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Abstract

We study the scattering of massive spin-half waves by a Schwarzschild black hole using analytical

and numerical methods. We begin by extending a recent perturbation theory calculation to next

order to obtain Born series for the differential cross section and Mott polarization, valid at small

couplings. We continue by deriving an approximation for glory scattering of massive spinor particles

by considering classical timelike geodesics and spin precession. Next, we formulate the Dirac

equation on a black hole background, and outline a simple numerical method for finding partial

wave series solutions. Finally, we present our numerical calculations of absorption and scattering

cross sections and polarization, and compare with theoretical expectations.
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I. INTRODUCTION

Scattering by gravitational sources has been an important test for General Relativity since

its inception. An early success for Einstein’s theory came with verification of the prediction

that starlight is deflected as it passes close to the Sun. The experiments conducted by

Eddington and his team during the solar eclipse of 1919 were important in establishing GR

as a credible theory of gravitation. More recently, gravitational lensing observations provide

a strong test of the theory, as well as information about lensing mass distributions and

distant astronomical sources.

Gravitational scattering from astrophysical objects may be understood entirely in terms

of geometric optics through the analysis of classical geodesics. Nevertheless, to obtain a

deeper theoretical understanding of extreme objects such as black holes many authors have

also considered the scattering of coherent waves. If the wavelength of the incident wave is

comparable with the size of the event horizon then the wave will be diffracted by the black

hole. Diffraction effects are responsible for many interesting phenomena in nature, such as

glories and rainbows, so wave scattering from black holes is an interesting field in its own

right, even if observations may not be realisable in practice.

In this paper, we study how quantum waves are scattered by a Schwarzschild black hole.

This problem has been considered in numerous papers [1]–[14] and books [15, 16, 17]. Most

authors study the massless scalar wave (with spin s = 0) for its mathematical simplicity, or

massless electromagnetic (s = 1) and gravitational (s = 2) waves for physical relevance. In

this paper, we focus instead on fermion scattering (s = 1/2), which has been less frequently

discussed [16]. We investigate the effect of particle mass on scattering cross sections and

polarization.

The interaction of an incident plane wave with a black hole may be understood in terms

of three quantities: the total absorption cross section σA, the differential scattering cross

section dσ/dΩ, and the polarization P that is induced in initially unpolarized beam (note

that dσ
dΩ

and P are functions of the scattering angle θ). In this paper we calculate these

quantities using a variety of analytical and numerical methods.

The paper is organised as follows. In section II we review classical scattering on the

Schwarzschild background. We derive a new approximation for near-horizon deflection of

timelike geodesics, and investigate classical spin precession on backward-scattering orbits.
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In section III we describe analytic methods that can be applied to fermion scattering. The

perturbation-theory approach introduced by Doran and Lasenby [14] is taken to the next

order, which provides a new estimate of the cross section and polarization at low couplings.

The glory-scattering approximation of Zhang and DeWitt-Morette [9] is extended to the

massive case, employing the classical results of section II. In section IV we discuss partial

wave scattering theory, formulate the Dirac equation, and outline a simple numerical method

for calculating phase shifts. In section V we present the results of our numerical calculations,

and compare with theory. We conclude in section VI by discussing the significance of our

results and possible future work.

Note that in this article we employ units in which the speed of light (c), the gravitational

constant (G), and Planck’s constant over 2π (~) are set to unity.

II. CLASSICAL SCATTERING

We begin by reviewing some results for classical scattering and absorption on a

Schwarzschild background. We then investigate the precession of classical spin vectors along

scattering trajectories. As well as being of interest in their own right, the results of this

section will aid our interpretation of the wave scattering cross sections presented in section

V. The results of this section are also required in section III to derive a new approximation

for glory scattering of massive spinor waves.

The Schwarzschild spacetime is invariant under time-displacement and rotation. These

symmetries imply the existence of Killing vectors, and the quantities conjugate to those

Killing vectors are conserved along geodesics. That is, the particle energy E, and angular

momentum L, are constants of motion.

The motion of a particle of rest mass m on a Schwarzschild background is described by

the orbital equation

(

du

dφ

)2

= 2Mu3 − u2 +
2Mm2

L2
u+

E2 −m2

L2
, (1)

where u = 1/r, and φ is the polar angle. For descriptive purposes it is useful to define three

further constants: the momentum p = (E2−m2)1/2, the impact parameter b = L/p, and the

speed v = p/E. At large distances from the hole, each has a simple physical interpretation:

p is the incident particle momentum, b is the orthogonal distance to the scattering centre,
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and v is the particle speed in units of c. Note that for null geodesics, v = 1 and p = E.

