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Fermion absorption cross section of a
Schwarzschild black hole
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Abstract

We study the absorption of massive spin-half particles by a small
Schwarzschild black hole by numerically solving the single-particle Dirac
equation in Painlevé–Gullstrand coordinates. We calculate the absorption
cross section σ(E) for a range of gravitational couplings Mm/mP

2 and
incident particle energies E. At high couplings, where the Schwarzschild
radius RS is much greater than the wavelength λ, we find that σ(E)
approaches the classical result for a point particle. At intermediate cou-
plings, RS ∼ λ, we find oscillations around the classical limit whose precise
form depends on the particle mass. These oscillations give quantum vi-
olations of the equivalence principle. At high energies the cross section
converges on the geometric-optics value of 27πR2

S/4, and at low energies
we find agreement with an approximation derived by Unruh. When the
hole is much smaller than the particle wavelength we confirm that the
minimum possible cross section approaches πR2

S/2.

PACS numbers: 04.70.Bw, 03.80.+r, 04.62.+v, 03.65.Pm

1 Introduction

It is widely accepted that general relativity and quantum mechanics are incom-
patible in their current form, yet a theory reconciling the two remains elusive.
Despite this problem, it is only at the smallest length scales (l < lP ), or highest
energies, that we expect substantial modification to existing theory. At low
energies, away from spacetime singularities, the propagation of quantum fields
on gravitational backgrounds is well understood (see the books by Birrell &
Davies [1] or Chandrasekhar [2]).

Interest in the absorption of quantum waves by black holes was reignited in
the 1970s, following Hawking’s discovery that black holes can emit, as well as
scatter and absorb, radiation [3]. Hawking showed that the evaporation rate
is proportional to the total absorption cross section. More recently, absorption
cross sections (or “grey body factors”) have been of interest in the context of
higher-dimensional string theories.

In a series of papers [4, 5, 6] Sanchez considered the scattering and ab-
sorption of massless scalar particles by an uncharged, spherically-symmetric
(Schwarzschild) black hole. Using numerical methods she showed that the total
absorption cross section (as a function of incident frequency) exhibits oscilla-
tions around the geometric-optics limit characteristic of diffraction patterns.
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Unruh [7] studied the absorption of massive spin-half particles by piecing to-
gether analytic solutions to the Dirac equation across three regions. He showed
that, in the low-energy limit, the scattering cross section for the fermion is ex-
actly 1/8 of that for the scalar particle. He also derived an approximation to
the total cross section valid at low energies, which we revisit in section 5.

In this paper we return to the massive fermion absorption problem studied by
Unruh. We employ a different coordinate system, but retain equivalent ingoing
boundary conditions at the horizon. Instead of using analytical approximations
we numerically integrate the Dirac equation to calculate the absorption cross
section over a range of energies and gravitational couplings. We compare our
results with the classical cross section for a massive particle, and with Unruh’s
low-energy approximation.

The natural dimensionless parameter to describe the strength of the gravi-
tational coupling between a black hole (of mass M) and a quantum particle (of
mass m) is given by

α =
GMm

h̄c
=
Mm

m2
P

=
πRS

λC
(1)

where RS is the Schwarzschild radius of the hole, λC is the Compton wavelength
of the quantum particle, and mp is the Planck mass. We use the symbol α
because it has an analogous role in gravitation to the fine-structure constant
in electromagnetism. We expect quantum effects to be important when α ∼ 1,
whereas in the high-α limit classical effects should dominate.

In first-quantised theory the capture of light and matter by a black hole
is a one-way process. The direction of time implied by this process is not
revealed in Schwarzschild coordinates, however, as these are manifestly time-
reverse symmetric and are invalid at the horizon. Time-asymmetric coordinates,
such as Eddington–Finkelstein coordinates, allow the continuation of the metric
across the horizon and allow us to correctly study the properties of wavefunc-
tions [8, 9, 10]. We then find that ingoing states correspond precisely to those
that are regular at the horizon.

Here, rather than using Eddington–Finkelstein coordinates, we prefer to
work with the coordinates first introduced by Painlevé [11] and Gullstrand [12].
In these coordinates the metric becomes

ds2 =

(

1 − 2M

r

)

dt2 −
√

8M

r
dt dr − dr2 − r2dΩ2 (2)

The utility of this form of the Schwarzschild solution has recently been high-
lighted by Martel & Poisson [13] and others [9]. For black holes (as opposed
to white holes) the negative sign for the crossterm dt dr is the correct choice,
as this guarantees that all particles fall in across the horizon in a finite proper
time. This sign is also uniquely picked out by models in which the black hole
is formed by a collapse process [8]. One advantage of this system is that the
time coordinate has a natural interpretation as the proper time measured by an
observer in freefall starting from rest at infinity.

