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Abstract

We show, that higher analogs of the Willmore functional, defined

on the space of immersions M
2 → R

3, where M
2 is a two-dimensional

torus, R
3 is the 3-dimensional Euclidean space are invariant under

conformal transformations of R
3. This hypothesis was formulated re-

cently by I. A. Taimanov.

Higher analogs of the Willmore functional are defined in terms of

the Modified Novikov-Veselov hierarchy. This soliton hierarchy is asso-

ciated with the zero-energy scattering problem for the two-dimensional

Dirac operator.

1 Introduction

To start with, we would like to recall the following interesting fact from
the theory of 2-dimensional surfaces in R

3 (see [20], p. 110 and references
therein). Let X : M2 → R

3 be a smooth immersion of a compact orientable
surface M2 into the Euclidean space R

3 (i.e. a smooth map from M2 to R
3
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supported by Russian Foundation for Basic Research, grant No 95-01-755.
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such that its Jacobi matrix is non-degenerate everywhere on M2, but the
image is allowed to self-intersect). Let T be the Willmore functional

T =
∫

M2

H2dS, (1)

where H denotes the mean curvature, dS is the volume element on M2 gener-
ated by the immersion. Then T is invariant under conformal transformations
of R

3.
It is natural to pose the problem of constructing other conformal invariant

functional of immersions.
It is well-known, that many constructions from the soliton theory have

natural analogs in geometry and vise versa. In particular, important informa-
tion how to study immersions of 2-dimensional surfaces into R

3 using soliton
methods can be found in the article [1] by A. I. Bobenko. Any immersed
surface possesses (at least locally) a conformal coordinate system (see for
example [3] p. 110), i.e. a coordinate system such that ds2 = f(z, z̄)dzdz̄.
In conformal coordinates this immersion can be locally represented by the
Generalized Weierstrass Formulas (see Section 2 below) and the potential
U(z, z̄) is uniquely defined. In [17] it was shown, that any analytic immer-
sion of a compact orientable 2-dimensional manifold into R

3 can be globally
represented by these formulas.

The Generalized Weierstrass Formulas are based on the zero-energy eigen-
functions of the two-dimensional Dirac operator with a real potential U(z, z̄).
The zero-energy spectral problem for this operator arose in the soliton theory
as an auxiliary linear problem for the hierarchy of Modified Novikov-Veselov
Equations (MNV) (see [2]). These nonlinear integrable equations with 2
spatial variables, introduced by L. V. Bogdanov ,have infinitely many con-
servation laws.

In [9] B. G. Konopelchenko and I. A. Taimanov showed that the quadratic
MNV conservation law

H1 = 4
∫ ∫

U2(z, z̄)dx ∧ dy, z = x+ iy (2)

coincides with the Willmore functional T . In [18] I. A. Taimanov formulated
a hypothesis that all higher MNV conservations laws also generate functionals
on immersions of closed orientable 2-dimensional surfaces into R

3, invariant
under conformal transformations of R

3. He also did some numerical experi-
ments with surfaces of revolution, confirming this assumption.
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During his visit to the Freie Universität, Berlin in September–October
1996, I. A. Taimanov attracted the authors attention to this problem. In the
present text we prove this hypothesis for immersions of tori into R

3.
Of course, it would be natural to extend this result to immersions of

higher genus surfaces into R
3. But here we meet the following problem. In

contrast with H1 the higher conservation laws are non-local in terms of the
potential. For double-periodic potentials they are defined in terms of the
zero-energy dispersion curve (the Riemann surface of the zero-energy Bloch
function). If the genus is greater than 1, we have to study modular invariant
Dirac operators in the Lobachevskian plane with a non-abelian group of
translations. The corresponding Bloch theory has not been constructed until
now, thus we could not define the higher conservation laws. It would be
interesting to develop the corresponding Bloch theory, but this problem looks
rather non-trivial. Thus we restrict ourself to the genus 1 case only, where
all integrals of motion are well-defined.

The idea of our proof is the following. We show, that infinitesimal confor-
mal transformations of R

3 correspond to infinitesimal Darboux transforma-
tions of the Dirac operator (infinitesimal dressings with degenerate kernels).
It is convenient to express these deformations in terms of Cauchy-Baker-
Akhiezer kernels, introduced by A. Yu. Orlov and one of the authors in [6]
(see also the review [7]). From the explicit formulas for such deformations
it follows, that the deformed zero-energy Bloch function is meromorphic on
the same Riemann surface as the original one. Recalling, that this Riemann
surface completely determines all conservation laws, we complete the proof.

Remark 1 An alternative proof of the theorem, namely that conformal trans-
formations do not change the zero-energy Bloch variety, was obtained by
U. Pinkall (private communication). He calculated the action of finite con-
formal transformations on the Bloch function using a quaternionic represen-
tation of the Generalized Weierstrass formulas as suggested by G. Kamberov,
F. Pedit and U. Pinkall in [8].

Remark 2 Finite Darboux transformations for the Dirac operator are dis-
cussed in the book by V. B. Matveev and M. A. Salle [13], Laplace transfor-
mations for the Dirac operator are discussed in the paper by E. V. Ferapontov
[5].

The authors are grateful to I. A. Taimanov for interesting discussions.
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2 Generalized Weierstrass construction

Let L be the two-dimensional Dirac operator

L =

[

∂z −U(z, z̄)
U(z, z̄) ∂z̄

]

(3)

with a real potential U(z, z̄). Let ~Ψ(z, z̄) be a zero-energy solution of the
Dirac equation

L~Ψ(z, z̄) = 0, ~Ψ(z, z̄) =

(

Ψ1(z, z̄)
Ψ2(z, z̄)

)

. (4)

Then the Generalized Weierstrass Formulas (see [17] and refs. therein)

X1(z, z̄) + iX2(z, z̄) = C1 + iC2 + i
z
∫

z0

(

Ψ̄2
1(z

′, z̄′)dz′ − Ψ̄2
2(z

′, z̄′)dz̄′
)

X1(z, z̄) − iX2(z, z̄) = C1 − iC2 + i
z
∫

z0

(Ψ2
2(z

′, z̄′)dz′ − Ψ2
1(z

′, z̄′)dz̄′)

X3(z, z̄) = C3 −
z
∫

z0

(

Ψ2(z
′, z̄′)Ψ̄1(z

′, z̄′)dz′ + Ψ1(z
′, z̄′)Ψ̄2(z

′, z̄′)dz̄′
)

(5)

defines a map of the plane R
2 to the Euclidean space R

3. In (5) z0 is a fixed
point in the z-plane and the integrals are taken over some path connecting
the points z0 and z. From (4) it follows, that the integrands in (5) are closed
forms, thus the map does not depend on a specific choice of the path. Here
C1, C2, C3 are arbitrary real constants.

The formulas (5) are equivalent to:

d [σ2X1 + σ1X2 − σ3X3] =

=

[

Ψ̄1(z, z̄) Ψ̄2(z, z̄)
−Ψ2(z, z̄) Ψ1(z, z̄)

] [

0 dz
dz̄ 0

] [

Ψ1(z, z̄) −Ψ̄2(z, z̄)
Ψ2(z, z̄) Ψ̄1(z, z̄)

] (6)

where σ1, σ2, σ3 are the standard Dirac matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

. (7)
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The Generalized Weierstrass Map is conformal, i.e. the metric ds̃2 on R
2

induced by this map is proportional to the standard one: ds̃2 = g(z, z̄)dzdz̄.
Assume that we have a map of a 2-dimensional torus into R

3. Then the
corresponding potentials U(z, z̄) is periodic

U(z + T̄1, z̄ + T1) = U(z + T2, z̄ + T̄2) = U(z, z̄). (8)

Also the eigenfunction ~Ψ(z, z̄) is periodic or anti-periodic, i.e.

~Ψ(z+T1, z̄+T̄1) = W1
~Ψ(z, z̄), Ψ(z+T2, z̄+T̄2) = W2

~Ψ(z, z̄), W2
1 = W2

2 = 1.
(9)

The coordinate z is defined up to linear transformations z → az + b,
a, b ∈ C, a 6= 0. Thus without loss of generality we may assume

T1 = 1, T2 = τ, Im τ > 0. (10)

Conditions (8) and (9) are necessary, but, of course, not sufficient for
periodicity of the Generalized Weierstrass map. Necessary and sufficient
conditions for periodicity can be formulated in terms of the Bloch variety.
They are obtained in a forthcoming paper by I. A. Taimanov and one of the
authors (M.S.). We do not use these conditions in our text, thus we will not
discuss them in further details

3 Bloch function and Bloch variety.

In this Section we assume that U(z, z̄) is real, smooth, and double-periodic
(8). With any such potential we associate a one-dimensional subvariety Γ in
the two-dimensional complex space (C\0)2.

