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1Département d’Astrophysique Relativiste et de Cosmologie,

UMR 8629 du Centre National de la Recherche Scientifique,

Observatoire de Paris, 92195 Meudon, France

2 Institut des Hautes Etudes Scientifiques,

91440, Bures-sur-Yvette, France

3 Centre for Mathematical Sciences, DAMTP, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, England

4 Racah Institute of Physics, Hebrew University

91904, Jerusalem, Israel.

April 2nd 2001

Pacs Numbers : 98.80.Cq, 98.70.Vc

Abstract

We consider the four dimensional discontinuity generated by two identical pieces of
a five dimensional space pasted along their edge (that is a “brane” in a “Z2-symmetric”
“bulk”). Using a four plus one decomposition of the Riemann tensor we write the equations
for gravity on the brane and recover in a simple manner a number of known “brane
world” scenarios. We study under which conditions these equations reduce, exactly or
approximately, to the four dimensional Einstein equations. We conclude that if the bulk is
imposed to be only an Einstein space near the brane, Einstein’s equations can be recovered
approximately on the brane, but if it is imposed to be strictly anti-de Sitter space then
the Einstein equations cannot hold, even approximately, on a quasi-Minkowskian brane,
unless matter obeys a very contrived equation of state.
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I. Introduction

Since their covariant description by Israel (clarifying earlier treatments by e.g. Lanc-
zos and Darmois) [1], thin shells have been intensively used as a model for matter in
general relativity. However a question is rarely asked when considering a four dimensional
spacetime, to wit whether or not matter on the shell obeys the three dimensional Einstein
equations, as there is no (experimental) reason why it should.

The situation changed recently with the increasing interest in gravity theories within
spacetimes with large extra dimensions and the advent of the idea that our universe may
be a four dimensional singular hypersurface, or “brane”, in a five dimensional spacetime,
or “bulk” [2]. Indeed, in this new context, it becomes crucial to recover Einstein gravity for
realistic matter on the brane, at least to some approximation compatible with the present
experiments.

The Randall Sundrum scenario [3], where our universe is a four dimensional quasi-
minkowskian edge of a double-sided perturbed anti-de Sitter spacetime, was the first ex-
plicit model where the linearized Einstein equations were claimed to hold on the brane.
This claim was substantiated by further analyses and the corrections to Newton’s law cal-
culated [4]. Soon followed the building of cosmological models where the brane is taken to
be a Robertson-Walker spacetime which can tend at late times to the standard big bang
scenario [5-6]. The perturbations of the geometry and matter content of these models, in
the view of calculating the microwave background anisotropies, are currently being studied
[7]. More sophisticated models, including, for example, two branes or curvature squared
corrections in the bulk gravity equations are also being considered [8-9].

In most papers the issue of whether or not Einstein’s equations can be recovered
on the brane is slightly confused for the following reason : some authors take a “brane
world” point of view, that is they ignore as much as they can the bulk, which shows up in
the gravity equations on the brane as some extra radiation fluid or seeds ; whereas other
authors impose a geometry for the bulk (to be e.g. perturbed anti-de Sitter spacetime)
and see how this geometry influences the equations for gravity in the brane. This divide
can be seen on the techniques used : the first category of authors tends to use gaussian
normal coordinates which are well adapted to the brane, whereas the second tends to
use coordinates adapted to the bulk (e.g. conformally minkowskian or Schwarzschild-like
coordinates). In this paper we shall adopt the first point of view. We make the junction
with the “bulk” point of view in an accompanying paper [10].

The issue however can be described in a coordinate independent way as follows. Start
with a (N+1)-dimensional “generating” spacetime V(N+1) (that one can visualize as a
surface embedded in a higher dimensional space). Assume that V(N+1) satisfies Einstein’s
equations, that is that the Einstein tensor of V(N+1) is linearly related to some (smooth)
stress-energy tensor TAB. Consider in V(N+1) a N-dimensional hypersurface MN . Cut
V(N+1) along MN into two parts V1

(N+1) and V2
(N+1) and keep, say V1

(N+1), which has now

a boundary MN . Then make a copy of V1
(N+1) and paste these two identical pieces along

MN ; call the new spacetime with a discontinuity M(N+1).