With these definitions we may rewrite the orbital equation (1) as

(

du

dφ

)2

= 2Mu3 − u2 +
2M(1 − v2)

v2b2
u+

1

b2
. (2)

The unbound scattering solutions of (2) can be written in terms of elliptic integrals. For a

comprehensive treatment, see Chandrasekhar [15].

A. Deflection-angle Approximations

In the weak-field limit, r ≫ 2M , the deflection angle for timelike geodesics is approxi-

mately

∆φ ≈ 2M(1 + v2)

bv2
. (3)

For null geodesics we set v = 1 to recover the Einstein deflection angle for the bending of

light, ∆φ ≈ 4M/b. In the strong-field regime, the above approximation underestimates the

deflection; incoming geodesics may be scattered through large angles or even orbit the hole

several times before escaping (see Fig. 1). Trajectories that make too close an approach to

the hole spiral inwards, and end on the singularity. The last geodesic to avoid the singularity

defines a critical impact parameter bc. All geodesics with b > bc are scattered, whereas all

geodesics with b < bc are absorbed. By considering the zeros of (2), one can show (see e.g.

[18]) that

bc =
M√
2v2

(

8v4 + 20v2 − 1 + (1 + 8v2)3/2
)1/2

. (4)

For null geodesics, the critical impact parameter is bc = 3
√

3M . The classical absorption

cross section is simply the area of the circle defined by the critical impact parameter, σA =

πbc
2.

Many years ago, Darwin [19] derived an approximation for the deflection of null (massless)

rays that pass close to the critical orbit. He found that the deflection angle Θ is related to

the impact parameter b by the equation

b− bc = 216 × 3
√

3M

(√
3 − 1√
3 + 1

)2

e−πe−Θ ≈ 3.48Me−Θ. (5)

Using the same techniques, an approximation for the deflection of timelike (massive)

geodesics can be derived. This calculation is outlined in Appendix A, and the result is
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FIG. 1: (a) Photon geodesics around a Schwarzschild black hole, M = 1, close to the critical impact

parameter bc = 3
√

3M ≈ 5.196M . The inner circle shows the event horizon at r = 2M , and the

outer circle shows the unstable photon orbit at r = 3M . (b) Deflection angle φ as a function of

impact parameter b. The plot compares the scattering angle with (i) the Einstein deflection angle

4M/b, valid when b ≫ bc, and (ii) Darwin’s approximation, b ≈ 3
√

3M + 3.48Me−φ, valid when

b ∼ bc.

b−bc = M
213/2e3c(ec + 3)3/2

v(ec + 1)5/2

(

1 −
√

(ec − 1)/2ec

1 +
√

(ec − 1)/2ec

)2

exp

(

−π
√

2ec

ec + 3

)

exp

(

−
√

2ec

ec + 3
Θ

)

,

(6)

where ec = (1 + 8v2)1/2. This result reduces to equation (5) in the case v = 1.

A classical scattering cross section may be derived by considering a stream of parallel

incident geodesics, as shown by Collins, Delbourgo and Williams [20]. Geodesics passing

close to the critical orbit are scattered through angles that may be many multiples of 2π, so

the total cross section is an infinite sum,

dσ

dΩ
=

1

sin θ

∑

b(θ)

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

, (7)

where the sum is taken over angles θ, 2π − θ, 2π + θ, 4π − θ, etc. The cross section is

divergent in the forward direction, dσ/dΩ ≈ 4v−4(1+ v2)2M2θ−4 [20], due to the long-range

nature of the interaction. It is also divergent (but integrable) in the backward direction,

dσ/dΩ ∝ |π− θ|−1, because the element of solid angle tends to zero on-axis. The behaviour

of the cross section close to θ = 0 and θ = π may be understood using the approximations (3)
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FIG. 2: Classical scattering cross sections for a range of particle speeds. The cross sections diverge

on-axis at θ = 0 and θ = π as dσ
dΩ ≈ 4v−4(1 + v2)2M2θ−4 and dσ

dΩ ∼ |π − θ|−1 respectively.

and (6) given above, and at intermediate angles it may be found by numerically integrating

the elliptic equations. The result is plotted in Fig. 2 for a range of particle speeds.

B. Spin Precession

In the next section (III) we derive a semi-classical approximation to the massive fermion

scattering cross section in the backward direction. To do this, we must first consider how

the spin of the particle is affected by the gravitational interaction. For a massless wave,

this is straightforward, as the helicity of the Dirac spinor remains unchanged. For a massive

wave, the situation is substantially more complicated. However, progress can be made by

considering the precession of the classical spin vector. We can then apply a semi-classical

argument to relate the classical spin vector to the Dirac spinor itself in the λ≪ rs limit.

We begin by introducing an angular momentum four-vector sµ with components

[st, sr, sθ, sφ], where t, r, θ, φ are the coordinates of the standard Schwarzschild metric gµν .