The first object we need is the Bloch function. By definition, the Bloch
functions ~ψ(w1, w2, z, z̄) are quasiperiodic solutions of the Dirac equation (4)
with the following periodicity properties:

~ψ(w1, w2, z + 1, z̄ + 1) = w1
~ψ(w1, w2, z, z̄),

~ψ(w1, w2, z + τ, z̄ + τ̄) = w2
~ψ(w1, w2, z, z̄).

(11)

The pairs of multipliers w1, w2 possessing at least one non-zero Bloch
solution form a complex one-dimensional subvariety Γ ∈ (C\0) × (C\0) (see
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[12]). This variety is called the Bloch variety or the zero-energy disper-
sion curve. For a generic potential U(z, z̄) the genus of Γ is infinite.

The Bloch functions form a one-dimensional holomorphic bundle over Γ
(it is shown below, that for generic λ ∈ Γ a Bloch solution is unique up to

normalization). It is convenient to fix a section of this bundle ~ψ(λ, z, z̄), by
assuming

ψ1(λ, z, z̄) + ψ2(λ, z, z̄)|z=z1 = 1, (12)

where z1 is an arbitrary fixed point.
The logarithms of the multipliers w1(λ), w2(λ)

p1(λ) =
1

i
lnw1(λ), p2(λ) =

1

i |τ |
lnw2(λ), (13)

are called quasimomentum functions. Of course, they have non-trivial
increments while going along cycles in Γ, and they are defined up to adding
2πn1, 2πn2/ |τ | respectively, where n1 and n2 are some integers. Thus the
functions Im p1(λ), Im p2(λ) are single-valued in Γ. The differentials of the
quasimomentum functions

dp1(λ) =
∂

∂λ
p1(λ)dλ, dp2(λ) =

∂

∂λ
p2(λ)dλ, (14)

are single-valued and holomorphic on the finite part of Γ.
In our text the Dirac operator (3) is symmetric and the potential U(z, z̄)

is real. Let us show, that the corresponding Bloch variety Γ possesses Z2×Z2

as a group of symmetries. An analogous statement for the fixed-energy Bloch
variety corresponding to a two-dimensional self-adjoint Schrödinger operator
was proved in [10]. The proof from [10] may be applied to (3) after a minimal
modification.

The operator (3) with real potential U(z, z̄) has the following symmetry.

If ~ψ(w1, w2, z, z̄) is a Bloch solution of (4), then the function

~ψ†(w1, w2, z, z̄) =

(

ψ̄2(w1, w2, z, z̄)
−ψ̄1(w1, w2, z, z̄)

)

(15)

is also a Bloch solution of (4) with multipliers w̄1 and w̄2 respectively. Thus
the surface Γ possesses an antiholomorphic involution (we denote it by σθ
for historical reasons)

σθ : Γ → Γ, σθ : (w1, w2) → (w̄1, w̄2), (16)
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and
~ψ†(λ, z, z̄) = n−1(λ)~ψ(σθ(λ), z, z̄), (17)

where n(λ) is a scalar function, meromorphic in λ and independent on z, z̄.
It is less trivial to see that the surface Γ possesses a holomorphic involu-

tion:
σ : Γ → Γ, σ : (w1, w2) → (w−1

1 , w−1
2 ). (18)

To prove it, let us fix a generic point λ ∈ Γ. Denote by Lw1w2
the Banach

space of all locally square-integrable two-component complex-valued vector-
functions on R

2 with the periodicity properties (11). The space Lw−1

1
w−1

2
is

naturally dual to Lw1w2
. Namely, if ~f(z, z̄) ∈ Lw1w2

and ~g(z, z̄) ∈ Lw−1

1
w−1

2
,

then we define a scalar product by

< f, g >=
1
∫

0

1
∫

0
dt1 ∧ dt2 [f1(t1 + τt2, t1 + τ̄ t2)g1(t1 + τt2, t1 + τ̄ t2)+

+f2(t1 + τt2, t1 + τ̄ t2)g2(t1 + τt2, t1 + τ̄ t2)] .
(19)

Let ~f (0) = ~ψ(w1, w2, z, z̄), ~f
(1), . . . , ~f (n), . . . be the Jordan basis for the Dirac

operator L in the space Lw1w2
. Also let ~g(0), ~g(1), . . . , ~g(n), . . . be the dual

basis in Lw−1

1
w−1

2
. The functions ~g(n) form a Jordan basis for the transposed

operator LT . But L is symmetric with respect to this scalar product thus it
has a zero eigenfunction in the space Lw−1

1
w−1

2
. Hence if (w1, w2) ∈ Γ, then

σ(w1, w2) = (w−1
1 , w−1

2 ) ∈ Γ.
One of the main properties of the Bloch variety Γ is the following: Γ may

be treated as a complete set of integrals of motion for the Modified
Novikov-Veselov hierarchy.

Indeed, consider the space of all real-valued smooth double-periodic func-
tions on C

1 = R
2 with a fixed pair of periods 1 and τ . The Modified Novikov-

Veselov hierarchy (MNV) (see Section 4 below) defines an infinite collection
of flows on this space

∂U(z, z̄, t2n+1)

∂t2n+1
= K2n+1[U ] + K̄2n+1[U ], (20)

∂U(z, z̄, t̃2n+1)

∂t2n+1
= i

(

K̄2n+1[U ] −K2n+1[U ]
)

, (21)

where K2n+1[U ] is some integro-differential operator in z, z̄. Here t2n+1, t̃2n+1

are parameters of these flows.
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Statement 1 Let U(z, z̄, t2n+1) be a solution of one of the MNV equations;
let L(t2n+1) be the corresponding two-dimensional Dirac operator (3) depend-
ing on an extra parameter t2n+1; let Γ(t2n+1) be the corresponding family of
Bloch varieties.

Then Γ(t2n+1) = Γ does not depend on the MNV time t2n+1.

Remark 3 Here and below we use the following notational convention. If
we have a complete proof of a mathematical result we call it Theorem or
Lemma. If we do not have a complete strict proof yet we use the word
Statement.

An analogous statement is well-known for soliton systems with one spa-
tial variable. In Section 4 we prove this fact at least for algebraic-geometrical
potentials, corresponding to varieties Γ of finite genus. (Sometimes such po-
tentials are called finite-gap potentials). It is rather clear, that our proof can
be extended to all smooth potentials, but to do such extension strictly we
need more detailed information about analytic behavior of the Bloch func-
tions near infinity in the momentum space, than we have now. An appropri-
ate analytic lemma for the one-dimensional Dirac operator, corresponding to
the surfaces of revolution, was proved by one of the authors (M.S.) in [16].

There exists a different way (may be a more natural one) to get a strict
proof of Statement 1. It would be interesting to prove the following approx-
imation property:

Conjecture 1 Any smooth potential can be approximated by the algebraic-
geometrical ones with the same periods.

From such a result it would follow, that we can restrict ourself to the
algebraic-geometrical potentials in our calculations.

We have a map U(z, z̄) → Γ[U ] from the space of double-periodic real
smooth functions to the space of complex subvarieties in (C\0)2, which is
invariant under the whole MNV hierarchy. This map generates an infinite
family of MNV “normal” conservation laws. Namely, let w1 be a generic
point in C\0. Than we have an infinite collection of numbers w

(k)
2 [U ] such

that (w1, w
(k)
2 [U ]) ∈ Γ[U ]. From Statement 1 it follows that these functionals

w
(k)
2 [U ] are conservation laws of the whole Modified Novikov-Veselov

hierarchy.
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The functionals w
(k)
2 [U ] are essentially nonlocal. In Section 4 we show

that under the same assumptions as in Statement 1 we can expand these
functionals in some asymptotic series near infinity and the expansion coeffi-
cients give us the standard “quasi-local” conservation laws.

4 Conformal transformations of the Euclidean

space R3, and MNV integrals of motion.

In the previous Section we have associated with any double-periodic smooth
real potential a Bloch variety Γ[U ]. The map is constant on the trajectories
of the MNV hierarchy. In this Section we associate with any immersion of a
torus into R

3 a Bloch variety Γ and show, that Γ is invariant under conformal
transformations of R

3.
Let M2 be a torus with a fixed basis of cycles a, b. Let X : M2 → R

3 be
a smooth immersion of M2 into the Euclidean space. The standard metric
on R

3 induces a conformal structure on M2. Let z be a conformal global
coordinate on the universal covering space of M2. The coordinate z is defined
uniquely up to affine transformations z → cz + d. If we assume, that the
shift of M2 along the a-cycle corresponds to the shift z → z + 1 then the
coordinate z is defined uniquely up to shifts

z → z + d. (22)

The immersion X and coordinate z define a potential U(z, z̄) therefore
also a Bloch variety Γ[U ]. Γ[U ] is invariant under the shifts (22) thus it is
completely determined by the immersion X and the cycles a, b, and we may
write Γ[X, a, b].