This cutting, copying and pasting procedure is the geometrical expression of the so-
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called Z2-symmetry *. In brane cosmology language, M(N+1) is the bulk and MN is the
brane. Since M(N+1) has a delta-like curvature singularity at its edge MN , it can satisfy
Einstein’s equations only if a delta-like tensor is added to TAB. This new tensor (which
can be visualized as the “glue” necessary to paste the two copies of V1

(N+1)) is the stress-
energy tensor of matter in the brane MN . It is given by the integrated Einstein equations
across MN , also called the Lanczos-Darmois-Israel equation, and is linearly related to the
extrinsic curvature of MN in the generating space V(N+1).

A first remark is that any brane in any bulk cannot be kept as a candidate to represent
our universe since conditions (such as energy conditions or an equation of state) must be
imposed on the stress-energy tensor of the brane, that is, through the Lanczos-Darmois-
Israel equation, on its extrinsic curvature.

The conditions on the bulk and the brane are even more stringent if we impose that the
brane MN itself satisfies Einstein’s equations (or an approximate version of those) because
this implies highly non trivial relations between the extrinsic and intrinsic curvatures of
the brane.

In this paper we show how the equations for gravity on a brane depend only on the
geometry of the bulk near the brane, but do so crucially (we shall be more precise about
what we mean by “near” below). We will first see that if the geometry of the bulk can
be chosen at will near the brane, then the Einstein equations can always be recovered on
the brane, whatever the matter we choose on it. Second, we will see that if the bulk is
imposed to be an Einstein space near the brane then the Einstein equations can also be
recovered on the brane, under the condition however that terms quadratic in the stress-
energy tensor of matter can be neglected (this result is already well known in the context
of brane cosmologies [5-6]) ; otherwise matter must satisfy a very special equation of state
(typically P = −1

3ρ). Finally we will see that if the bulk is imposed to be maximally
symmetric near the brane, then the Einstein equations cannot in general be recovered
on the brane, even when terms quadratic in the stress-energy tensor of matter can be
neglected (an exception being the case when the brane is a Robertson-Walker spacetime).
In particular, we will see that the linearized Einstein equations cannot hold on a quasi-
Minkowskian brane at the edge of a strictly anti-de Sitter bulk, unless matter obeys a very
contrived equation of state. Our approach, which is based on a four plus one decomposition
of the bulk Riemann tensor and an identification of the extrinsic curvature of the brane
with its stress-energy tensor (thanks to the Lanczos-Darmois-Israel equations), is similar
to that of references [11] and our results are an extension of those presented there.

The paper is organised as follows : in section 2 we express, in gaussian normal coor-
dinates, the metric near the brane in terms of the stress-energy tensor of matter on the
brane and an extra, “seed” tensor. We also write the equations for gravity on the brane
in terms of these two tensors and show that if the geometry of the bulk near the brane
can be chosen at will then the exact Einstein equations can be recovered on the brane.
In section 3 we restrict our attention to bulks which are Einstein spaces near the brane

* There are two distinct ways of pasting two identical pieces together along a cut: one
into another (double sided space) and one to another (single sided space). There is no
way to distinguish these two constructs by the intrinsic and extrinsic curvatures of their
discontinuity because they are the same for double sides or single sided spaces.
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and in section 4 to maximally symmetric bulks. Section 5 draws a few conclusions and we
relagate to an appendix the procedure to obtain by iteration the metric in the whole bulk,
when matter in the bulk is known everywhere and not only near the brane.

2. The equations for gravity on a brane

Consider an arbitrary smooth five dimensional “generating” space V5 that we foliate
(at least locally) by a family of timelike hypersurfaces Σy. In gaussian normal coordinates
the metric of V5 reads

ds2 ≡ γABdx
AdxB = dy2 + γµν(xρ, y)dxµdxν (2.1)

where xρ are four coordinates (one timelike, three spacelike) parametrizing the hypersur-
faces Σy and where x5 ≡ y = Const. are the equations of Σy. We introduce the extrinsic
curvature of an hypersurface Σy and its trace

Kµν ≡ −
1

2

∂γµν

∂y
, K ≡ γρσKρσ (2.2)

as well as the Lanczos tensor
Lµν ≡ Kµν − γµνK (2.3)

that we decompose in terms of a “τ -tensor” as

Lµν ≡
1

2
λγµν +

κ

2
τµν , (2.4)

λ being a “tension” and κ a coupling constant.
We now single out the hypersurface Σ0 ≡ M4. Near M4 the metric can be expanded

in Taylor series as

γµν(xρ, y) = gµν(xρ) + kµν(xρ) y +
1

2
lµν(xρ) y2 + O(y3) (2.5)

where gµν is the metric on M4. We write he expansion of the τ -tensor as

τµν = Tµν(xρ) + Θµν(xρ) y + O(y2) (2.6)

where Tµν and Θµν can be expressed in terms of kµν and lµν (see Appendix). Conversely
kµν and lµν can be expressed in terms of Tµν and Θµν so that the metric near the brane
can be written as (1) with