The four-vector sµ is spacelike, normalised, and orthogonal to the velocity vµ. Classically,

angular momentum is parallel-transported along the geodesic, that is, ṡµ + Γµ
νλv

νsλ = 0.

Inserting the standard Schwarzschild connection coefficients, and applying the orthogonality

condition, we find the precession equations can be written as a pair of coupled first order

6



equations
ds̄φ

dφ
+ sr = 0,

dsr

dφ
− (1 − 3M/r)s̄φ = 0, (8)

where s̄φ = rsφ. Alternatively they can be combined in a simple second-order equation

d2s̄φ

dφ2
+

(

1 − 3M

r

)

s̄φ = 0. (9)

Now let us investigate a specific case, in which the spin vector is initially aligned with

the direction of motion. At infinity, where u = 0, we start with initial conditions sr = −γ
and s̄φ = 0, where γ = (1 − v2)−1/2. The solutions to the precession equations may then be

written as

s̄φ(u) =
(

1 + u2/η2
)1/2

sinχ(u)

sr(u) = − γ
(

1 + u2/η2
)−1/2

cosχ(u)

− (u/η2)
(

1 + u2/η2
)−1/2 (

2Mu3 − u2 + 2Mη2u+ 1/b2
)1/2

sinχ(u), (10)

where η = (γbv)−1 and

χ(u) = γ

∫ u

0

(

1 + w2/η2
)−1 (

2Mw3 − w2 + 2Mη2w + 1/b2
)−1/2

dw. (11)

For comparison, the scattering angle can be written in similar form as

φ(u) =

∫ u

0

(

2Mw3 − w2 + 2Mη2w + 1/b2
)−1/2

dw. (12)

Equations (11) and (12) can be expressed in terms of elliptic functions, but we prefer to

solve them numerically here.

In the next section we discuss glory scattering, which is related to the classical orbits

that emerge in the backwards direction. We are particularly interested in the angle ξ that

the classical spin vector makes with the outgoing radial direction, in the rest frame of the

particle. For a clockwise orbit, we define

ξ ≡ lim
r→∞

(

tan−1

(−s̄φ

sr/γ

))

= 2χ∞ − π, (13)

where χ∞ = χ(u0), and u0 = 1/r0 is found from the radius of closest approach for the 180◦

orbit. The vectors and angles in Eq. (13) are illustrated in Fig. 3(a). Figure 3(b) plots ξ

for the backward-scattering orbit as a function of particle velocity, and demonstrates that ξ

decreases monotonically as v increases, from ξ = π at v = 0, to ξ = 0 at v = 1.
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FIG. 3: Spin precession around a 180◦ orbit. (a) Depicting the precession angle ξ. Here, pi and pf

are the initial and final momentum directions, and si and sf are the initial and final spin directions

in the rest frame of the particle. (b) The precession angle ξ (solid line) as a function of particle

velocity v. The dotted line is for reference only.

III. SPINOR SCATTERING: ANALYTIC RESULTS

In this section we review some approaches to calculating the fermionic cross sections for

black hole scattering. The appropriate method depends on the ratio of the black hole size

to particle wavelength. A convenient dimensionless measure of the gravitational coupling is

ǫ =
GME

~c3
=
πrS

λv
(14)

where rS is the Schwarzschild radius, and λ = h/p is the wavelength of the quantum particle.

Reverting to natural units, we see that ǫ = ME, which we use to label our figures.

A. Low-coupling scattering cross sections: Perturbation theory

In a recent paper [14], Doran and Lasenby showed that the fermion scattering cross

section can be expanded as a perturbation series. In effect, they calculated the gravitational
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analogue of the Mott formula for scattering from a Coulomb potential. The series takes the

form
dσ

dΩ
=

(

GM

c2

)2
[

a0(v, θ) + ǫa1(v, θ) + ǫ2a2(v, θ) + . . .
]

, (15)

with ǫ as defined above, and ai(v, θ) dimensionless functions. The perturbation series ap-

proach is most appropriate in the long-wavelength limit, when ǫ ≪ 1. Doran and Lasenby

showed that the first-order term a0 is gauge-invariant and equal to

a0(v, θ) =
1 + 2v2 − 3v2 sin2(θ/2) + v4 − v4 sin2(θ/2)

4v4 sin4(θ/2)
. (16)

In the massless limit (v → 1), this reduces to the unpolarized Mott scattering formula. The

cross section will tend to the first-order result (16) in the long wavelength limit, as rS/λ→ 0.