According to general relativity the classical absorption cross section of a
Schwarzschild black hole is given by

σabs =
πM2

2u4

(

8u4 + 20u2 − 1 + (1 + 8u2)3/2
)

(3)
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where u is the velocity of the particle [7]. In accordance with the equivalence
principle, the cross section is independent of the particle mass m. We expect
that the quantum cross section will approach this value in the limit α≫ 1 (that
is, RS ≫ λ).

We start with the radial separation of the Dirac equation in Painlevé–
Gullstrand coordinates. We then study the properties of solutions around the
horizon, identifying the physical branch of regular solutiuons. For unbound
states E > mc2 we find that the physical solutions are composed of ingoing and
outgoing waves at infinity. By numerically finding the ratios of these waves in
any given angular mode we are able to compute the absorption spectrum. We
use natural coordinates G = h̄ = c = 1, except in cases where inclusion of the
factors adds clarity.

2 The Dirac equation

We let {γ0, γ1, γ2, γ3} denote the gamma matrices in the Dirac–Pauli represen-
tation, and introduce spherical polar coordinates (r, θ, φ). From these we define
the unit polar matrices

γr = sinθ(cosφγ1 + sinφγ2) + cosθ γ3

γθ = cosθ(cosφγ1 + sinφγ2) − sinθ γ3

γφ = − sinφγ1 + cosφγ2. (4)

In terms of these we define four position-dependent matrices {gt, gr, gθ, gφ} by

gt = γ0 +

√

2M

r
γr gθ = rγθ

gr = γr gφ = r sinθγφ. (5)

These satisfy the anti-commutation relations

{gµ, gν} = 2gµνI

where gµν is the Painlevé–Gullstrand metric of equation (2). The reciprocal
matrices {gt, gr, gθ, gφ} are defined by the equation

{gµ, gν} = 2δµ
ν I, (6)

and both sets are well-defined everywhere except at the origin.
The Dirac equation for a spin-half particle of mass m is

igµ∇µψ = mψ, (7)

where

∇µψ = (∂µ +
i

2
Γαβ

µ Σαβ)ψ, Σαβ =
i

4
[γα, γβ ]. (8)

The components of the spin connection are found in the standard way [14] and
are particularly simple in the Painlevé–Gullstrand gauge [10],

gµ i

2
Γαβ

µ Σαβ = − 3

4r

√

2M

r
γ0. (9)
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An advantage of our choice of metric is that the Dirac equation can now be
written in a manifestly Hamiltonian form

i6∂ψ − iγ0

(

2M

r

)1/2 (

∂

∂r
+

3

4r

)

ψ = mψ, (10)

where 6∂ is the Dirac operator in flat Minkowski spacetime. The interaction
term is non-Hermitian, as the singularity acts as a sink for probability density,
making absorption possible.

The Dirac equation is clearly seperable in time, so has solutions that go as
exp(−iEt). The energy E conjugate to time-translation is independent of the
chosen coordinate system, and has a physical definition in terms of the Killing
time [10]. We can further exploit the spherical symmetry to seperate the spinor
into

ψ =
e−iEt

r

(

u1(r)χ
µ
κ(θ, φ)

u2(r)σrχ
µ
κ(θ, φ)

)

(11)

where
σr = sinθ(cosφσ1 + sinφσ2) + cosθ σ3. (12)

The angular eigenmodes are labeled by κ, which is a positive or negative nonzero
integer, and µ, which is the total angular momentum in the θ = 0 direction.
Our convention for these eigenmodes is that

(σ · L + h̄)χµ
κ = κh̄χµ

κ, κ = ±(j + 1/2) = . . . ,−2,−1, 1, 2, . . . . (13)

The positive and negative κ modes are related by

σrχ
µ
κ = χµ

−κ (14)

and are normalised so that
∫

dφ

∫

dθ sin θ χµ
κ(θ, φ)† χµ′

κ′ (θ, φ) = δκκ′δµµ′ . (15)

The trial function (11) results in a pair of coupled first-order equations

(1 − 2M/r)
d

dr

(

u1

u2

)

=

(

1 2M/r
2M/r 1

)

·
(

κ/r i(E +m) − (2M/r)1/2(4r)−1

i(E −m) − (2M/r)1/2(4r)−1 −κ/r

) (

u1

u2

)

. (16)

The equations have regular singular points at the origin and horizon, as well
as an irregular singular point at r = ∞. As far as we are aware, the special
function theory required to deal with such equations has not been developed.
Instead we use series solutions around the singular points as initial data for a
numerical integration scheme.