γµν =gµν

(

1 +
1

3
λ y +

1

18
λ2 y2

)

− κy

(

1 +
1

6
λ y

)(

Tµν −
1

3
T gµν

)

−
1

2
κy2

[(

Θµν −
1

3
Θgµν

)

−
1

3
κ (gµνTρσT

ρσ − TTµν)

]

+ O(y3)

(2.7)

traces being defined by means of gµν .
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We now assume that V5 satisfies the five dimensional Einstein equations

GAB =
1

6
λ2γAB + κTAB (2.8)

where GAB is its Einstein tensor, and TAB a smooth stress-energy tensor. If we use the
standard four plus one decomposition of the five dimensional Riemann tensor RABCD

Ryµyν =
∂

∂y
Kµν + KρµK

ρ
ν

Ryµνρ = ∇νKµρ −∇ρKµν

Rµνρσ =4 Rµνρσ + KµσKνρ −KµρKνσ

(2.9)

where ∇µ and 4Rµνρσ are the covariant derivative and Riemann tensor associated with
the metric γµν(xρ, y)|y=Const., we can rewrite the five dimensional Einstein equations (8)
in terms of the quantities introduced previously, at zeroth order in y, that is on M4, as

Gµν = −
κλ

6
Tµν −

κ

2
Θµν−

−
κ2

2

[

TµρT
ρ
ν −

1

6
TTµν +

gµν

4

(

TρσT
ρσ −

1

3
T 2

)]

+ κTµν |y=0

(2.10a)

DνT
ν
µ = −2T5µ|y=0 (2.10b)

−R = −
κλ

6
T +

κ2

4

(

TρσT
ρσ −

1

3
T 2

)

+ 2κT55|y=0 (2.10c)

where Gµν is the Einstein tensor of the metric gµν , (−R) its trace, and Dµ the covariant
derivative associated with gµν . A consequence of (10) is

Θ − 2T ρ
ρ + 4T55 = κ

(

−
5

2
TρσT

ρσ +
2

3
T 2

)

. (2.11)

Equations (10) can be seen as an “initial value” problem (with inverted commas because
M4 is a timelike hypersurface) : given a metric and its first derivative in y on M4, that is,
with the notations used here, given a metric gµν on M4 and a tensor Tµν , satisfying the
constraints (10b) and (10c), then equation (10a) gives Θµν that is the second y-derivative
of the metric on the hypersurface. One then knows the metric and its first derivative on a
neighbouring hypersurface y = ǫ and, by iteration, one can get in principle the metric in
the whole spacetime if TAB is known everywhere (see the Appendix for an illustration of
such a procedure).

The reason for decomposing the five dimensional Einstein equations (8) in terms of
Tµν rather than the extrinsic curvature of M4 as is usual, is that, in brane cosmology,
Tµν is the stress-energy tensor of ordinary matter on the brane. Indeed, as recalled in
the Introduction, the “bulk” M5 is obtained by cutting V5 into two pieces along M4, by
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making a copy of the y ≥ 0 piece, say, and pasting it along M4, which hence becomes a
singular hypersurface, or “brane”. The metric of M5 is continuous across M4 and reads

γ̄AB = γAB(xρ, y) for y ≥ 0

γ̄AB = γAB(xρ,−y) for y ≤ 0 .
(2.12)

The stress-energy tensor T̄AB is defined similarly. The extrinsic curvature of M4 in M5 is
−(kµν/2) when y → 0+ and +(kµν/2) when y → 0

−
. The Einstein tensor of M5 exhibits

therefore a delta like singularity at M4 and satisfies the following equations

ḠAB =
1

6
λ2γ̄AB + κT̄AB + κT̄ABδ(y) (2.13)

where T̄AB is the stress-energy tensor of matter on the brane. Integrating (13) (using (9))
across y = 0, yields the Lanczos-Darmois-Israel equations [1]

T̄A5 = 0 , κT̄µν = 2Lµν |y=0 = λgµν + κTµν (2.14)

which amount to identifying the tensor Tµν we introduced with the stress-energy tensor of
ordinary matter on the brane. Equations (10) therefore become the equations for gravity
in the brane.