In Appendix B we show how to calculate the next term in the perturbation series in the

Kerr-Schild gauge. We find

a1(v, θ) =
π
[

(3 + 4v2 + v4)(2 − | sin(θ/2)|) − (7v2 + v4) sin2(θ/2)
]

4v3| sin(θ/2)|3 . (17)

The equivalent result for Coulomb scattering was successfully calculated by Dalitz [21] many

years ago. The second order matrix element also allows the calculation of the degree of

polarization P induced in an initially unpolarized beam. The net polarization is in the

direction orthogonal to the plane of scattering, pi × pf . To first order,

P =

(

GMm

~c

)

v(3 + v2) tan2(θ/2) ln(sin2(θ/2))

2
[

1 + 2v2 − 3v2 sin2(θ/2) + v4 − v4 sin2(θ/2)
] sin θ (18)

where we have included the dimensional constants for clarity. The confirmation of the

gauge-invariance of results (17) and (18) awaits further work. In section V we compare the

perturbation series and polarization with numerical results.

B. Higher-coupling scattering cross sections: Glory and spiral scattering

Many authors [8, 10, 11] have noted that black hole wave scattering produces diffraction

effects that are familiar from optical phenomena. Two such effects are glory and spiral

scattering. A glory is a bright spot or halo that appears on-axis in the backward direction

from the scatterer. Spiral scattering, or orbiting, creates oscillations in scattered intensity

at intermediate scattering angles. In a general analysis of semi-classical scattering, Ford and

Wheeler [22] showed that both effects may be understood with reference to the deflection of
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classical paths. A glory occurs whenever the deflection angle passes through a multiple of

π, and spiral scattering occurs when paths orbit the scattering centre multiple times. For a

discussion of the application of semi-classical techniques to the black hole case, see [11] or

[16].

Ford and Wheeler [22] derived a semi-classical approximation of the glory scattering cross

section for scalar (s = 0) waves. This approximation was extended to arbitrary spins by

Zhang and DeWitt-Morette in [9] using path integral methods. For massless waves, the

backward glory cross section is approximated by

dσ

dΩ

∣

∣

∣

∣

glory

≈ 2πEbg
2

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

θ=π

J2s
2(Ebg sin θ), (19)

where s is the spin of the particle, J2s is a Bessel function, and bg is the impact parameter

at which θ = π. In combination with Darwin’s result (5) for the deflection of a massless

particle that passes close to the horizon, we have bg ≈ 5.3465M , and |db/dθ| = 0.1504M , so

M−2 dσ

dΩ

∣

∣

∣

∣

glory

≈ 2πEM × 4.30 × J2
2s(5.3465EM sin θ). (20)

For the scalar wave, the intensity has a peak in the backwards direction, whereas for the

spinor wave the intensity is zero on-axis.

We now derive a similar approximation for the massive spin-half case, by taking into

account the effects of classical spin precession. Let us begin by considering a backward-

scattering orbit defined by pi = ẑ = −pf , that lies in the φz plane. As we saw in Section

IIB, the classical spin vector is rotated by an angle of 2χ∞ around this orbit. The quantum

spin vector, on the other hand, is found by the double-sided action of the Dirac spinor,

sµ = 〈ψ|γ̂µγ̂5|ψ〉, where γ̂µ are the standard Dirac-Pauli matrices. Assuming that the

classical and quantum spin vectors coincide in the classical limit, λ/rs → 0, we conclude

that, in the rest frame, the Dirac spinor must transform according to

ψf ∝
(

cos(χ∞)Î + sin(χ∞)γ̂φγ̂3

)

ψi (21)

where Î is the identity matrix, and γ̂φ = − sinφγ̂1 + cosφγ̂2. Now consider the cross section

on-axis. Following the arguments of Zhang and DeWitt-Morette [9], we note that there is a

circular degeneracy here, and that paths from all scattering planes will interfere coherently.

Around the circle 0 ≤ φ < 2π, the γ̂φγ̂3 term of (21) sums to zero, and the intensity on-axis is

therefore proportional to cos2(χ∞). Since it is the spinors, rather than the vectors, that are
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summed coherently, the half-angle of precession arises naturally. The arguments of Zhang

and DeWitt-Morette can be extended in a straightforward way to derive an approximation

for angles close to π, leading to

dσ

dΩ

∣

∣

∣

∣

glory

≈ 2πEvb2
∣

∣

∣

∣

db

dθ

∣

∣

∣

∣





cos2(χ∞)J0
2(Ebv sin θ)

+ sin2(χ∞)J1
2(Ebv sin θ)



 . (22)

Finally, we may use (6) to evaluate b at Θ = π, and substitute into the above result.

Alternatively, we may choose to evaluate bg numerically for a more accurate result. In

section V we compare both approaches with our numerical results.

IV. SPINOR WAVE SCATTERING

Before considering the Dirac equation on a Schwarzschild black hole background, we first

discuss the general theory of relativistic spin-half scattering from a spherically-symmetric

source.