3 Series Solutions and Boundary Conditions

As is clear from (16), there is a regular singular point in the coupled equations
at the horizon, r = 2M . We look for series solutions

U =

(

u1

u2

)

= (r − 2M)s
∑

k=0

(

ak

bk

)

(r − 2M)k (17)

4



where s is the lowest power in the series, and ak, bk as coefficients to be deter-
mined. On substituting into (16) and setting r = 2M we obtain an eigenvalue
equation for s, which has solutions

s = 0 and s = − 1
2 + 4iME. (18)

The regular root s = 0 ensures that we can construct solutions which are finite
and continuous at the horizon. We will see later that regular solutions auto-
matically have an ingoing current at the horizon. The singular branch gives
rise to discontinuous, unnormalisable solutions with an outgoing current at the
horizon [8]. We therefore restrict attention to the regular, physically-admissable
solutions. The eigenvector for the regular solution has

(

a0

b0

)

=

(

κ− 2iM(E +m) + 1/4
κ+ 2iM(E −m) − 1/4

)

. (19)

In order to expand about infinity we need to take care of the irregular
singularity present there. There are two sets of solutions, U (out) and U (in),
which asymptotically resemble outgoing and ingoing radial waves with addi-
tional radially-dependent phase factors. To lowest order,

U (out) = eiprei(φ1+φ2)

(

1
p/(E +m)

)

U (in) = e−iprei(φ1−φ2)

(

1
−p/(E +m)

)

(20)

where the phase factors φ1(r), φ2(r) are given by

φ1(r) = E
√

8Mr, φ2(r) =
M

p

(

m2 + 2p2
)

ln(pr) (21)

and the momentum p is defined in the usual way, p2 = E2 −m2. The general
(regular) solution as r → ∞ is a superposition of the ingoing and outgoing
waves,

U(r → ∞) = ακU
(in) + βκU

(out) (22)

for each angular mode. The magnitudes of ακ and βκ determine the amount of
scattered and absorbed radiation present.

4 Absorption

The spatial probability current is conserved for states with real energy, E > m.
For each angular eigenmode we obtain a conserved Wronskian Wκ

Wκ = (u1u
†
2 + u†1u2) −

√

2M/r(u1u
†
1 + u2u

†
2) (23)

which measures the total outward flux over a surface of radius r. At the horizon

Wκ = − |u1 − u2|2 ∝ − |a0 − b0|2 (24)

so the flux is inwards for all regular solutions. On substituting the asymptotic
forms of equations (20) and (22) into equation (23) we find an expression for
the Wronskian in the large-r limit,

Wκ = − 2p

E +m

(

|ακ|2 − |βκ|2
)

(25)
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The coefficients ακ and βκ can be determined (up to an overall magnitude
and phase) by matching the ingoing (regular) solution at the horizon to the
asymptotic form in the large-r limit. We choose the normalisation of each
angular mode so that Wκ = −1, and write the most general solution to the
wave equation as

ψ =
∑

k 6=0

gκψκ (26)

where ψκ are spinors of the trial form with u1, u2 as given by (20), (22), and gκ

are complex coefficients. The total absorbed flux is then just

Wtot =
∑

κ 6=0

|gκ|2 . (27)

We now employ a partial wave analysis to derive a simple expression for the
absorbed cross section. We write the asymptotic behaviour of ψ as the sum of
a plane wave (propagating in the θ = 0 direction) and an outgoing scattered
wave,

ψ = eipr cos θΨ1 +
f(θ)

r
eiprΨ2 (28)

where Ψ1,Ψ2 are constant spinors. The plane wave can be decomposed into
ingoing and outgoing radial waves in the large-r limit. We equate the ingo-
ing part of the plane wave with the ingoing part of the asymptotic wave (22).
Normalising the plane wave to 2E particles per unit volume we find

gκακe
i(φ1−φ2) = i(−1)κ+1

√

4π(E +m)

2p

κ
√

|κ|
(29)

for each angular mode. The total absorption cross section σabs is the ratio of
the ingoing flux (27) to the incident flux of the plane wave (2p),

σabs =
π

2p(E −m)

∑

κ 6=0

|κ|
|ακ|2

. (30)

At low energies, the |κ| = 1 states dominate the absorption, but at higher
energies we need to sum over a range of κ.

5 Results

We determine the coefficients ακ required for (30) by matching the ingoing
solution at the horizon to the asymptotic form (22) at infinity. In a similar
calculation, Unruh [7] used analytic approximations to the radial functions to
find the leading contributions to the cross section. Here, we use numerical
integration of the wavefunction out from the horizon to match the solutions,
and compare our results with the analytic approach.