As for the “seed” tensor Θµν , which is related to the y-derivative of the extrinsic
curvature of M4, it encapsulates the influence of the geometry of the bulk near (rather
than on) the brane, and can be expressed in terms of the Weyl tensor as in [11].

Now, it is clear that, if the geometry of the bulk near the brane can be chosen at will,
then the four dimensional Einstein equations

Gµν = 8πGNTµν (2.15a)

with

8πGN ≡ −
1

6
κλ (2.15b)

GN being Newton’s constant, can be exactly recovered on the brane. Indeed one simply
has to impose

T5µ|y=0 = 0 (2.16a)

8T55|y=0 = κ

(

1

3
T 2 − TρσT

ρσ

)

(2.16b)

2Tµν |y=0 − Θµν = κ

[

TµρT
ρ
ν −

1

6
TTµν +

gµν

4

(

TρσT
ρσ −

1

3
T 2

)]

. (2.16c)

If one wishes however that TAB describes some “realistic” matter, then conditions (16)
may not be fulfilled for a realistic Tµν . Indeed, consider for example the case when matter

6



in the bulk is a massless scalar field Φ and the brane is a Robertson-Walker spacetime.
Equation (16b) then reads

ψ2 + φ̇2 = −
κ

6
ρ(ρ+ 3P ) (2.17)

where ψ ≡ ∂Φ
∂y

|y=0, φ̇ ≡ ∂Φ
∂t

|y=0 (t being cosmic time), and where ρ and P are the energy

density and pressure of matter in the brane. For matter satisfying P > −ρ/3 (and κρ > 0)
equation (17) has no solution. (Defining 8πGN ≡ −α

6 κλ, α being an arbitrary constant,
does not relax this constraint—nor the others we shall encounter.)

Let us summarize this section : the metric near the brane is given in terms of the
metric of the brane, the stress-energy tensor of its matter content and a “seed” tensor
by equation (7) ; gravity on the brane is described by equations (10), TAB being the
stress-energy tensor of matter in the bulk ; these equations reduce to the four dimensional
Einstein equations if conditions (16) are satisfied.

3. The case of an Einstein bulk

When TAB |y=0 = 0 the bulk is an Einstein space near the brane. Introducing the
“seed” tensor

Σµν ≡ Θµν + κ

[

TµρT
ρ
ν −

1

6
TTµν +

gµν

4

(

TρσT
ρσ −

1

3
T 2

)]

, (3.1)

the equations (2.10) for gravity in the brane are then equivalent to

Gµν = 8πGNTµν −
κ

2
Σµν (3.2a)

with the seed tensor Σµν restricted to satisfy

Σ =
κ

2

(

1

3
T 2 − TρσT

ρσ

)

(3.2b)

DµΣµ
ν = 0 . (3.2c)

Note that equations (2b-c) define Σµν (and hence Θµν) up to a conserved and traceless
(that is radiation-like) tensor. As for the metric near the brane, it is given by (2.7), the
tensor Θµν being constrained to satisfy conditions (2b-c) (with the definition (1)).

The Einstein equations will hold on the brane if, first

Σµν = 0 ⇐⇒ Θµν = −κ

[

TµρT
ρ
ν −

1

6
TTµν +

gµν

4

(

TρσT
ρσ −

1

3
T 2

)]

, (3.3)

and if matter on the brane satisfies the constraint

1

3
T 2 − TρσT

ρσ = 0 . (3.4)
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Outside matter, Tµν = 0. The constraint (4) is hence satisfied, so that the Einstein
equations can hold on the brane if we choose Θµν = 0. The bulk metric near the brane is
then given by (2.7) with Tµν = Θµν = 0, that is

γµν = gµν

(

1 +
1

3
λ y +

1

18
λ2 y2 + O(y3)

)

(3.5)

with gµν a Ricci flat metric. We recognize in (5) the expansion of γµν = gµν expλy/3,
the metric studied in [12], which is obtained by iteration of equations (2.8) when TAB is
imposed to be zero everywhere, and not only on the brane (see the Appendix).

Inside matter, Tµν 6= 0. However, at linear order in Tµν , the constraint (4) is still
approximately satisfied. Einstein’s equations can therefore still hold approximately on the
brane if we choose Θµν = 0. The bulk metric near the brane is given in that case by (2.7)
with Θµν = 0 and the terms quadratic in Tµν neglected.