A. Scattering from a spherically-symmetric source

In considering spherically-symmetric scattering we will employ the two-component spher-

ical spinors χµ
κ that are eigenvectors of the angular equation

(σ · L̂ + 1)χµ
κ = κχµ

κ, (23)

where L̂ = [L̂x, L̂y, L̂z] is the angular momentum operator, and the components of σ =

[σx, σy, σz] are Pauli spin matrices. Angular states are labelled by the eigenvalue κ which is

related to the overall angular momentum j by

κ = ±(j +
1

2
) =







l + 1 where l ≡ j − 1/2

−l where l ≡ j + 1/2
. (24)

Note that our sign convention for κ may differ from the literature [23]. Explicitly, the

spherical spinors are

χµ
κ(θ, φ) = Sκ

∑

m=±1/2

C(l 1
2
j;µ−m,m)Y µ−m

l (θ, φ)χm, (25)

11



where Sκ = κ/|κ|, C(j1j2jtot;m1m2) are the Clebsch-Gordan coefficients, Y m
l (θ, φ) are spher-

ical harmonics, and χm are the spin-up and spin-down spinors, χ
1

2 = [ 1
0 ] and χ− 1

2 = [ 0
1 ].

The positive and negative κ spinors are related by

σrχ
µ
κ = χµ

−κ, (26)

where σr = r−1
∑

i x
iσi.

Consider, first, the free-particle Dirac equation, iγ̂µ∂µΨ−mΨ = 0. It admits plane wave

solutions; for example, a plane wave propagating in the z direction can be written as

Ψ±
plane =





χ±

p
E+m

σzχ
±



 eipze−iEt. (27)

It also admits separable solutions in spherical coordinates of the form

Ψµ
κ =

1

r





u1(r)χ
µ
κ

u2(r)χ
µ
−κ



 e−iEt, (28)

where u1(r) and u2(r) are radial functions, and χµ
κ the Pauli two-component spherical spinors

(25). The free particle radial equations can be written in matrix form as

d

dr





u1

u2



 =





κ/r i(E +m)

i(E −m) −κ/r









u1

u2



 , (29)

and their solutions are spherical Bessel functions

u
(κ)
1 (r) = rjl(pr), u

(κ)
2 (r) =

ipSκ

E +m
rjl(pr), (30)

where l = l+Sκ. The plane wave solution (27) can be written as a sum of spherical solutions

(28), as

Ψm
plane = e−iEt(4π)1/2

∑

κ 6=0

il(2l + 1)1/2C(l 1
2
j; 0m)

1

r





u
(κ)
1 χm

κ

u
(κ)
2 χm

−κ



 . (31)

The asymptotic behaviour of the radial solutions is found by noting

jl(pr) →
1

pr
sin

(

pr − lπ

2

)

, as r → ∞. (32)

When an interaction is introduced, the unperturbed plane wave is no longer an eigenstate

of the Hamiltonian. Instead we look for a time-independent solution with the asymptotic

behaviour

Ψ → Ψplane +
C

r
eipre−iEt, (33)

12



where C is a four-component spinor to be determined. Asymptotically, the wave function

is interpreted as the sum of an incident plane wave and a radially-outgoing scattered wave.

The effect of an interaction is to introduce phase shifts into the asymptotic solution (32). We

define an interaction phase shift δκ by comparing the asymptotic solution with the free-space

form (32),

u
(κ)
1 (r) → p−1 sin

(

pr − lπ

2
+ δκ

)

, as r → ∞. (34)

An expansion of the form (33) is only strictly valid if the interaction is localised. In a long-

range potential, such as the Coulomb 1/r potential, the asymptotic solutions are modified by

the presence of a radially-dependent phase factor. The same is true in a gravitational field,

as we show in the next section. The extra phase factor means that incident plane waves are

distorted by the presence of the potential even at infinity. However, the extra phase shift

is independent of κ, so does not contribute to δκ and the phase difference between partial

waves.

Let us now assume that the wave is incident along the z-axis, and is in a superposition

of spin-up and spin-down states, with upper components

∑

m=± 1

2

cmχ
m =





c 1

2

c− 1

2



 . (35)

We now construct a partial wave series with asymptotic form (33). For clarity we need only

consider the upper components of the scattered wave, given by

Upper(C) =
∑

mτ

cmB
m
τ χ

τ , (36)

where

Bm
τ =

(4π)1/2

2ip

∑

κ

(2l + 1)1/2(e2iδκ − 1)C(l 1
2
j; 0m)C(l 1

2
j;m− τ, τ)Y m−τ

l (pf ). (37)

Using the properties of Clebsch-Gordan coefficients, it is straightforward to show that B
1/2
1/2 =