Conformal transformations of the Euclidean space R
3 do not affect the

conformal structure of M2, thus they leave the coordinate z invariant up to
the shifts (22). Without loss of generality we shall assume that conformal
transformations of R

3 do not change z.
Now we are in position to formulate and prove our main result:

Theorem 1 Let X : M2 → R
3 be an immersion of a torus with a fixed basis

of cycles a, b into the Euclidean space; let Γ[X, a, b], be the corresponding
Bloch variety. Then Γ[X, a, b] is invariant under conformal transformations
of R

3.
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Proof of the Theorem:
Step 1: To start with let us recall the well-known facts about the group

of conformal transformations of the standard Euclidean metric on R
3 (or on

the sphere S3) (see for example [3]). This group is generated by the following
transformations:

1. Translations Xi → Xi + (X0)i.

2. Rotations ~X → A ~X, A ∈ SO(3).

3. Dilations ~X → k ~X, k ∈ R

4. Inversions

Xi →
Xi − (X0)i

< ~X − ~X0, ~X − ~X0 >
. (23)

5. Reflections
~X → ~X − 2~v < ~v, ~X >, < ~v,~v >= 1. (24)

The connected component of the identity of this group is isomorphic to
SO(1, 4) (see [3], page 143). The corresponding Lie algebra is generated by
the following basis of infinitesimal transformations:

1. Translations Pa: δXi = δia.

2. Rotations Ωab, a < b: δXi = δibXa − δiaXb.

3. Dilation D: δXi = Xi

4. Inversions Ka

δXi = 2XiXa − δia
3
∑

j=1

XjXj . (25)

Step 2: Let us calculate deformations of the potential U(z, z̄), the eigen-
function Ψ(z, z̄) and the constants Cj in formulas (5) corresponding to all
infinitesimal conformal transformations of R

3.

1. Translations simply shift the constants Cj and change neither U(z, z̄)
nor Ψ(z, z̄). Thus they do not change Γ[X, a, b], and without loss of
generality we can assume

Cj = 0, j = 1, 2, 3. (26)

10



2. A simple direct calculation based on thr representation (6) (we do not
like to reproduce it here) shows that the rotations in R

3 correspond to

the following transformations of the eigenfunction ~Ψ(z, z̄)

(

Ψ1(z, z̄)
Ψ2(z, z̄)

)

→ α

(

Ψ1(z, z̄)
Ψ2(z, z̄)

)

+ β

(

Ψ̄2(z, z̄)
−Ψ̄1(z, z̄)

)

, |α|2 + |β|2 = 1

(27)
where α and β are some complex parameters.

Both functions ~Ψ(z, z̄) and

~Ψ+(z, z̄) =

(

Ψ̄2(z, z̄)
−Ψ̄1(z, z̄)

)

, (28)

satisfy the Dirac equation (4) with the same potential U(z, z̄). Thus
the rotations does not change the potential and Γ[X, a, b].

3. The dilation is generated by the scaling transform

δ~Ψ(z, z̄) =
1

2
~Ψ(z, z̄) (29)

and changes neither U(z, z̄) nor Γ[X, a, b].

4. The only nontrivial transformations of the Dirac operator correspond to
the inversion generators. Up to conjugations by rotations all generators
(25) are equivalent. Thus it is sufficient to prove, that Γ[X, a, b] is
invariant if we apply the generator −K3:

δX1 = −2X1X3, δK2 = −2X2X3, δX3 = −X2
3 +X2

1 +X2
2 . (30)

Let us introduce the following notation

W (z, z̄) = X1(z, z̄) − iX2(z, z̄). (31)

The transformation (30) corresponds to the following transformation

of the function ~Ψ(z, z̄)

δΨ1(z, z̄) = −X3(z, z̄)Ψ1(z, z̄) + iW (z, z̄)Ψ̄2(z, z̄)
δΨ2(z, z̄) = −X3(z, z̄)Ψ2(z, z̄) − iW (z, z̄)Ψ̄1(z, z̄)

(32)

11



Let us check it.

δX3(z, z̄) = −
z
∫

z0

[(

δΨ2(z
′, z̄′)Ψ̄1(z

′, z̄′) + Ψ2(z
′, z̄′)δΨ̄1(z

′, z̄′)
)

dz′ +

+
(

δΨ1(z
′, z̄′)Ψ̄2(z

′, z̄′) + Ψ1(z
′, z̄′)δΨ̄2(z

′, z̄′)
)

dz̄′
]

=

= −
z
∫

z0

[(

−2X3(z
′, z̄′)Ψ2(z

′, z̄′)Ψ̄1(z
′, z̄′)−

−iW (z′, z̄′)Ψ̄2
1(z

′, z̄′) − iW̄ (z′, z̄′)Ψ2
2(z

′, z̄′)
)

dz′+

+
(

−2X3(z
′, z̄′)Ψ1(z

′, z̄′)Ψ̄2(z
′, z̄′)+

+iW (z′, z̄′)Ψ̄2
2(z

′, z̄′) + iW̄ (z′, z̄′)Ψ2
1(z

′, z̄′)
)

dz̄′
]

=

= −
z
∫

z0

[(

2X3(z
′, z̄′)(∂z′X3(z

′, z̄′))−

−W (z′, z̄′)(∂z′W̄ (z′, z̄′)) − W̄ (z′, z̄′)(∂z′W (z′, z̄′))
)

dz′+

+
(

2X3(z
′, z̄′)(∂z̄′X3(z

′, z̄′))−

−W (z′, z̄′)(∂z̄′W̄ (z′, z̄′)) − W̄ (z′, z̄′)(∂z̄′W (z′, z̄′))
)

dz̄′
]

=

= −
z
∫

z0

[(

∂z′X
2
3 (z′, z̄′) − ∂z′(W (z′, z̄′)W̄ (z′, z̄′))

)

dz′ +

+
(

∂z̄′X
2
3 (z′, z̄′) − ∂z̄′(W (z′, z̄′)W̄ (z′, z̄′))

)

dz̄′
]

=

= W (z, z̄)W̄ (z, z̄) −X2
3 (z, z̄)

δW (z, z̄) = i
z
∫

z0

2
[

δΨ2(z
′, z̄′)Ψ2(z

′, z̄′)dz′ − δΨ1(z
′, z̄′)Ψ1(z

′, z̄′)dz̄′
]

=

=
z
∫

z0

2
[(

−X3(z
′, z̄′)iΨ2

2(z
′, z̄′) +W (z′, z̄′)Ψ̄1(z

′, z̄′)Ψ2(z
′, z̄′)

)

dz′ +

+
(

X3(z
′, z̄′)iΨ2

1(z
′, z̄′) +W (z′, z̄′)Ψ̄2(z

′, z̄′)Ψ1(z
′, z̄′)

)

dz̄′
]

=

= 2
z
∫

z0

[(

−X3(z
′, z̄′)(∂z′W (z′, z̄′)) −W (z′, z̄′)(∂z′X3(z

′, z̄′))
)

dz′ +

+
(

−X3(z
′, z̄′)(∂z̄′W (z′, z̄′)) −W (z′, z̄′)(∂z′X3(z

′, z̄′))
)

dz̄′
]

=

= −2

z
∫

z0

[(

∂z′(X3(z
′, z̄′)W (z′, z̄′))

)

dz′ +
(

(∂z̄′(X3(z
′, z̄′)W (z′, z̄′))

)

dz̄′
]

=

= −2W (z, z̄)X3(z, z̄)

The corresponding transformation of the potential U(z, z̄) reads as

δU(z, z̄) = Ψ1(z, z̄)Ψ̄1(z, z̄) − Ψ2(z, z̄)Ψ̄2(z, z̄). (33)
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Step 3: Let us calculate the the deformation of the Bloch functions
corresponding to (33).

Let ~ψ(λ, z, z̄) be the Bloch function of L. For any λ such that at least
one of the functions Im px(λ), Im py(λ) is not equal to zero (“non-physical”
λ) define the following pair of functions

Ω1(λ, z, z̄) =
z
∫

∞
ψ2(λ, z

′, z̄′)Ψ̄1(z
′, z̄′)dz′ + ψ1(λ, z

′, z̄′)Ψ̄2(z
′, z̄′)dz̄′

Ω2(λ, z, z̄) =
z
∫

∞
ψ2(λ, z

′, z̄′)Ψ2(z
′, z̄′)dz′ − ψ1(λ, z

′, z̄′)Ψ1(z
′, z̄′)dz̄′.