Now, if terms quadratic in the stress-energy tensor cannot be neglected, then (4)
becomes a restriction on the matter allowed on the brane. In the case of a perfect fluid :
Tµν = (ρ+ P )uµuν + Pgµν it yields

P = −
1

3
ρ . (3.6)

In conclusion, when the bulk is an Einstein space in the vicinity of the brane, the
Einstein equations can be recovered on the brane, at least at linear order in Tµν , by
choosing Θµν = 0, whatever the equation of state for the matter. However, when quadratic
corrections are taken into account, the equations for gravity on the brane differ from
Einstein’s, unless matter satisfies the condition (4) (or 6).

These results generalize known results which can be found in the literature when the
brane is taken to be a spatially flat Robertson-Walker spacetime [5-6]. Indeed in that case
the metric gµν and the stress energy tensor Tµν are supposed to be of the form

gtt = −1 , gti = 0 , gij = a2(t)δij

Ttt = ρ(t) , Tti = 0 , Tij = a2P (t)δij .
(3.7)

The solution of the equations for gravity on the brane is obtained by integrating either
equations (3.2), or equations (2.10) with TAB = 0. Equation (2.10b) for example is the
standard conservation law

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (3.8)

As for equation (2.10c) it reads

ä

a
+
ȧ2

a2
= −

κλ

36
(ρ− 3P ) −

κ2ρ

36
(ρ+ 3P ) (3.9)

which is equivalent, whatever the equation of state, to

ȧ2

a2
=

κ

36
ρ(κρ− 2λ) +

c

a4
(3.10)
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with c a constant of integration. We recognize in (10) the evolution equation for the scale
factor a first obtained in [5]. Finally equation (2.10a) gives the “seed” tensor Θµν (and
hence the bulk metric near the brane to second order in y, see equation (2.7)) as

Θ00 =
κρ

6
(5ρ+ 6P ) −

6c

κa4

Θij = −a2δij

[

κ

6
(3P 2 + 6Pρ+ 2ρ2) +

2c

κa4

]

.
(3.11)

In order, first, for these equations to reduce to the standard Friedmann equation, conditions
(2.16) (with TAB = 0) must be fulfilled : equation (2.16b) implies that, as we have already
seen, P = −ρ/3 (which renders equation (9) linear in ρ) ; hence ρ ∝ a−2 ; equation (2.16c),
together with (11) then imposes c/a4 = −κ2ρ2/36 (which renders equation (10) equivalent
to the Friedmann equation).

Second, when terms quadratic in Tµν can be neglected, that is at late time, and when
Θµν ≈ 0, that is for c = 0, then equation (10) tends, as expected, to the Friedmann
equation.

4. The case of an anti-de Sitter bulk

Suppose now that the bulk is maximally symmetric near the brane, that is that its
Riemann tensor RABCD is such that

RABCD|y=0 = −
λ2

36
(γACγBD − γADγBC)|y=0 . (4.1)

Using again the standard four plus one decomposition (see equation (2.9)) as well as the
quantities introduced in section 2 this equation can be rewritten as

Θµν = −
κ

2

[

TµρT
ρ
ν + gµν

(

TρσT
ρσ −

1

3
T 2

)]

(4.2a)

0 = DνTµρ −DρTµν −
1

3
(gµρ∂νT − gµν∂ρT ) (4.2b)

Rµνρσ = −
κT

36
(2λ+ κT )(gµσgνρ − gµρgνσ) −

κ2

4
(TµσTνρ − TµρTνσ)

+
κ

12
(λ+ κT )(gµσTνρ − gµρTνσ + Tµσgνρ − Tµρgνσ)

(4.2c)

where Rµνρσ is the Riemann tensor of the brane metric gµν . These equations which describe
gravity on the brane are more constraining than equations (3.2). For example they imply
that, outside matter (Tµν = 0) : Rµνρσ = 0 which means that the brane is necessarily flat
(and not only a solution of (3.2) with Tµν = 0 as is the case when the bulk is only imposed
to be an Einstein space). Outside matter we also have Θµν = 0 so that the metric near
the brane is, see equation (2.7) :

γµν = ηµν

(

1 +
λ

3
y +

λ2

18
y2 + O(y3)

)

(4.3)
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which is nothing but the lower order expansion of the anti-de Sitter metric in the Randall-
Sundrum coordinates : ds2 = dy2 + ηµν exp(λy/3), a metric which can be obtained by
iteration of equations (2) when the bulk is imposed to be anti-de Sitter spacetime every-
where an not only near the brane.