B
−1/2
−1/2 . The scattered wave spinor can be written as A

∑

m cmχ
m, where A is a transition

amplitude matrix, with components

A =





B
1/2
1/2 B

−1/2
1/2

B
1/2
−1/2 B

−1/2
−1/2



 = f(θ) + ig(θ)σ · n̂. (38)

13



Here, f and g are complex amplitudes, and it can be shown (see, for example, [23]) that

the rotation vector n̂ is orthogonal to both the incident and scattered direction, n̂ = pi ×
pf/|pi × pf |. The scattered intensity from an unpolarized beam is the sum of the squares

of the amplitudes,
dσ

dΩ
= |f |2 + |g|2. (39)

In terms of phase shifts, the scattering amplitudes are

f(θ) =
1

2ip

∑

l=0

[

(l + 1)(e2iδl+1 − 1) + l(e2iδ
−l − 1)

]

Pl(x) (40)

g(θ) =
1

2ip

∑

l=0

(e2iδl+1 − e2iδ
−l)P 1

l (x). (41)

where x = cos θ. There are two limiting cases to consider. First, in the non-relativistic limit

we expect the interaction to depend only on orbital angular momentum (l). In this case,

we expect δl+1 ≈ δ−l, and the spin is then unchanged by the interaction, and we recover the

non-relativistic scattering series (2ip)−1
∑

l=0(2l + 1)e2iηlPl(x) (where ηl = δl+1 = δ−l).

Second, in the highly-relativistic regime E ≫ m, the phase shifts instead depend only on

total angular momentum (j), and so δκ ≈ δ−κ. Then, for θ 6= 0,

f(θ) ≈ 1

2ip

∑

l=0

(l + 1)e2iδl+1 [Pl+1(x) + Pl(x)] (42)

g(θ) ≈ 1

2ip

∑

l=0

e2iδl+1

[

P 1
l (x) − P 1

l+1(x)
]

(43)

Using the properties of the Legendre polynomials, it is straightforward to show (eg. Mott

[24]) that

g = tan(θ/2)f (44)

in the relativistic limit. Physically, this implies that the helicity of a massless wave remains

unchanged by the interaction.

If the particle has mass then the scattered beam may become partially polarized by the

interaction. The degree of polarization P induced in an initially unpolarized beam is

P = −ifg
∗ − f ∗g

|f |2 + |g|2 (45)

in the direction n̂. This effect is known as Mott polarization, and is well known for the

Coulomb interaction of an electron with a nucleus. Conversely, if the incident beam is already

partially polarized (with polarization vector P ) then the wave is scattered asymmetrically,

with asymmetry factor PP · n̂.
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B. The Dirac equation on a Schwarzschild background

We now consider the Dirac equation on a Schwarzschild spacetime. Before starting, we

must choose an appropriate coordinate system. A disadvantage of standard Schwarzschild

coordinates is that they are valid only in the exterior region, r > 2M . Geodesics do not cross

the horizon in a finite Schwarzschild coordinate time, and all solutions to the wave equation

are singular at the horizon. Here, we prefer to work with coordinate systems that remove

the coordinate singularity at r = 2M . Two possibilities are advanced Eddington-Finkelstein

coordinates, with metric

ds2 = (1 − 2M/r)dt2 − (4M/r)dt dr− (1 + 2M/r)dr2 − r2dΩ2, (46)

and Painlevé–Gullstrand coordinates [14, 25], with metric

ds2 = (1 − 2M/r) dt2 −
√

8M/rdt dr − dr2 − r2dΩ2. (47)

Both coordinate systems deal smoothly with the horizon, and cover regions I and III of the

Penrose diagram of the fully extended Kruskal manifold [26]. For a discussion of gauge-

invariance and the choice of coordinates, see [27].

The time coordinate of the Painlevé-Gullstrand (PG) system has a simple physical in-

terpretation. It corresponds to the proper time as measured by a observer in freefall who

starts from rest at infinity. For this reason, we now formulate the Dirac equation on a black

hole background described by PG coordinates.

We let {γ0, γ1, γ2, γ3} denote the gamma matrices in the Dirac–Pauli representation, and

introduce spherical polar coordinates (r, θ, φ). From these we define the unit polar matrices

γr = sinθ(cosφ γ1 + sinφ γ2) + cosθ γ3 ,

γθ = cosθ(cosφ γ1 + sinφ γ2) − sinθ γ3 ,

γφ = − sinφ γ1 + cosφ γ2. (48)

In terms of these we define four position-dependent matrices {gt, gr, gθ, gφ} by

gt = γ0 +

√

2M

r
γr , gθ = rγθ ,

gr = γr , gφ = r sinθγφ. (49)
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These satisfy the anti-commutation relations

{gµ, gν}+ = 2gµνI (50)

where gµν is the Painlevé–Gullstrand metric of equation (47). The reciprocal matrices

gt, gr, gθ, gφ are defined by the equation

{gµ, gν}+ = 2δµ
ν I, (51)

and both sets are well-defined everywhere except at the origin.

