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Abstract

We consider the generalized second law of black hole thermodynamics in the light of
quantum information theory, in particular information erasure and Landauer’s prin-
ciple (namely, that erasure of information produces at least the equivalent amount
of entropy). A small quantum system outside a black hole in the Hartle-Hawking
state is studied, and the quantum system comes into thermal equilibrium with the
radiation surrounding the black hole. For this scenario, we present a simple proof of
the generalized second law based on quantum relative entropy. We then analyze the
corresponding information erasure process, and confirm our proof of the generalized
second law by applying Landauer’s principle.
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The correspondence between the laws of thermodynamics and black hole mechanics

was noted, as a curiosity without physical implications, in a seminal paper by Bardeen,

Carter and Hawking [1]. At around the same time, Bekenstein [2] was advocating a rather

more radical approach. Noting the area theorem of black holes, which states that the total

area of black hole event horizons can never decrease, he observed that this is analogous

to the ordinary second law of thermodynamics, i.e. the total entropy of a closed system

never decreases. He proposed that, multiplied by appropriate powers of the Planck length,

Boltzmann constant and some dimensionless constant of order unity, the black hole area

should be interpreted as its physical entropy. This proposal was given physical support

by the discovery of Hawking [3] that black holes radiate at a temperature

Tbh =
κ

2π
(1)

where κ is the surface gravity (here, and throughout the paper, we work in Planck units,

in which h̄ = c = G = kB = 1, where kB is Boltzmann’s constant). This, coupled with

the first law of black hole mechanics [1], gives the value of the numerical constant in

Bekenstein’s conjecture of black hole entropy to be 1

4
.

Wheeler provided the initial motivation for Bekenstein’s black hole entropy proposal

[4]. Wheeler suggested a creature, subsequently called Wheeler’s demon, which could

violate the ordinary second law of thermodynamics by dropping entropy into a black

hole, producing a decrease in the entropy outside the black hole. This led Bekenstein to

conjecture that the black hole itself has an entropy (proportional to the area of the event

horizon) and, furthermore, the sum of the entropy outside the black hole and the black

hole entropy must not decrease,

∆Sout + ∆Sbh ≥ 0. (2)

This generalized second law has been widely discussed in the literature, and there are

proofs due to Frolov and Page [5], and, more recently Mukohyama [6]. Both these proofs

make use of quantum field theory in curved space, and apply to quasistationary black

holes. Frolov and Page’s proof is applicable to eternal black hole space-times, whilst

Mukohyama considers black holes arising from gravitational collapse.

In this paper we wish to consider the generalized second law from another point of

view, namely quantum information theory and, in particular, Landauer’s principle of

information erasure [7]. We will consider a quantum system outside a black hole, which

then comes into thermal equilibrium with the Hawking radiation surrounding the black

hole. This scenario is different from those that have been considered previously in proofs

of the generalized second law, giving further weight to its validity.

We firstly discuss Maxwell’s demon [8], which is the analogue in ordinary thermo-

dynamics of Wheeler’s demon. Consider a container of gas which is divided into two

halves, left and right, by a partition. Imagine now that there is a demon sitting on the
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partition, who is able to measure the velocities of individual molecules in the gas. If the

demon let the fast molecules move to the right container while keeping the slower ones

to the left, then this would create a temperature difference and violate the second law

of thermodynamics. Bennett noted [9] that in order to do free work, the demon has to

record its measurement result, and then its memory needs to be erased in order to do the

next measurement. Landauer’s principle states that in order to erase a certain amount

of information at least the same amount of entropy must be generated. Therefore, the

erasure of the memory of the demon generates an entropy greater than or equal to the

amount of recorded memory, which preserves the second law. Bennett’s classical analysis

of Maxwell’s demon was later confirmed quantum mechanically [10, 11, 12]. This process

resembles Wheeler’s demon, who is trying to erase information by dropping an object into

a black hole. This necessarily creates an increase of black hole entropy by at least the same

amount as the dropped entropy, according to the generalized second law. In this paper,

we give a simple proof of the generalized second law for our model, using known results

on quantum relative entropy. This will be confirmed by our analysis of the corresponding

information erasure process using Landauer’s principle. The generalized second law has

recently been considered in the context of quantum information theory (concentrating on

the entanglement of states inside and outside the black hole event horizon) by Hosoya

and collaborators [13].

Let us consider a black hole in thermal equilibrium with a heat bath at the Hawking

temperature Tbh. This is the Hartle-Hawking state [14], and can be rendered stable by

placing the black hole in a cavity whose dimensions are very much larger than the radius

of the black hole event horizon, thereby forming a closed system. We consider a small

quantum system outside the black hole, having Hamiltonian H and initially in a quantum

state described by the density matrix ρi. We then suppose that the small quantum system

comes into thermal equilibrium, so that its final state is the thermal state ρf = Z−1e−βbhH ,

where Z = tr[e−βbhH ] and βbh = 1

Tbh

(we have set kB, the Boltzmann constant, equal to

unity). If the cavity is sufficiently large and the quantum system small, we may suppose

that the black hole temperature is not affected by this process, so that we are concerned

only with quasistationary black holes. Then the change of entropy outside the black hole

is simply the entropy difference between the initial and final states which is

∆Sout = S(ρf ) − S(ρi) = tr[−ρf log ρf + ρi log ρi]. (3)

In other words, the amount of entropy ∆Sout has been dropped into the black hole.