Inside matter, Equation (2a) gives Θµν in terms of the metric of the brane and its
matter content ; Equation (2b) is a constraint on the matter on the brane (which includes
the conservation law DµT

µ
ν = 0 but is in general more constraining than that) ; and

Equation (2c) replaces the Einstein equations and describes gravity on the brane.
As an example, consider a spatially flat Robertson-Walker brane where the metric gµν

and the stress energy tensor Tµν are given by (3.7). For such an Ansatz equation (2b) turns
out to be equivalent to the conservation law (3.8). As for equation (2c) it is equivalent to
(3.10) with

c = 0 . (4.4)

Finally (2a) gives Θµν as (3.11) with c = 0, or, equivalently, the bulk metric near the brane
to second order in y, which turns out to be the expansion at leading orders of the anti-de
Sitter metric in the gaussian normal coordinates introduced in [5]. Therefore, when one
considers Robertson-Walker branes, the difference is quite tenuous between imposing the
bulk to be just an Einstein space or maximally symmetric near the brane : in the latter
case the constant c must be zero ; in the former it is arbitrary and, when P = −ρ/3, can
be chosen in such a way that the Friedmann equations hold exactly. And in both cases,
that is for c = 0 or c arbitrary, the terms quadratic in Tµν become negligible at late time
and the evolution of the brane tends to Friedmann’s.

For less symmetric branes however, the Einstein equations cannot in general be re-
covered, even when terms quadratic in Tµν are negligible, as we shall now see.

In order to compare and contrast the brane gravity equations (2) with the four dimen-
sional Einstein equations, let us compute the brane Einstein tensor from equation (2c).
We obtain

Gµν = −
κλ

6
Tµν +

κ2

4

[

−TµρT
ρ
ν +

1

3
TTµν +

1

2
gµν

(

TρσT
ρσ −

1

3
T 2

)]

(4.5)

which, inside matter, can never exactly reduce to the Einstein equations (as we already
saw in the case of a Roberston-Walker brane). Now, at linear order in Tµν , and with the
identification 8πGN = −κλ/6, equations (5) do reduce to the four dimensional Einstein
equations. However one must not forget that they are not equivalent to the linear version
of equations (2), that is

Θµν ≈ 0 (4.6a)

0 ≈ DνTµρ −DρTµν −
1

3
(gµρ∂νT − gµν∂ρT ) (4.6b)

Rµνρσ ≈ −
κλ

18
T (gµσgνρ − gµρgνσ) +

κλ

12
(gµσTνρ − gµρTνσ + Tµσgνρ − Tµρgνσ) (4.6c)

but only a consequence of those, and one must check that the chosen solution of Einstein’s
equations satisfies all equations (6). This is the case, as we have already seen, when the
brane is a Robertson-Walker spacetime. But consider now the case of an almost flat brane.

10



At zeroth order in Tµν the brane must be flat and the metric can be taken to be
gµν = ηµν . We decompose the stress-energy tensor at first order, as is usual, into

T00 = ρ , T0i = −∂iv − vi

Tij = δij

(

P −
1

3
△Π

)

+∂ijΠ + ∂iΠj + ∂jΠi + Πij

(4.7)

where ∂iv
i = ∂iΠ

i = ∂iΠ
ij = Πi

i = 0, and where all components tend to zero at spatial
infinity and at t→ ±∞. Equations (6b) then read

0 ≈ ∂i

(

v̇ +
2

3
ρ+ P

)

+ v̇i

0 ≈
1

3
δij(ρ̇−△Π̇) + ∂ij(Π̇ + v) + ∂iΠ̇j + ∂jΠ̇i + ∂jvi + Π̇ij

0 ≈ ∂ivj − ∂jvi

0 ≈
1

3
δjk∂i(ρ−△Π) −

1

3
δji∂k(ρ−△Π) + ∂j(∂iΠk − ∂kΠi) + ∂iΠjk − ∂kΠij

(4.8)

which include the conservation laws ∂µT
µ
ν ≈ 0, that is

ρ̇+ △v ≈ 0 , v̇ + P +
2

3
△Π ≈ 0 , v̇i + △Πi ≈ 0 (4.9)

but also impose matter to obey the following, very contrived, equation of state

ρ ≈ △Π , v ≈ −Π̇ , P ≈ Π̈ −
2

3
△Π , vi ≈ Πi ≈ Πij ≈ 0 . (4.10)

Matter being described solely in terms of the anisotropic stress Π by equations (9-10),
equation (6c) gives the Riemann tensor of the brane as

Rµνρσ ≈
κλ

12
(ηµσ∂

2
νρ + ηνρ∂

2
µσ − ηµρ∂

2
νσ − ηνσ∂

2
µρ)Π (4.11)

which defines uniquely the geometry of the brane as the conformally flat metric

gµν ≈

(

1 +
1

6
κλΠ

)