The Dirac equation for a spin-half particle of mass m is

igµ∇µψ = mψ, (52)

where

∇µψ = (∂µ +
i

2
Γαβ

µ Σαβ)ψ, Σαβ =
i

4
[γα, γβ]−. (53)

The components of the spin connection are found in the standard way [28] and are particu-

larly simple in the Painlevé–Gullstrand gauge [27],

gµ i

2
Γαβ

µ Σαβ = − 3

4r

√

2M

r
γ0. (54)

An advantage of our choice of metric is that the Dirac equation can now be written in a

manifestly Hamiltonian form

i6∂ψ − iγ0

(

2M

r

)1/2(
∂

∂r
+

3

4r

)

ψ = mψ, (55)

where 6∂ is the Dirac operator in flat Minkowski spacetime. The interaction term is non-

Hermitian, as the singularity acts as a sink for probability density, making absorption pos-

sible.

The Dirac equation is separable in time, with solutions that go as exp(−iEt). The energy

E conjugate to time-translation is independent of the chosen coordinate system, and has a

physical definition in terms of the Killing time [27]. We exploit the spherical symmetry to

separate the spinor into

ψ =
e−iEt

r





u1(r)χ
µ
κ(θ, φ)

u2(r)χ
µ
−κ(θ, φ)



 (56)
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The trial function (56) results in a pair of coupled first-order equations

(1 − 2M/r)
d

dr





u1

u2



 =





1
√

2M/r
√

2M/r 1





·





κ/r i(E +m) − (2M/r)1/2(4r)−1

i(E −m) − (2M/r)1/2(4r)−1 −κ/r









u1

u2



 . (57)

The equations have regular singular points at the origin and horizon, and an irregular

singular point at r = ∞. Analytic solutions to radial equations of this nature have been

investigated by Leaver [29] and others [30]. Here, we prefer to use series solutions around

the singular points as initial data for a numerical integration scheme.

C. Series Solutions and Boundary Conditions

As is clear from (57), there is a regular singular point in the coupled equations at the

horizon, r = 2M . We look for series solutions

Uhor =





u1

u2



 = (r − 2M)s
∞
∑

n=0





an

bn



 (r − 2M)n (58)

where s is the lowest power in the series, and an, bn are coefficients to be determined. On

substituting into (57) and setting r = 2M we obtain an eigenvalue equation for s, which has

solutions

s = 0 and s = −1
2

+ 4iME. (59)

The regular root s = 0 ensures that we can construct solutions which are finite and con-

tinuous at the horizon. Regular solutions automatically have an ingoing current at the

horizon. The singular branch gives rise to discontinuous, unnormalisable solutions with

an outgoing current at the horizon [31]. We therefore restrict attention to the regular,

physically-admissable solutions. The eigenvector for the regular solution is





a0

b0



 =





κ− 2iM(E +m) + 1/4

κ+ 2iM(E −m) − 1/4



 . (60)

In order to expand about infinity we need to take care of the irregular singularity present

there. There are two sets of solutions, U
(out)
∞ and U

(in)
∞ , which asymptotically resemble
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outgoing and ingoing radial waves with additional radially-dependent phase factors. To

lowest order,

U (out)
∞ = eiprei(φ1+φ2)





1

p/(E +m)





U (in)
∞ = e−iprei(φ1−φ2)





1

−p/(E +m)



 (61)

where the phase factors φ1(r), φ2(r) are given by

φ1(r) = E
√

8Mr, φ2(r) =
M

p

(

m2 + 2p2
)

ln(pr). (62)

The general solution as r → ∞ is a superposition of the ingoing and outgoing waves,

U =







U
(in)
hor r → 2M

Ain
κ U

(in)
∞ + Aout

κ U
(out)
∞ r → ∞

(63)

for each angular mode. The magnitudes of Ain
κ and Aout

κ determine the amount of scattered

and absorbed radiation present. The phase shift δκ is given by their ratio,

e2iδκ = (−1)l+1A
out
κ

Ain
κ

. (64)

D. Numerical Method

To calculate the scattering amplitude we must first determine the phase shifts. Various

analytical methods for calculating phase shifts have been successfully applied to the black

hole scattering problem, for waves of spin s = 0 and s = 2. [10, 11, 12, 32]. Here we calculate

the phase shifts using a numerical method. It is a relatively straightforward task to inte-

grate the radial equation (57) and apply the ingoing boundary conditions (63) to compute

the phase shifts defined by (64). We determine the ingoing and outgoing coefficients Ain
κ and

Aout
κ by matching the horizon solution onto the infinity solution. In practice, this involves

choosing two boundary points rmin and rmax, close to the horizon and infinity respectively.

