G. Flekkøy, P. V. Coveney, and G. De Fabritiis, Phys. Rev. E 62, 2140
(2000).

[10] G. De Fabritiis, P. V. Coveney, and E. G. Flekkøy, Phil. Trans. Royal Soc.
Lond. A 360, 317 (2002).

[11] M. Serrano and P. Español, Phys. Rev. E 64, 046115 (2001).

[12] M. Serrano, G. De Fabritiis, P. Español, and P. V. Coveney, J. Phys. A: Math.
Gen. 35, 1605 (2002).

[13] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential

equations, Springer-Verlag, Berlin, 1992.

[14] G. De Fabritiis, M. Serrano, P. Español, and P. V. Coveney, Efficient integrators
for mesoscopic models based on stochastic differential equations, preprint, 2002.

[15] J. Rourke, Computational geometry in C, Cambridge University Press,
Cambridge, 1994.

[16] J. R. Shewchuk, (www.cs.cmu.edu/˜quake/triangle.html).

[17] Computational Geometry Algorithms Library (www.cgal.org).

[18] G. De Fabritiis, P. V. Coveney, and E. G. Flekkøy, Proceedings of the 5th
European SGI/Cray MPP Workshop, Bologna, Italy (1999).

[19] G. Albers, L. J. Guibas, J. S. B. Mitchel, and T. Ross, Int. J. of Comp. Geom.
& App. 8, 365 (1998).

21

[20] L. Hernquist and N. Kats, Astrophys. J. Suppl. Series 70, 419 (1989).

[21] J. B. Avalos and A. D. Mackie, Europhys. Lett. 40, 141 (1997).

[22] MPI: A message-passing interface standard (www.mpi-forum.org).

[23] J. J. Monaghan, Ann. Rev. Astron. Astrophys. 30, 543 (1992).

[24] S. I. Jury, P. Bladon, S. Krishna, and M. E. Cates, Phys. Rev. E 59, R2535
(1999).

[25] K. E. Novik and P. V. Coveney, Phys. Rev. E 61, 435 (2000).

22

Table 1
Number of image points inserted in two and three spatial dimensions to impose

boundary conditions.

No. of DPs 2D images 3D shell 3D images 3D extra images

100 64 100 408 195

1000 190 687 1329 398

10000 581 3855 5287 661

50000 2081 11998 14370 1050

Table 2
The input parameters for argon and water used for the simulations. All the numer-
ical values are expressed in cgs units for three spatial dimensions. n = N/NA, NA

is Avogadro’s number and Eid is the internal energy of an ideal gas.

cgs units argon water

temperature 300 300

viscosity 2.26E-4 0.01

heat diffusivity 2E3 5.9E4

mass density 0.00178 1

molecular mass 39.94 18

pressure equation of state PV = NkBT
(
P + n2a

V 2

)
(V − nb) = NkBT

23

Table 3
Timings in seconds of the main routines on a Cray T3E. Comm measures the total
time for communication, while the other timings are inclusive of the communication
time. The number of iterations is 50.

Nprocs Npart/NProcs Move Construct Integration Comm Total

1 128000 4.50 395.17 19.38 0 427.73

2 64000 5.45 180.96 16.54 1.49 206.99

4 32000 2.76 83.42 8.46 1.43 96.52

8 16000 1.48 38.48 4.43 1.02 45.34

16 8000 0.78 17.70 2.24 0.67 21.24

32 4000 0.44 8.40 1.16 0.44 10.31

64 2000 0.25 4.09 0.68 0.38 5.18

128 1000 0.17 2.14 0.49 0.47 2.91

Table 4
Computational time in seconds for 10 iterations of the three dimensional tessella-

tions with periodic boundary conditions.

Fluid particles Reconnected Move Eulerian Update images

100 5 0.86 s 0.87 s 17.5 s

1000 70 9.5 s 1.0 s 65.6 s

5000 450 49.0 s 5.0 s 201.5 s

24

Fig. 1. A fluid particle in three dimensions for the simple case of a regular grid.
The stresses and fluxes are computed over the surfaces between the Voronoi centre
points.

Fig. 2. The tessellation for an unbounded domain. The continuous lines are the
Voronoi edges, while the points represent the dissipative particles or Delaunay ver-
tices. The dotted lines are the edges of the Delaunay triangulation and the missing
Voronoi edges are infinite edges. The square is the simulation domain.

25

Fig. 3. The simplest way to construct a periodic tessellation. The points in the
simulation region are copied to the corresponding positions in the eight surrounding
boundary regions to produce a periodic Voronoi tessellation.

Fig. 4. Implementation of periodic boundary conditions using Algorithm 1.

26

Fig. 5. Implementation of fixed (solid) wall boundary conditions using Algorithm 2.

Fig. 6. Structure of a polymeric fluid according to the multiscale dissipative particle
dynamics method. The resolved length scale of the polymer is much finer than that of
the fluid. In the fluid itself different length scales are present to handle polymer-fluid
interactions.

27

Fig. 7. Structure of a colloidal particle according to the multiscale dissipative
particle dynamics method. The surface of the colloid is resolved by inserting two
points for each surface element. The central point represents the colloid’s centre of
mass and is used to make the tessellation more stable.

0 16 32 48 64 80 96 112 128
0

16

32

48

64

80

96

112

128

144

160

176

192

Nprocs

S
pe

ed
−

up

Move
Construct
Integrate
Tot

Fig. 8. Speed-up index on a Cray T3E. The dotted line indicates the linear speed-up.
Circles indicate overall speed-up, stars Voronoi construction speed-up, triangles the
speed-up of the integration and update of the Langevin equations.

28

	Introduction
	Multiscale dissipative particle dynamics
	Voronoi tessellation
	Boundary conditions
	Periodic boundary conditions
	Fixed (solid) wall boundary conditions
	Boundary surfaces
	Efficiency of image point boundary conditions

	Maintaining the Voronoi tessellation dynamically
	Local reconnection algorithm in two dimensions
	Reconnection algorithm in three dimensions
	Asynchronous time dynamics

	Simulation set-up
	Parallel implementation and performance in two dimensions
	Computational limits
	Conclusions
	Acknowledgements
	References