(34)

where the integrals are taken along an arbitrary path in the z-plane, connect-
ing the points z and ∞ such that the integrand decays exponentially along
this path. The integrands in (34) are closed 1-forms thus the integrals do
not depend on a concrete choice of the path. Using the same arguments as
in Section 5.2 below we may easily prove that Ω1(λ, z, z̄) and Ω2(λ, z, z̄) are
meromorphic in λ outside infinity.

The function ~Ψ(z, z̄) is double-periodic or anti-periodic in z (see (9)), thus
the functions Ω1(λ, z, z̄), Ω2(λ, z, z̄) have the following periodicity properties:

Ωk(λ, z + 1, z̄ + 1) = W1w1(λ)Ωk(λ, z, z̄)
Ωk(λ, z + τ, z̄ + τ̄) = W2w2(λ)Ωk(λ, z, z̄)

k = 1, 2. (35)

(see (9) for the definition of W1, W2.)

Lemma 1 The variation of the Bloch function ~ψ(λ, z, z̄) corresponding to
(33) reads as

δψ1(λ, z, z̄) = Ω1(λ, z, z̄)Ψ1(z, z̄) − Ω2(λ, z, z̄)Ψ̄2(z, z̄) + α(λ)ψ1(λ, z, z̄)
δψ2(λ, z, z̄) = Ω1(λ, z, z̄)Ψ2(z, z̄) + Ω2(λ, z, z̄)Ψ̄1(z, z̄) + α(λ)ψ2(λ, z, z̄)

(36)
where α(λ) is some meromorphic function, fixed by the normalization condi-
tion:

δψ1(λ, z, z̄) + δψ2(λ, z, z̄)|z=z1 = 0, (37)

Proof of Lemma 1. To start with, let us recall a simple fact from Bloch
theory (see for example [10]).

Generically, if we calculate variations of the Bloch function, we deform
Γ, and we can not assume both δw1(λ) = 0 and δw2(λ) = 0 simultaneously.

13



To compare functions on different subvarieties in C
2 we have to fix some

connection. The simplest way to do this is to assume δw1(λ) = 0.
Then the variation of the Bloch function can be found as the unique

solution of the linearized Dirac equation

δL~ψ(λ, z, z̄) + Lδ ~ψ(λ, z, z̄) = 0 (38)

satisfying (37) such that

δ ~ψ(λ, t1 + τt2, t1 + τ̄ t2) = O
(

[1 + |t2|] e
ip1(λ)t1+ip2(λ)t2

)

. (39)

A simple direct calculation shows that (36) solves (38). From (35) and
(9) it follows, that

δ ~ψ(w1, w2, z + 1, z̄ + 1) = w1δ ~ψ(w1, w2, z, z̄),

δ ~ψ(w1, w2, z + τ, z̄ + τ̄) = w2δ ~ψ(w1, w2, z, z̄),
(40)

thus variations of the type (36) satisfy (39). This completes the proof.
The function δψ(λ, z, z̄) defined by (36) has the same periodicity prop-

erties as the original Bloch function ψ(λ, z, z̄) (see formulas (11) and (40)
respectively). Thus our special variations satisfy δw1(λ) = 0 and δw2(λ) = 0
simultaneously.

Step 4: From (36) it follows, that if we apply infinitesimal conformal
transformation −K3 to our immersion, the Bloch functions of the deformed
Dirac operator are meromorphic on the same variety Γ[X, a, b] as the original
Bloch functions and have the same multipliers w1, w2. Thus our deformation
does not change Γ[X, a, b]. This completes the proof of Theorem 1.

Example 1 Surfaces of revolution. Let γ be a closed non-selfintersecting
curve in the half-plane X2 = 0, X1 > 0 in R

3. Rotating γ about the axes
X1 = X2 = 0 we get a surface of revolution. It is always a torus with a fixed
pair of periods.

Such surfaces are essentially simpler from the soliton point of view. Po-
tentials U(z, z̄) corresponding to such surfaces depend only on one real vari-
able x = Re z. Instead of the fixed energy spectral transform for the 2-
dimensional Dirac operator we have the spectral transform for the 2×2 first-
order matrix differential operator in one variable. Periodic direct spectral
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transform for such operators (for both finite-gap and infinite-gap potentials)
was developed by one of the authors (M.S.) in [16].

The MNV equations for surfaces of revolution are reduced to the well-
studied Modified Korteweg-de Vries equations (MKdV). In contrast with MNV
all higher MKdV conservation laws are local in terms of the potential. Equa-
tion (33) in this situation was integrated by V. K. Melnikov in [14] in the
class of potentials sufficiently fast decaying at infinity. Our theorem for the
surfaces of revolution does not follow formally from [14] because the periodic
MKdV theory and the decaying at infinity one use different technical tools.
Nevertheless it is possible to simplify essentially our proof in this specific
case.

5 Appendix. Modified Novikov-Veselov equa-

tions with periodic boundary conditions.

In this Appendix we discuss the zero-energy spectral transform for the double-
periodic Dirac operator (and the Generalized Weierstrass transform respec-
tively) from the soliton point of view. This transform is naturally connected
with a completely integrable hierarchy of integro-differential equations with
2 spatial variables known as Modified Novikov-Veselov hierarchy (MNV).

Formally, the results of this Section are not used in our proof of Theo-
rem 1, but we hope they allow the reader to gain a better understanding of
the problem.

There is a rather big amount of papers dedicated to the periodic prob-
lem for soliton equations (see for example the textbook [21]). Nevertheless,
the direct spectral transform for two-dimensional Dirac operator was never
studied in such context in the literature known to us. Important properties
of Bloch varieties for multidimensional Dirac operators were proved in [12],
but they are not sufficient for the purpos of integrating the periodic MNV
equations.

From the point of view of the Bloch theory the two-dimensional double-
periodic Dirac operator is rather similar to the two-dimensional double-
periodic Schrödinger operator. The fixed-energy direct spectral transform
for last one was constructed by soliton methods by I. M. Krichever [10]. This
problem was studied more detail by J. Feldman, H. Knörrer and E. Trubowitz
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(see [4]). In Section 5.1 we describe the structure of the Dirac Bloch variety
by methods analogous to [10]. It is important to remark, that in spite of the
similarity between these two problems we have to overcome some additional
technical difficulties on this way. The asymptotic expansion of the Bloch
variety gives us “quasi-local” MNV conservation laws.

The zero-energy scattering problem for the two-dimensional Dirac oper-
ator possesses an infinite-dimensional algebra of symmetries, generated by
the MNV equations. They were constructed by L. V. Bogdanov in [2]. In [2]
a generalization of the Miura transform was defined, and it was shown, that
this transform maps the MNV equations to the Novikov-Veselov hierarchy
(see [19]), associated with the fixed-energy two-dimensional Schrödinger op-
erator. MNV equations in the space of functions, decaying at infinity were
integrated by the so-called method of ∂̄-problem in [2]. Periodic MNV theory
is discussed in Section 5.3.

In contrast with the one-dimensional soliton systems, the two-dimensional
ones essentially depend on the boundary conditions. To define the periodic
MNV hierarchy uniquely we have to fix some constants of integration. One
of the simplest way to do it is to define the MNV hierarchy in terms of the
so-called Cauchy-Baker-Akhiezer (CBA) kernel. This kernel was introduced
for the Kadomtsev-Petviashvily hierarchy by A. Yu.Orlov and one of the
authors (P.G.) in [6] (see also [7]). MNV hierarchy in terms of the CBA
kernel is discussed in Section 5.2.

In this Section we always assume that U(z, z̄) is real, smooth and double-
periodic (8).