In order to evaluate the change of black hole entropy, we first calculate the change in

energy outside the black hole. Then, by conservation of energy, this will be minus the

change in energy of the black hole. Then, using the usual first law of thermodynamics,

dividing by the black hole temperature (and the Boltzmann constant), the change in black

hole entropy is given by

∆Sbh = −βbhtr[H(ρf − ρi)]. (4)
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Since ρf is a thermal state, H = −β−1

bh log(Zρf ), which gives

∆Sbh = tr[ρf log(Zρf )] − tr[ρi log(Zρf)]

= −tr[(ρi − ρf) log ρf ] + [tr(ρf) − tr(ρi)] logZ

= −tr[(ρi − ρf) log ρf ]. (5)

The final line follows by conservation of probability. Note that this does not assume that

the states evolve unitarily.

Therefore the total change in entropy can be written as follows

∆Sout + ∆Sbh = tr[ρi log ρi − ρi log ρf ]. (6)

At this stage it is important to note that, in common with other proofs of the generalized

second law, we have had to use the first law. Here we have used the ordinary first law

of thermodynamics, although this is directly analogous to the first law of black hole

mechanics for quasistationary black holes, and gives the same result.

We should also emphasise at this stage that the process we are considering here is dif-

ferent from the usual gedanken experiment of Bekenstein [2] in which a system containing

entropy is dropped down the black hole horizon. Here we consider instead a system which

comes into thermal equilibrium with the radiation outside the black hole event horizon.

This system will be pertinent to our subsequent consideration of information erasure and

Landauer’s principle.

The quantity (6) is known as quantum relative entropy which is defined as S(σ||ρ) =

tr[σ log σ − σ log ρ]. Quantum relative entropy S(σ||ρ) has been shown [15] to be always

non-negative and is zero if and only if σ = ρ. Therefore (6) is non-negative and this

proves the generalized second law.

Quantum relative entropy has been shown to have various applications in quantum

information theory (see [16], for example) including entanglement quantification. We now

give a simple example to illustrate this concept. The unit of quantum information is called

a quantum bit or qubit. A qubit is a superposition of |0〉 and |1〉, an orthonormal basis

in a two-dimensional Hilbert space. For example, a spin-1

2
state can be considered as a

qubit where |0〉 and |1〉 are spin up and down states. An entanglement of two qubits in

subsystems A and B can be written as |ψ〉AB = a|00〉AB + b|11〉AB where a2 + b2 = 1

(if we assume a, b are real). Then the von Neumann entropy of the reduced density

matrix of |ψ〉AB, which is −a2 log a2−b2 log b2, yields a good measure of the entanglement.

However it is not easy to determine the amount of entanglement for mixed states with

von Neumann entropy. Relative entropy, S(σ||ρ), has been shown [17] to be useful in

quantifying entanglement for both pure and mixed states. For pure states, relative entropy

would reduce to the von Neumann entropy. Let us consider, as an example, a |ψ〉AB which

in density matrix form is written as

σAB =

(

a2 ab

ab b2

)

. (7)
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In order to give a correct measure of entanglement, ρAB in S(σAB||ρAB) satisfies the

following conditions: (1) it is disentangled (i.e. ρAB =
∑

i piρ
i
A ⊗ρi

B) and (2) S(σAB||ρAB)

is minimal. For pure states, a ρAB satisfying both these conditions can always be found

as σAB with off-diagonal terms set to zero, i.e.

ρAB =

(

a2 0
0 b2

)

. (8)

With σAB and ρAB in (7) and (8), we could calculate tr[σAB log σAB −σAB log ρAB] where

tr[σAB log σAB] is zero since σAB is a pure state. The second term, tr[−σAB log ρAB] yields

−a2 log a2 − b2 log b2 which is same as the von Neumann entropy of |ψ〉AB.

We shall now relate our black hole process and the generalized second law to Lan-

dauer’s principle of information erasure. First, we briefly review some of the key ideas,

and a mechanism for the erasure of information. Landauer’s principle of information

erasure (that the erasure of a certain amount of information produces at least the equiv-

alent amount of entropy) has been used to explain some of the fundamental aspects in

quantum information theory. The entanglement shared by two parties can be manipu-

lated into another state by local operation and classical communication (LOCC). However

it is known that local operation cannot increase the entanglement shared by two sepa-

rated parties. For example, the conversion from a|00〉AB + b|11〉AB, where a, b 6= 1
√

2
, to

1
√

2
(|00〉AB + |11〉AB) (known as entanglement purification) cannot be done with probabil-

ity 1 by LOCC because the entanglement has increased from −a2 log a2−b2 log b2 to log 2.