ηµν . (4.12)

Finally equation (2.7), together with (6a) and (9-10) gives the metric near the brane as

γµν ≈ ηµν

(

1 +
1

3
λ y +

1

18
λ2 y2

)

− κy

(

1 +
1

6
λ y

)

∂µνΠ + O(y3) . (4.13)

This metric describes, by construction, a strictly anti-de Sitter bulk near the brane and
can therefore be cast into the form (3) by a mere change of coordinates. However this
change of coordinates changes the equation giving the position of the brane which is no
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longer given by y = 0. The last term hence describes, in gaussian normal coordinates, the
so-called “brane-bending” effect (see also [13]).

5. Conclusions

The main result of this paper is that the question of whether or not Einstein’s equa-
tions are recovered on a brane depends crucially on the geometry of the bulk near the brane.
If the bulk is an Einstein space near the brane, then the Einstein equations, at least at lin-
ear order in the stress-energy tensor Tµν , can be recovered, whatever the equation of state
of the matter on the brane. However, when quadratic terms in Tµν cannot be neglected,
Einstein’s equations hold only if the equation of state for matter is P = −ρ/3 (for a per-
fect fluid). If, now, the bulk is imposed to be strictly anti-de Sitter space near the brane,
then the brane must be flat outside matter. Moreover the Einstein equations can never be
recovered when terms quadratic in Tµν are important. Finally, when terms quadratic in
Tµν can be neglected, the linearized Einstein equations can hold on a quasi-minkowskian
brane, but only for very contrived matter.

This last result does not by any means imply that the linearized Einstein equations
cannot be recovered in the Randall-Sundrum scenario. Indeed, in that scenario, the bulk
is a perturbed anti-de Sitter space, that is an Einstein space. The results of section 3 then
tell us that if we choose, at zeroth order in λTµν and Θµν the flat solution of the brane
equation for gravity (3.2a), then, at linear order, gravity on the brane is governed by the
equation

G̃µν ≈ 8πGNTµν −
κ

2
Θµν (5.1)

where G̃µν is the Einstein tensor of the metric gµν = ηµν + hµν at linear order in hµν

and where κΘµν describes a radiation-like fluid which, a priori, can contribute as much as

GNTµν to G̃µν but which can also be chosen to be zero. Finally the metric near the brane
reads

γµν ≈ ηµν

(

1 +
1

3
λ y +

1

18
λ2 y2

)

− κy

(

1 +
1

6
λ y

)(

Tµν −
1

3
Tηµν

)

−
1

2
κy2

(

Θµν −
1

3
Θηµν

)

+ O(y3)

(5.2)

which is not simply, as (4.13), anti-de Sitter metric in disguise.
We leave to another work [10] the comparison of the “brane world” point of view

developped here with the “bulk” point of view where the bulk is imposed to be a perturbed
anti-de Sitter space everywhere and not only near the brane and where the perturbations
are imposed to satisfy boundary conditions which may restrict Θµν and/or Tµν .
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Appendix

Consider a five dimensional spacetime V5 in gaussian normal coordinates xA = (xρ, y)

ds2 = γABdx
AdxB = ǫdy2 + γµν(xρ, y)dxµdxν (B1)

with ǫ = ±1 and expand the metric coefficients γµν(xρ, y) near the surface y = 0 as

γµν(xρ, y) = gµν(xρ) + kµν(xρ) y +
1

2
lµν(xρ) y2 +

1

6
mµν(xρ) y3 + O(y4) . (B2)

The extrinsic curvature of the surface y = Const. and its y-derivative are given by

Kµν ≡ −
1

2

∂γµν

∂y
= −

1

2

(

kµν + lµν y +
1

2
mµν y

2

)

+ O(y3)

∂Kµν

∂y
= −

1

2
(lµν +mµν y) + O(y2) .