Figure 1 compares the result of our matching calculation at α = 0.2 with
the classical cross section of a point particle (3) over a range of energies. We see
that the quantum absorption cross section oscillates around the classical value,
as found by Sanchez [4, 5] for the massless scalar wave. For a given α we find
the period of these oscillations is approximately constant, but the amplitude
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Figure 1: Classical and quantum absorption cross section. The plot com-
pares the absorption cross section for the Dirac wave [solid] with the clas-
sical prediction for a point particle [dotted], for a gravitational coupling of
α = Mm/mp

2 = 0.2. The cross section is plotted in units of (GM/c2)2 (pro-
portional to the event horizon area), and the energy in units of the rest mass
energy mc2.

7



 0

 50

 100

 150

 0  1  2  3  4  5  6  7  8

C
ro

s
s
 S

e
c
ti
o
n
, 
 σ

A
 /
 [
G

M
c

-2
]2

Energy,  E / mc
2

27 π
α = 0.05 

α = 0.075
α = 0.1  

α = 0.15 
α = 0.2  

Figure 2: Quantum absorption cross section for a range of couplings. The plot
shows the cross section at a range of gravitational couplings, 0.05 ≤Mm/mp

2 ≤
0.2. The horizontal line is the photon limit.

decays as E → ∞. As α is increased we find that the magnitude and period
of the oscillations decreases. In the α ≫ 1 limit we recover the classical cross
section.

Figure 2 illustrates that the precise form of the oscillation depends on α,
and therefore on the mass of the quantum particle. This represents a quantum-
mechanical violation of the equivalence principle. At sufficiently high energies,
we see that all cross sections tend to the photon limit of σabs = 27π(GMc−2)2.
As noted by Unruh, all particles travelling close enough to light speed, u ≈ 1,
see a black hole of roughly the same size, regardless of mass or spin.

Unruh also showed that in the low-energy limit, the Dirac cross section is 1/8
of the scalar cross section, and absorption is dominated by the lowest angular
momentum modes, |κ| = 1. In this limit he showed

σabs

(GMc−2)2
≈ 4π2(1 + u2)α

u2(1 − u2)1/2
{

1 − exp(−2πα(1 + u2)/u(1 − u2)1/2)
} . (31)

This proves to be an excellent fit to the numerical cross sections in the low-energy
regime, such as those shown in figure 3. A minimum-possible cross section can
be found by considering the α ∼ 0 limit of equation (31), which reduces to

σabs

(GMc−2)2
≈ 2π

u
. (32)

The minimum value of this occurs in the u = 1 limit, and figure 3 confirms that
the minimum cross section approaches 2π at low couplings.
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Figure 3: Quantum absorption cross sections in the λC ≫ rS limit. The plot
shows the absorption cross section as a function of energy, for small couplings,
α = Mm/mp

2 ≪ 1. In the low-energy region plotted here, the wavelength of the
Dirac particle is large compared to the black hole event horizon. Absorption is
dominated by the lowest j = 1/2 angular momentum states (κ = 1,−1 states),
and the low-energy approximation of Unruh [7] is valid (see text). As α→ 0, the
minimum of the cross section approaches 2π (dotted line). In the high energy
limit, all cross sections return to the photon limit, 27π.
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6 Discussion

We have shown that the absorption cross section for a Dirac wave in a classical
Schwarzschild background can be calculated by matching ingoing solutions at
the horizon to appropriate asymptotic forms at infinity. The analysis proved
particularly simple in the Painlevé–Gullstrand metric, though we stress that the
cross sections calculated here do not depend on the particular choice of gauge.
Furthermore, antiparticle solutions are be generated from particle solutions by
the transformation

(u1, u2, E, κ) 7→ (u∗1, u
∗
2,−E∗,−κ). (33)

It follows that the absorption cross section is invariant under charge conjugation.
In the large-α limit (RS ≫ λ) we find that the cross section approaches the

classical prediction of equation (3). When α ∼ 1 (RS ∼ λ) we observe energy-
dependent oscillations about the classical value in the σ-vs-E plot (figure 1).
Oscillations of this nature were previously found by Sanchez for the massless
scalar wave. The form of the oscillations depends onm, so represents a quantum-
mechanical violation of the equivalence principle (figure 2).

In the low-energy regime, the j = 1/2 cross section (31) given by Unruh
is an excellent fit to our numerical results. In the α → 0 (RS ≪ λ) limit we
see that the minimum-possible cross section approaches 2π(GMc−2)2. In the
high-energy limit, all cross sections eventually converge on the photon limit of
27π(GMc−2)2.
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