Vedral [18] has shown that Landauer’s principle yields an upper bound for entanglement

purification, linking no local increase of entanglement to the second law of thermodynam-

ics. Another fundamental idea in quantum information theory is the Holevo bound [19]

which limits the amount of classical information encoded in quantum mixed states that

can be recovered. Plenio showed [20] how this Holevo bound may be illustrated using

Landauer’s principle. In the following, we show how information erasure may be realized

physically, following Lubkin’s method [11], as presented in [18, 20]. We refer the reader

to [20] for details of the method.

Let us consider a quantum state of a system S

|ψ〉S =
∑

i

√

λi|ai〉, (9)

and an apparatus M , initially in some pure state. In order to make a measurement, M

interacts with the state |ψ〉S and entangles itself as

∑

i

√

λi|ai〉S|mi〉M . (10)

The state of the the apparatus M can be obtained by tracing over the system S in (10),

which yields

ρ =
∑

i

λi|mi〉〈mi|, (11)
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Figure 1: The apparatus M is thrown into a reservoir with black hole temperature Tbh

and then reaches thermal equilibrium.

i.e. with probability λi the apparatus is in state |mi〉. After the measurement, the

apparatus will therefore be in one of these pure states, with the associated probability.

The general way to erase the information of apparatus is to put the apparatus into a

thermal reservoir. The apparatus reaches thermal equilibrium with the reservoir and we

then bring in another pure state to perform the next measurement. Then the erasure

entropy has two parts: one is the entropy change of apparatus due to its change of state

from one of the pure states in (11) to a state which is in thermal equilibrium, and the

other is the entropy change of the reservoir due to the apparatus.

In order to make this information erasure process applicable to black holes, we choose

a reservoir which is at the black hole temperature, Tbh. Then, as shown in Figure 1,

the apparatus M in state ρ is thrown into the reservoir with temperature Tbh. After

the apparatus is thrown into the reservoir, it reaches thermal equilibrium and the state

becomes

ω = Z−1e−βbhH (12)

where βbh = 1

Tbh

, with H the Hamiltonian of the apparatus, and the partition function

is Z = tr[e−βbhH ]. We imagine the process divided into two parts, firstly the entropy of

the apparatus is reduced to zero (destroying the information in the apparatus), and then

increased by the erasure process from zero to its final value. This is equivalent to the

process described in [20], where the apparatus is in a pure state before the erasure takes

place. The erasure entropy is given by the sum of the entropy changes of the apparatus

and the reservoir. The entropy change of the apparatus is simply [20] (since we have

already reduced its entropy to zero)

∆Sapp = −tr[ω logω]. (13)

The entropy change of the reservoir can be obtained by a method similar to that used

previously for the black hole, again assuming that the apparatus is much smaller than

the reservoir so that the temperature is not altered. We evaluate the heat change of the

reservoir and then divide by the black hole temperature (and Boltzmann constant), to
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give

∆Sres = −β{tr[ωH ] − tr[ρH ]}

= tr[ω log(ωZ)] − tr[ρ log(ωZ)]

= tr[(ω − ρ) logω], (14)

where we have again used conservation of probability. The entropy of erasure is then

∆Sera = ∆Sapp + ∆Sres (15)

= −tr[ρ logω]. (16)

Therefore if we consider the entropy of the lost information as ∆Sinf = 0− (−tr[ρ log ρ]),

then

∆Sinf + ∆Sera = tr[ρ log ρ− ρ logω]. (17)

With the identification of ρ and ω as ρi and ρf in the black hole case, respectively, (17)

yields the same result as in (6).

Application of Landauer’s principle then tells us that (17) must be positive, confirming

our proof of the generalized second law. However note that ∆Sera is not equal to ∆Sbh,

contrary to intuition. The reason for this lies in the details of the erasure process [20]. As

described above, the apparatus is in a pure state before the erasure process takes place,

so that the change in entropy of the apparatus due to the erasure process (13) involves

only the change between this pure state and the thermal state ω, rather than between the

thermal state and the initial state ρ.

Our two approaches in this paper are therefore complementary. In the first method,

we change the entropy of the system outside the black hole, and there is a corresponding

change in the entropy of the black hole. In the second scenario, we work out how much

information we are losing in terms of destroying the initial state, and then calculate the

amount of entropy required in order to erase this amount of information. Note that in

the black hole situation, the information is effectively destroyed because the final state

of the quantum system is the same thermal state as the surrounding radiation. We also

emphasise that in the first scenario all the entropy lost goes down the black hole event

horizon, and the entropy of the thermal radiation surrounding the black hole does not

change.

In conclusion, in this paper we have considered the generalized second law from the

point of view of quantum information theory, especially information erasure and Lan-

dauer’s principle. We have considered a quantum system outside a black hole, which

comes into thermal equilibrium with the radiation surrounding the event horizon. For

this situation, we have been able to give a simple proof of the generalized second law of

black hole thermodynamics by appealing to known results on quantum relative entropy.

This result is confirmed by an analysis of the corresponding information erasure process
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using Landauer’s principle. This illustrates the power of quantum information theoretic

ideas when applied to black hole processes.

Acknowledgment DS is grateful to Sougato Bose, Lucien Hardy, Vlatko Vedral and
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