(B3)

The Riemann tensor of the metric (B1) reads

Ryµyν =
∂

∂y
Kµν + KρµK

ρ
ν

Ryµνρ = ∇νKµρ −∇ρKµν

Rµνρσ =4 Rµνρσ + ǫ (KµσKνρ −KµρKνσ)

(B4)

where ∇µ and 4Rµνρσ are the covariant derivative and Riemann tensor associated with
the metric γµν(xρ, y)|y=Const.. Expanding (B4) to first order in y, it is a straightforward
calculation to obtain the Einstein tensor of the metric (B1) as

Gyy = −
ǫ

2
R+

1

8
(k2 − k .k)

+
1

4
y [2ǫ( k −D .k + k .R) + kl − k .l − k(k .k) + k .k .k] + O(y2)

(B5a)

where R and D are the scalar curvature and covariant derivative of the metric gµν , where
traces are defined by means of gµν , where ≡ DρD

ρ and where a .b ≡ aµνb
µν , a .b .c ≡

aµνb
νρcµρ ;

Gyµ =
1

2

(

Dνk
ν
µ − ∂µk

)

−
1

2
y

[

∂µl −Dν l
ν
µ −

1

2
kν

µ∂νk +Dν(kνρkρµ) −
3

4
∂µ(k .k)

]

+ O(y2) ,
(B5b)
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Finally

Gµν = Gµν +
ǫ

2

[

gµν l − lµν + kρ
µkρν −

1

2
kkµν +

1

4
gµν(k2 − 3k .k)

]

+
ǫ

2
y

[

mgµν −mµν + kµρl
ρ
ν + kνρl

ρ
µ − klµν −

1

2
lkµν +

1

2
gµν(kl − 2k .l)

]

−
ǫ

2
y

{

kµρk
ρλkλν +

1

4
(k .k − k2)kµν +

1

2
[k(k .k) − 3k .k .k]

}

+
1

2
y

[

Dρµk
ρ
ν +Dρνk

ρ
µ − kµν −Dµνk − gµν (D .k − k − k .R) −Rkµν

]

(B5c)

where Gµν is the Einstein tensor of the metric gµν .

If now V5 is imposed to be an Einstein space, GAB = ΛγAB, not only on the brane as
in the main text but at linear order in y, then

Gyy = ǫΛ , Gyµ = 0 , Gµν = Λ(gµν + y kµν) + O(y2) . (B6)

Suppose now that we are given a metric and its y-derivative at y = 0, that is that we
know gµν and kµν satisfying the constraints

Dνk
ν
µ − ∂µk = 0 , −ǫR +

1

4
(k2 − k .k) = 2ǫΛ . (B7)

Then equations (B5a-b) with (B6) are satisfied at zeroth order in y, and equation (B5c)
(with (B6)) gives lµν in terms of gµν and kµν as

lµν − gµν l = 2ǫGµν + kρ
µkρν −

1

2
kkµν +

1

4
gµν(k2 − 3k .k) − 2ǫΛgµν . (B8)

Hence the zeroth order Einstein equations give us the metric near the brane at quadratic
order in y.

It is then straightforward to see that equations (B5a-b) together with (B6) are satisfied
at linear order in y. As for equation (B5c) together with (B6) it gives mµν , and hence the
metric at cubic order in y.

Iterating this procedure, assuming that V5 is an Einstein space up to higher and higher
order in y should give the metric of V5 everywhere (or at least in a finite region near y = 0).

To make the connection with the main text, first take ǫ = +1 and Λ = λ2/6 and
introduce the “τ”-tensor

κ

2
τµν ≡ Kµν − γµνK −

1

2
λγµν (B9)

and expand it as

τµν = Tµν + yΘµν +
1

2
y2Hµν + O(y3) . (B10)
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Using (B2) we have

κ

2
Tµν = −

1

2
[kµν + (λ− k)gµν ]

κ

2
Θµν = −

1

2
[lµν + (λ− k)kµν − (l − k .k)gµν ]

κ

2
Hµν = −

1

2
[mµν + (λ− k)lµν − 2(l − k .k)kµν − (m− 3k .l+ 2k .k .k)gµν ] .

(B11)

Consider now the particularly simple example where, instead of knowing gµν and kµν

(or equivalently Tµν), we are given

Tµν = Θµν = 0 . (B12)

Then we first get from (B11)

kµν =
λ

3
gµν and lµν =

λ2

9
gµν . (B13)

Equations (B5) together with (B6) then give, at zeroth order in y

Gµν = 0 (B14)

and, at linear order in y

mµν =
λ3

27
gµν and Hµν = 0 . (B15)

The metric near the brane is then the expansion, up to cubic order in y of the metric
γµν = gµν exp(λy/3), gµν being a Ricci flat metric. We also have that τµν is zero up to
quadratic order in y. Iterating the procedure, with the condition that V5 is an Einstein
space everywhere would yield (at least in a finite region near y = 0)

Gµν = 0 , γµν = gµν exp(λy/3) , τµν = 0 (B16)

that is the metric discussed in [12].
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