5.1 Asymptotic structure of the Bloch variety.

For large Im p1, Im p2 the structure of the Bloch variety can be studied by
methods of perturbation theory. Following [10] we start from the Dirac op-
erator with zero potential U(z, z̄) ≡ 0. The corresponding Bloch variety is

a union of two Riemann spheres Γ(0) = Γ
(0)
1 ∪ Γ

(0)
2 , Γ

(0)
1 = Γ

(0)
2 = CP

1 with a
coordinate λ and

~ψ(λ, z, z̄) =

(

1
0

)

eλz̄, λ ∈ Γ
(0)
1 , ~ψ(λ, z, z̄) =

(

0
1

)

eλz , λ ∈ Γ
(0)
2 . (41)
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A pair λ1 ∈ Γ
(0)
1 , λ2 ∈ Γ

(0)
2 is called resonant if

eλ1−λ2 = 1, eλ1τ̄−λ2τ = 1, (42)

and non-resonant otherwise. All resonant pairs are given by the following
formulas:

λ
(m,n)
1 =

πmRe τ − πn

Im τ
+ iπm, λ

(m,n)
2 = λ̄

(m,n)
1 , m, n ∈ Z. (43)

Let us call a point λ ∈ Γ
(0)
1 non-resonant if the pair λ ∈ Γ

(0)
1 and λ̄ ∈ Γ

(0)
2 is

non-resonant. The antiholomorphic involution σθ maps Γ
(0)
2 to Γ

(0)
1 thus it is

sufficient to develop a perturbation theory only on Γ
(0)
1 .

Let ε, R be some positive constants. Denote by Γ
(0)
ε,R the domain, obtained

from CP
1 by removing ε neighbourhoods of all resonant points λ

(m,n)
1 and the

disk |λ| ≤ R.

Lemma 2 For any ε > 0 there exists a constant R(ε) such that in the do-

main Γ
(0)
ε,R(ε) there exists an unique solution of the Dirac equation (4) with

normalization (12) such that

~ψ(λ, z + 1, z̄ + 1) = eλ+h(λ) ~ψ(λ, z, z̄),
~ψ(λ, z + τ, z̄ + τ̄ ) = eλτ̄+h(λ)τ ~ψ(λ, z, z̄),

(44)

where h(λ) is uniquely defined under the condition that h(λ) → 0 as λ→ ∞.

The functions ~ψ(λ, z, z̄), and h(λ) are holomorphic in λ in the domain Γ
(0)
ε,R(ε).

A proof of this statement is to appear in a forthcomming paper by I. A. Taimanov
and one of the authors (M.S.). It is rather long and rather technical. We do
not want to present it in our text.

Statement 2 The functions ~ψ(λ, z, z̄), h(λ) defined in Lemma 2 posses the
following asymptotic expansions as λ→ ∞

~ψ(λ, z, z̄) = eλ(z̄−z̄1)+h(λ)(z−z1)

(

1 + φ1(z,z̄)
λ

+ φ2(z,z̄)
λ2 + φ3(z,z̄)

λ3 + φ4(z,z̄)
λ4 + . . .

χ1(z,z̄)
λ

+ χ2(z,z̄)
λ2 + χ3(z,z̄)

λ3 + χ4(z,z̄)
λ4 + . . .

)

(45)

h(λ) =
h1

λ
+
h3

λ3
+
h5

λ5
+ . . . (46)

(the Bloch variety Γ has a symmetry σ : (w1, w2) → (w−1
1 , w−1

2 ), σ(λ) = −λ,
thus all even coefficients in (46) are identically zero.)
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Unfortunately, at this moment we do not have any complete proof of this
Statement. It is rather clear how to do it, but this proof needs a rather big
piece of asymptotic analysis, and we are not in a position to do it presently.
But we know, that it is fulfilled at least in two important specific situations:

1. U(z, z̄) is an algebraic-geometrical (or, equivalently, finite-gap) poten-
tial. It means, that the normalization of the zero-energy Bloch variety
is algebraic (has finite genus).

2. U(z, z̄) depend only on one real variable x = Re z. This fact was proved
by one of the authors (M.S.) in [16]. Such potentials corresponds to
surfaces of revolution.

We would like to remark, that in [4] a class of Riemann surfaces was intro-
duced, which are in some sense similar to compact Riemann surfaces, and
the zero-energy level of a two-dimensional Schrödinger operator belongs to
this class. Therefore it is natural to expect that the zero-energy level of the
two-dimensional Dirac operator also belongs to this class.

To define the Modified Novikov-Veselov equations (MNV) and their con-
servation laws it is sufficient to have a formal solution of the Dirac equation
in the form (45), (46). Let us show that such solution exists and is unique if
we assume that all φk(z, z̄), χk(z, z̄) are bounded in the whole z-plane.

Inserting (45) and

h(λ) =
h1

λ
+
h2

λ2
+
h3

λ3
+ . . . (47)

in (4) we get the following system of equations

χ1(z, z̄) = −U(z, z̄),
χk(z, z̄) = −∂z̄χk−1(z, z̄) − U(z, z̄)φk−1(z, z̄), k > 1,
∂zφk(z, z̄) = U(z, z̄)χk(z, z̄) − hk −

∑k−1
j=1 hjφk−j(z, z̄).

(48)

We solve this system by induction. First we find χ1(z, z̄), then φ1(z, z̄), then
χ2(z, z̄), then φ2(z, z̄) and so on. To find χk(z, z̄) at each step we differentiate
some double-periodic functions, obtained at previous steps. Thus they are
defined uniquely and are automatically double-periodic. To find φk(z, z̄)
we have to invert the operator ∂z in the space of functions, bounded in
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the whole z-plane (any bounded solution φk(z, z̄) is automatically double-
periodic). This is possible if and only if the mean value of the right-hand
side is equal to zero:

<< U(z, z̄)χk(z, z̄) − hk −
k−1
∑

j=1

hjφk−j(z, z̄) >>= 0. (49)

where:

<< F (z, z̄) >>=
∫ 1

0

∫ 1

0
dt1dt2F (t1 + τt2, t1 + τ̄ t2). (50)

Thus at each step we find hk from (49) and then calculate φk(z, z̄). The
function φk(z, z̄) is determined by the system (48) uniquely up to adding
an arbitrary constant. This constant is fixed by the normalization condition
(12).

Let us check that the function h(λ) does not depend on the normalization
point z1. If we change the point z1, then we change the integration constants.
But these constants can be arbitrary shifted by multiplying the whole solution
to a formal series in λ
[

1 + φ1(z,z̄)
λ

+ φ2(z,z̄)
λ2 + . . .

χ1(z,z̄)
λ

+ χ2(z,z̄)
λ2 + . . .

]

→
[

1+
α1

λ
+
α2

λ2
+. . .

]

[

1 + φ1(z,z̄)
λ

+ φ2(z,z̄)
λ2 + . . .

χ1(z,z̄)
λ

+ χ2(z,z̄)
λ2 + . . .

]

.

(51)
This multiplication does not affect h(λ).

We have proved, that the constants h1, h3, h5, . . . are completely deter-
mined by the potential U(z, z̄) and all h2k = 0. Thus we have constructed
an infinite sequence of functionals h2k+1[U ]. The formulas for the first two
of them are:

h1 = − << U2(z, z̄) >> (52)

h3 = − << U(z, z̄)Uz̄z̄(z, z̄) − (U2(z, z̄) + h1)V1z̄(z, z̄) >>, (53)

where
V1(z, z̄) = ∂−1

z (U2(z, z̄) + h1). (54)

Let us point out that adding an arbitrary constant to V1(z, z̄) does not affect
h3.

We have defined an infinite collection of functionals h2k+1[U ], k = 0, 1, 2, . . ..
The following Statement explains why these functionals are so important.

19



Statement 3 The quantities h2k+1[U ] are conservation laws for the whole
hierarchy of the Modified Novikov-Veselov equations (MNV).

Assuming that Statement 2 is fulfilled we the prove this Statement at the
end of the Section.

It is well-known in the soliton theory that integrable systems with one
spatial variable usually have infinitely many local conservation laws. For
multidimensional soliton systems we normally have the opposite situation:
almost all conservation laws are nonlocal. Let us briefly discuss the case of
the MNV hierarchy.

A functional Q[U ] is called local if it possesses the following representa-
tion:

Q[U ] =<< q(U,Uz, Uz̄, Uzz, Uzz̄, Uz̄z̄, . . .) >> (55)

where the density q(. . .) depend only on U(z, z̄) and finite number of its
derivatives. Of course h1[U ] is local. The next conservation law h3[U ] is
nonlocal because the corresponding density depends on an auxiliary func-
tion V1z̄(z, z̄), and to calculate V1z̄(z, z̄) we have to know U(z, z̄) on the
whole z-plane. It it rather evident that higher functionals h2k+1[U ] are also
nonlocal. This nonlocality creates no serious problems if the potential is
double-periodic, but it is very difficult to extend existing definitions to wider
classes of boundary conditions.

In [10] perturbation theory was developed also in neighbourhoods of res-
onant pairs. It can be shown that for sufficiently large λ the surface Γ is
obtained from the Γ(0) by attaching small handles to the resonant pairs. We
do not use this fact, thus we do not want to discuss it now. However we use
the following property of Γ:

Corollary 1 The Bloch variety Γ has two infinite points, corresponding to
the points λ = ∞ in Γ

(0)
1 and Γ

(0)
2 . We denote them by ∞+ and ∞− respec-

tively.

This statement follows immediately from Lemma 2.
Further we shall use the following notation: λ→ ∞+, where λ is a point

of Γ, always means that λ tends to ∞+ in the domain Γ
(0)
ε,R(ε); the notation

λ→ ∞− always means that λ̄ ∈ Γ
(0)
ε,R(ε).
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5.2 Cauchy-Baker-Akhiezer kernel.

To study symmetries of the soliton equation it is convenient to use the
Cauchy-Baker-Akhiezer kernel (CBA) (see [6]). In this Section we define the
CBA kernel on the zero-energy Bloch variety of the two-dimensional Dirac
operator.

To start with, suppose (λ, µ) is a pair of points in Γ such that

1. ~ψ(ν, z, z̄) is non-singular at the points ν = λ and ν = σµ. (Let us

recall, that outside ν = ∞ the poles of ~ψ(ν, z, z̄) arose due to the
normalization (12) and do not depend on z and z̄.)

2. At least one of the following conditions is fulfilled:

Im p1(λ) − Im p1(µ) 6= 0 or Im p2(λ) − Im p2(µ) 6= 0. (56)

Then we may define ω̃(λ, µ, z, z̄) by:

ω̃(λ, µ, z, z̄) =
∫ z

∞
dω̃(λ, µ, z′, z̄′), (57)

where

dω̃(λ, µ, z′, z̄′) = ψ2(λ, z
′, z̄′)ψ2(σµ, z

′, z̄′)dz′ − ψ1(λ, z
′, z̄′)ψ1(σµ, z

′, z̄′)dz̄′

(58)
The integral in (57) is taken along some path γ in the z-plane such that

1. γ connects the point z with ∞.

2. The form dω̃(λ, µ, z′, z̄′) decays exponentially as z′ → ∞ along γ.

Condition (56) guarantees the existence of such path.
From the Dirac equation (4) if follows that the form dω̃(λ, µ, z′, z̄′) is

closed that the integral (57) is well-defined.
The next step is to show, that for a fixed µ our function ω̃(λ, µ, z, z̄) is

meromorphic in λ on Γ outside the points ∞+ and ∞−.
Suppose, that a pair (λ, µ) satisfies the following condition, which is much

weaker than (56).

2′. At least one of the following combinations

1

2π
(p1(λ) − p1(µ)) or

1

2π|τ |
(p2(λ) − p2(µ)) is non-integer, (59)
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or, equivalently, at least one of the following inequalities is fulfilled

w1(λ)w−1
1 (µ) 6= 1, or w2(λ)w−1

2 (µ) 6= 1. (60)

Assume that w1(λ)w−1
1 (µ) 6= 1. Then we have either

ω̃(λ, µ, z, z̄) =
∫ 0

−∞
ω̃x(λ, µ, z + t, z̄ + t)dt (61)

or
ω̃(λ, µ, z, z̄) = −

∫ ∞

0
ω̃x(λ, µ, z + t, z̄ + t)dt, (62)

where

ω̃x(λ, µ, z
′, z̄′) = ψ2(λ, z

′, z̄′)ψ2(σµ, z
′, z̄′) − ψ1(λ, z

′, z̄′)ψ1(σµ, z
′, z̄′), (63)

and t ∈ R.
If
∣

∣

∣w1(λ)w−1
1 (µ)

∣

∣

∣ ≥ 1 from (61) we get:

ω̃(λ, µ, z, z̄) =

=

(

0
∫

−1
+

−1
∫

−2
+

−2
∫

−3
+ . . .

)

ω̃x(λ, µ, z + t, z̄ + t)dt =

=
(

w1(µ)
w1(λ)

+
w2

1
(µ)

w2
1
(λ)

+
w3

1
(µ)

w3
1
(λ)

+ . . .
) 1
∫

0
ω̃x(λ, µ, z + t, z̄ + t)dt =

= w1(µ)
w1(λ)−w1(µ)

1
∫

0
ω̃x(λ, µ, z + t, z̄ + t)dt

(64)

Similarly if
∣

∣

∣w1(λ)w−1
1 (µ)

∣

∣

∣ ≤ 1 from (62) we get:

ω̃(λ, µ, z, z̄) = w1(µ)
w1(λ)−w1(µ)

1
∫

0
ω̃x(λ, µ, z + t, z̄ + t)dt (65)

The formulas (64) and (65) define meromorphic continuations of the function
ω̃(λ, µ, z, z̄) to the whole surface Γ. To conclude the proof, it remains to note
that formulas (64) and (65) coincide.

If w2(λ)w−1
2 (µ) 6= 1 then the integration path can be chosen along the

line z′ = z + τt, and we obtain a new representation for the same function
ω̃(λ, µ, z, z̄):

ω̃(λ, µ, z, z̄) = w2(µ)
w2(λ)−w2(µ)

1
∫

0
ω̃2(λ, µ, z + τt, z̄ + τ̄ t)dt, (66)
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where

ω̃2(λ, µ, z
′, z̄′) = τψ2(λ, z

′, z̄′)ψ2(σµ, z
′, z̄′) − τ̄ψ1(λ, z

′, z̄′)ψ1(σµ, z
′, z̄′). (67)

Now we are in position to define the Cauchy-Baker-Akhiezer kernel
ω(λ, µ, z, z̄):

ω(λ, µ, z, z̄) = −
1

2π

dp1(µ)

< ω̃x(µ, µ, z, z̄) >x

ω̃(λ, µ, z, z̄) (68)

where

< ω̃x(µ, µ, z, z̄) >x=
∫ 1

0
ω̃x(λ, µ, z + t, z̄ + t)dt. (69)

It is a simple exercise to check that the function < ω̃x(µ, µ, z, z̄) >x does not
depend on z and is even in µ, i.e.

< ω̃x(µ, µ, z, z̄) >x=< ω̃x(σµ, σµ, z, z̄) >x . (70)

< ω̃x(µ, µ, z, z̄) >x= ∓1 +
c
(±)
2

µ2
+
c
(±)
4

µ4
+ . . . , µ→ ∞± (71)

Lemma 3 The Cauchy-Baker-Akhiezer kernel ω(λ, µ, z, z̄) defined above has
the following properties:

1. For any fixed z, ω(λ, µ, z, z̄) is a meromorphic function of λ and a
meromorphic 1-form in µ (both on the finite part of Γ).

2. For generic µ, ω(λ, µ, z, z̄) has poles at the poles of ~ψ(λ, z, z̄) and at the
point λ = µ. It is holomorphic outside these points at the finite part of
Γ.

3. For a generic λ and µ → λ

ω(λ, µ, z, z̄) =
1

2πi

dµ

µ− λ
+ regular terms, (72)

or, equivalently,
∮

µ∈S
ω(λ, µ, z, z̄) = 1, (73)

where S is a small contour, surrounding the point λ.
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4. Let µ→ ∞+ and let λ be a fixed point in Γ. Then we have the following
formal expansion:

ω(λ, µ, z, z̄) =
dµ

2πi





ψ1(λ, z, z̄)

µ
+

∞
∑

k=2

R
(+)
k [∂z̄ ]ψ1(λ, z, z̄)

µk



 e−µz̄−h(µ)z ,

(74)
where

R
(+)
k [∂z̄] = ∂k−1

z̄ +
k−2
∑

l=0

v
(+)
kl (z, z̄)∂lz̄ (75)

are differential operators in z̄ of order k−1. The coefficients v
(+)
kl (z, z̄)

do not depend on λ and µ, are differential polynomials of the asymptotic
expansion coefficients φj(z, z̄), χj(z, z̄), j < k. Each function v

(+)
kl (z, z̄)

depends also on a finite number of constants h2j+1, c
(±)
2j .

Similarly for µ→ ∞−, we have:

ω(λ, µ, z, z̄) =
dµ

2πi





ψ2(λ, z, z̄)

µ
+

∞
∑

k=2

R
(−)
k [∂z]ψ2(λ, z, z̄)

µk



 e−µz−h(µ)z̄ .

(76)
where

R
(−)
k [∂z ] = ∂k−1

z +
k−2
∑

l=0

v
(−)
kl (z, z̄)∂lz. (77)

5.
ω(λ, µ, z + 1, z̄ + 1) = w1(λ)w−1

1 (µ)ω(λ, µ, z, z̄),
ω(λ, µ, z + τ, z̄ + τ̄) = w2(λ)w−1

2 (µ)ω(λ, µ, z, z̄).
(78)

Statement 4 If Statement 2 is fulfilled, then the CBA kernel has the fol-
lowing additional properties:

1. The formal expansions (74), (76) are asymptotic.

2. Let f (+)(λ, z, z̄) be the following formal series in λ

f (+)(λ, z, z̄) =







∞
∑

k=−N

f
(+)
k (z, z̄)

λk







eλz̄. (79)
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Then

2πi res
∣

∣

∣

∣

µ=∞+

ω(λ, µ, z, z̄)f (+)(µ, z, z̄) =







0
∑

k=−N

f
(+)
k (z, z̄)

λk
+O

(

1

λ

)







eλz̄,

(80)
as λ→ ∞+ and

2πi res

∣

∣

∣

∣

µ=∞+

ω(λ, µ, z, z̄)f (+)(µ, z, z̄) = O
(

1

λ

)

eλz, (81)

as λ→ ∞−.

Similarly if f (−)(λ, z, z̄) is the following formal series in λ

f (−)(λ, z, z̄) =







∞
∑

k=−N

f
(−)
k (z, z̄)

λk







eλz, (82)

then

2πi res

∣

∣

∣

∣

µ=∞−

ω(λ, µ, z, z̄)f (−)(µ, z, z̄) =







0
∑

k=−N

f
(−)
k (z, z̄)

λk
+O

(

1

λ

)







eλz,

(83)
as λ→ ∞− and

2πi res
∣

∣

∣

∣

µ=∞−

ω(λ, µ, z, z̄)f (−)(µ, z, z̄) = O
(

1

λ

)

eλz̄, (84)

as λ→ ∞+.

Remark 4 The formulas (80), (81), (83), (84) require some comments. On
the left-hand side we have formal series in µ, thus the analytic definition of
the residue as an integral does not work. Fortunately the terms, containing
exponents in µ annihilate each other and we can define the residue as the
coefficient of 1/µ:

res

∣

∣

∣

∣

µ=∞

∞
∑

k=−N

ak
µk
dµ = a1 (85)

Proof of Lemma 3.
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1. We have constructed ω̃(λ, µ, z, z̄) as a meromorphic function. The func-
tion < ω̃x(µ, µ, z, z̄) >x is meromorphic in µ on the whole Γ and dp1(µ)
is a meromorphic 1-form on Γ. Thus (68) gives us a meromorphic
function with appropriate tensor properties.

2. From Lemma 2 it follows that for generic µ

(a) ~ψ(ν, z, z̄) is nonsingular at the points ν = µ, ν = σµ,

(b) < ωx(µ, µ, z, z̄) >x 6= 0

(c) w1(λ)w−1
1 (µ) = w2(λ)w−1

2 (µ) = 1 iff λ = µ.

If µ fulfill these conditions, if λ 6= µ and if ~ψ(λ, z, z̄) is nonsingular,
then formulas (65), (66), (68), define a nonsingular function of z, z̄.

3. Let λ→ µ. To calculate the asymptotics of the CBA kernel we expand
the function w1(λ) in (64) in a series in λ−µ using (13), (14). We see,
that we have a first-order pole and the normalization in (68) is chosen
so that the residue is exactly 1.

4. To calculate the asymptotics of ω̃(λ, µ, z, z̄) as µ → ∞ we substitute
the asymptotic expansion (45) to (57) and use the following asymptotic
formula:

∫ z

eλz̄f(λ, z′, z̄′)dz′ + eλz̄g(λ, z′, z̄′)dz̄′ = eλz̄
∞
∑

k=1

(−1)k−1∂
k−1
z̄ g(λ, z, z̄)

λk
,

(86)
where the functions f(λ, z′, z̄′), g(λ, z′, z̄′) are some asymptotic series
in λ

f(λ, z′, z̄′) =
∞
∑

k=0

fk(z, z̄)

λk
, g(λ, z′, z̄′) =

∞
∑

k=0

gk(z, z̄)

λk
(87)

such that
∂z̄
(

eλz̄f(λ, z′, z̄′)
)

= ∂z
(

eλz̄g(λ, z′, z̄′)
)

, (88)

and all expansion coefficients fk(z, z̄), gk(z, z̄) are smooth functions, all
derivatives of these functions are bounded in the z-plane.

The proof of the formula (86) is rather standard and we do not repro-
duce it here.
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5. The last statement of the Lemma follows directly from the transforma-
tion rules for the Bloch functions.

Proof of Statement 4. Assume for definiteness, that λ → ∞+. If µ → ∞+

then:

ω(λ, µ, z, z̄) =





1

2πi(µ− λ)
+
∑

i,j>0

ω
(++)
ij (z, z̄)

λiµj



 e(λ−µ)z̄dµ. (89)

From (89) it follows, that

2πi res
∣

∣

∣

∣

µ=∞+

ω(λ, µ, z, z̄)f (+)(µ, z, z̄) =

= res
∣

∣

∣

∣

µ=∞+

dµ

µ− λ
e(λ−µ)z̄f (+)(µ, z, z̄) +O

(

1

λ

)

eλz̄. (90)

Applying the well-known formula:

res
∣

∣

∣

∣

µ=∞

dµ

µ− λ
µn =

{

λn n ≥ 0
0 n < 0

(91)

we get the right-hand side of (80).
If µ→ ∞−, then using (74) we get:

ω(λ, µ, z, z̄) =





∑

i,j>0

ω
(+−)
ij (z, z̄)

λiµj



 eλz̄−µzdµ. (92)

Formula (84) follows automatically from from (92).
Formulas (83), (81) are proved exactly in the same way.

Remark 5 A formula, representing the Cauchy kernel on a Riemann surface
as a semi-infinite sum of quadratic combinations of eigenfunctions first arose
in the article [11] by I. M. Krichever and S. P. Novikov. In [11] the spatial
variable x was discrete. In [6] the spatial variable was continuous, and the
CBA kernel was defined as an integral similar to (57).

Remark 6 A form, similar to ω̃(λ, µ, z, z̄), but with integration path, start-
ing from a finite point Z in the z-plane, arises in the theory of finite Darboux
transformations (see [13], formula (6.1.18)). In fact, the same object arose
in the Generalized Weierstrass map. We do not discuss this analogy in our
text, but it seems possible that this analogy has some deep roots.
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5.3 Modified Novikov-Veselov equations.

Lemma 4 Let µ be a generic point in Γ. Define a deformation δ(µ) of the
function ~ψ(λ, z, z̄) associated with this point by:

δ(µ)ψ1(λ, z, z̄) = ω̃(λ, µ, z, z̄)ψ1(µ, z, z̄) + α(λ, µ)ψ1(λ, z, z̄)
δ(µ)ψ2(λ, z, z̄) = ω̃(λ, µ, z, z̄)ψ2(µ, z, z̄) + α(λ, µ)ψ2(λ, z, z̄),

(93)

where α(λ, µ) is a meromorphic function in λ, uniquely fixed by the following
requirement

δ(µ)ψ1(λ, z, z̄) + δ(µ)ψ2(λ, z, z̄)
∣

∣

∣

z=z1
= 0. (94)

Then (93) is a deformation of the Bloch function, corresponding to the fol-
lowing deformation of the Dirac operator

δ(µ)L =

[

0 −δ
(µ)
1 U(z, z̄)

δ
(µ)
2 U(z, z̄) 0

]

, (95)

where
δ
(µ)
1 U(z, z̄) = ψ1(µ, z, z̄)ψ2(σµ, z, z̄)

δ
(µ)
2 U(z, z̄) = ψ2(µ, z, z̄)ψ1(σµ, z, z̄).

(96)

For generic µ these deformations result in non-self-adjoint Dirac opera-
tors (δ

(µ)
1 U(z, z̄) 6= δ

(µ)
2 U(z, z̄)) with complex-valued potentials. But the the

Bloch function and the Bloch variety are well defined for such Dirac opera-
tors.

Proof of Lemma 4. A simple direct calculation shows, that
(

L+ ǫδ(µ)L
) (

~ψ(λ, z, z̄) + ǫδ(µ) ~ψ(λ, z, z̄)
)

= O(ǫ2), (97)

Thus (93) defines deformations of the eigenfunctions, corresponding to (95).
From (78) it follows that the new eigenfunctions satisfy (11) with the same
multipliers w1(λ), w2(λ) as the old ones. Thus the new eigenfunctions are
defined on the same curve Γ and have the same periodicity properties. The
last property plays the key role, when we prove below that the functionals
h2k+1[U ] are invariant under some deformations.

The deformations of the Dirac operator, generated by all δ(µ) form a linear
space. Deformations preserving the class of self-adjoint Dirac operators with
real potentials are the most interesting ones. Let us check that the subspace
of such deformations is sufficiently large.
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Lemma 5 Denote by ∆(µ) the following linear combination of deformations
δ(µ):

∆(µ) =
δ(µ) + δ(σµ)

< ω̃x(µ, µ, z, z̄) >x

+
δ(θµ) + δ(σθµ)

< ω̃x(θµ, θµ, z, z̄) >x

(98)

(recall that < ω̃x(µ, µ, z, z̄) >x is an even function in µ (see (70)) and does
not depend on z, z̄.)

Then ∆(µ) acts on the space of self-adjoint Dirac operators with real po-
tentials, i.e.

∆
(µ)
1 U(z, z̄) = ∆

(µ)
2 U(z, z̄) = ∆

(µ)
1 U(z, z̄) = ∆

(µ)
2 U(z, z̄) =

= ψ1(µ,z,z̄)ψ2(σµ,z,z̄)+ψ1(σµ,z,z̄)ψ2(µ,z,z̄)
<ω̃x(µ,µ,z,z̄)>x

+ ψ1(θµ,z,z̄)ψ2(σθµ,z,z̄)+ψ1(σθµ,z,z̄)ψ2(θµ,z,z̄)
<ω̃x(θµ,θµ,z,z̄)>x

(99)
and the Bloch variety Γ[U ] defined in Section 3 is invariant under these
deformations.

Proof of Lemma 5. Formula (99) follows directly from (96) and (98). The

Bloch function ~ψ(λ, z, z̄) for real U(z, z̄) has symmetry property (17), thus
the right-hand side of (99) is real. As we pointed out in the previous Lemma,
all deformations generated by δ(µ) do not change the Bloch variety Γ[U ] and
the multipliers w1, w2. This completes the proof. If Statement 2 is fulfilled,
then these flows do not change h2k+1[U ].

Equations (99) are essentially nonlocal and rather complicated. Namely
the right-hand side is expressed in terms of the Bloch function, and it is
difficult to calculate Bloch solutions either analytically or numerically. For-
tunately the space of deformations generated by all ∆(µ) contains simpler
equations such that the right-hand side can be expressed via U(z, z̄) in terms
of quadratures.

Let µ → ∞. If Statement 2 is fulfilled we may expand ∆(µ) to the
following asymptotic series

∆(µ)U(z, z̄) = −2
dµ

idp(µ)

∞
∑

k=0

K2k+1[U ]

µ2k+2
+
K2k+1[U ]

µ̄2k+2
. (100)

(We write the term dµ/dp(µ) to gain some standard normalization of the
MNV hierarchy. If we omit this multiplier, our expansion coefficients will be
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linear combinations of Novikov-Veselov generators with constant coefficients,
which in most situations is not essential).

Any K2k+1[U ] is a quadratic polynomial of φl(z, z̄), χl(z, z̄), l = 1, . . . , 2k,
with coefficients depending on the h2l−1 and c2l, l = 1, . . . , k, where the c2l
are coefficients of the asymptotic expansion (71).

For any odd integer 2k + 1, k ≥ 0 we have the following pair of flows on
the space of real double-periodic functions:

∂U(z, z̄, t2k+1)

∂t2k+1

= 2 ReK2k+1[U ]. (101)

∂U(z, z̄, t̃2k+1)

∂t̃2k+1

= 2 ImK2k+1[U ]. (102)

Definition 1 The equations (101), (102) are called the Modified Novikov-
Veselov equations (MNV).

Remark 7 To define the MNV flows associated to (101), (102) it is suf-
ficient to have a formal expansion for the Bloch function and the function
h(λ). Thus these flows are well-defined for any smooth potential. But without
Statement 2 we can not prove that they conserve the functional h2k+1[U ].

Using this definition of the MNV hierarchy we may immediately prove
Statement 3. All functionals h2k+1[U ] defined in Section 3 are integrals of
motion for all flows ∆(µ), thus they are conservation laws for their expansion
coefficients.

The representation (101) may look rather unusual. To check that our
definition of the MNV equations coincides with the standard one, let us
calculate the deformation of the Bloch function, corresponding to the flows
(101). To gain a standard answer we shall use a normalization of the Bloch
function different from th eone used earlier. Instead of (94) we assume that
the function α(λ, µ) in (93) is identically zero.

Statement 5 Let the Statement 2 be valid. Then the deformation of the
Bloch function corresponding to the flows (101) has the following represen-
tations:

∂ ~ψ(λ, z, z̄, t2k+1)

∂t2k+1
=
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= 2πi

{

res

∣

∣

∣

∣

µ=∞+

+res

∣

∣

∣

∣

µ=∞−

}

ω(λ, µ, z, z̄, t2k+1, )µ
2k+1 ~ψ(µ, z, z̄, t2k+1), (103)

= λ2k+1 ~ψ(λ, z, z̄, t2k+1) +







O
(

1
λ

)

eλz̄ as λ→ ∞+

O
(

1
λ

)

eλz as λ→ ∞−

(104)

=

{

∂2k+1
z + ∂2k+1

z̄ +
2k
∑

l=0

Wl(z, z̄)∂
l
z +Wl(z, z̄)∂

l
z̄

}

~ψ(λ, z, z̄, t2k+1), (105)

Proof of Statement 5, given the validity of Statement 2. By definition

−
idp(µ)

2
∆(µ) ~ψ(λ, z, z̄) =

= πi
[

ω(λ, µ, z, z̄)~ψ(µ, z, z̄) + [ω(λ,−µ, z, z̄)~ψ(−µ, z, z̄)
]

µ→∞+

+

+πi
[

ω(λ, µ̄, z, z̄)~ψ(µ̄, z, z̄) + [ω(λ,−µ̄, z, z̄)~ψ(−µ̄, z, z̄)
]

µ→∞−

(106)

(in this formula we use σµ = −µ, θµ = −µ̄).
The residues in (103) are exactly the coefficients of the terms dµ/µ2k+2

and dµ̄/µ̄2k+2 respectively. Thus these coefficients gives us the action of
K2k+1[U ] and K2k+1[U ] on the Bloch function.

Formula (104) follows directly from (103) and formulas (80)-(84).
To prove (105) let us substitute the asymptotic expansions (74), (76) in

(103). We get:
∂ψ1(λ, z, z̄, t2k+1)

∂t2k+1

=

=

{

R
(+)
2k+1[∂z̄ ] +

2k
∑

l=0
φ2k+1−l(z, z̄)R

(+)
l [∂z̄ ]

}

ψ1(λ, z, z̄, t2k+1)+

+

{

2k
∑

l=0
χ

(−)
2k+1−l(z, z̄)R

(−)
l [∂z]

}

ψ2(λ, z, z̄, t2k+1) =

(107)

= ∂2k+1
z̄ ψ1(λ, z, z̄, t2k+1) + U(z, z̄)∂2k

z ψ2(λ, z, z̄, t2k+1) + lower order terms =
(108)

=
{

∂2k+1
z̄ + ∂2k+1

z

}

ψ1(λ, z, z̄, t2k+1) + lower order terms, (109)

(the χ
(−)
l (z, z̄) denote the expansion coefficients of the function ψ1(λ, z, z̄) at

the point λ = ∞−). A similar calculation shows the following relation:

∂ψ2(λ, z, z̄, t2k+1)

∂t2k+1

=
{

∂2k+1
z̄ + ∂2k+1

z

}

ψ2(λ, z, z̄, t2k+1) + lower order terms.

(110)
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Statement 5 is proved.
From (105) it follows that the MNV equations are the compatibility con-

ditions for a pair of differential operators on the space of zero eigenfunctions
of L. It is well-known in soliton theory that such compatibility conditions
are equivalent to the existence of standard L − A − B representations (see
[2]).

Remark 8 In this article we constructed a soliton hierarchy in terms of the
Cauchy-Baker-Akhiezer kernel.

Using the CBA kernel we construct, in fact, a much wider hierarchy, in-
cluding essentially nonlocal equations. All these equations preserve the spec-
tral curve. In Section 4 we show that in fact the deformations corresponding
to conformal transformations of the Euclidean space, lie in this wider hier-
archy.

In terms of U(z, z̄) this hierarchy looks rather unnatural. But we may
treat it as a system of differential equations on a bigger collection of functions
simultaneously; namely we may consider the potential U(z, z̄) and the wave
function in a finite number of fixed points on the spectral curve as unknown
functions, connected by the Dirac equations. Similar systems associated with
one-dimensional soliton equations were discussed in the literature (see [14]
and references therein) from both a mathematical and a physical point of view.
In [15] it was shown, that starting from the KP equation we get a hierarchy
naturally containing many other well-known soliton systems.
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