We start at rmin with series solution Uhor(rmin), and integrate out to rmax where we com-

pare the numerical solution with the asymptotic form Ain
κ U

(in)
∞ (rmax)+Aout

κ U
(out)
∞ (rmax). The

phase shift calculated by this method is independent of our choice of rmin and rmax, provided
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that they are sufficiently close to the boundary points. The phase shift should also be inde-

pendent of the choice of coordinates. We repeated our analysis using Eddington-Finkelstein

coordinates to check the numerical accuracy of our results.

For the scalar wave in the large-l limit [16] the phase shifts approach “Newtonian” values

which arise in a strict 1/r potential,

e2iδN

l =
Γ(l + 1 − iβ)

Γ(l + 1 + iβ)
, (65)

where β = M(2E2 − m2)/p = ME(1 + v2)/v. Phase shifts of this form also occur in the

non-relativistic Coulomb scattering problem (see, for instance, [24]), with βC = Zαm/p. It

is well known that the problem of non-relativistic Coulomb scattering can be solved exactly

in parabolic coordinates (see, for example, [33]). The pure-Newtonian phase shift series

defined by

fN (θ) =
1

2ip

∑

l=0

(2l + 1)

[

Γ(l + 1 − iβ)

Γ(l + 1 + iβ)
− 1

]

Pl(cos θ) (66)

can be summed using the Coulomb result to

fN (θ) =
β

2p

Γ(1 − iβ)

Γ(1 + iβ)
[sin(θ/2)]−2+2iβ . (67)

It is more difficult to sum the series (66) directly, because it is poorly convergent. This is

related to the fact that an infinite number of Legendre polynomials are required to describe

the divergence at θ = 0. Many years ago, Yennie, Ravenhall and Wilson [34] outlined one

possible way around this problem. Given a Legendre polynomial series

f(θ) =
∑

l=0

a
(0)
l Pl(cos θ) (68)

that is divergent at θ = 0, one may define the mth reduced series,

(1 − cos θ)mf(θ) =
∑

l=0

a
(m)
l Pl(cos θ). (69)

The reduced series is obviously less divergent at θ = 0, so one may hope that the re-

duced series converges more quickly. Using the properties of the Legendre polynomials, it is

straightforward to show that the new coefficients ai+1
l are related to the old coefficients ai

l

by the iterative formula

a
(i+1)
l = a

(i)
l − l + 1

2l + 3
a

(i)
l+1 −

l

2l − 1
a

(i)
l−1. (70)

We have found that this to be an excellent method for summing the series numerically, and

that two or three iterations are sufficient.
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V. NUMERICAL RESULTS

In this section we present the results of our numerical calculations, and compare with

theoretical expectations outlined in sections II and III.

A. Absorption Cross Sections

The existence of an ingoing current at the horizon implies that flux is absorbed by the

black hole. The absorption cross section σA is defined as ratio of the absorbed and incident

fluxes. For the spin-half wave,

σA =
π

p2

∑

κ 6=0

|κ|
(

1 − |e2iδκ |2
)

. (71)

At low energies, absorption is dominated by the j = s mode. For massless waves, the

low energy limits are: (i) σA = 16πM2 for s = 0, (ii) σA = 2πM2 for s = 1/2, (iii)

σA = 64
3
π(ME)2M2 for s = 1, and (iv) σA = 256

45
π(ME)4M2 for s = 2 (see [35]). Note

that the low-energy scalar and spinor cross sections are proportional to the black hole area,

whereas the electromagnetic and gravitational cross sections tend to zero in this limit.

The massless scalar and fermion cross sections are shown in the left panel of Fig 4. For

massive particles, the cross section diverges in the low energy limit, as shown in the right

panel of Fig 4. In all cases, the cross section approaches the geometrical optics value of

σA = 27πM2 in the high-energy limit. For more details on the absorption cross sections of

massive spin-half particles, see Doran et al. [36].

B. Scattering at low couplings, λ ≫ rs

In section III we outlined our expectations for scattering at low couplings. We now

test them numerically. Figure 5 compares the perturbation series (15) with a numerically-

calculated cross section, at ME = 0.04 and v = 0.6. It is clear that the approximation is

improved by the inclusion of the second-order term, Eq. (17).

Figure 6 compares the perturbation results with the numerical calculations across a range

of values of ME and v. The first-order series (16) is shown as a dotted line, and the

second-order series (17) is shown as a dashed line. As expected, we find that the second-

order correction improves the fit, and the approximation is in excellent agreement when
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the left plot is logarithmic.

MEv ≪ 0.1. At higher couplings, the truncated perturbation series is still accurate for

small scattering angles, but it fails to predict glory and spiral scattering oscillations. In this

regime, rs ∼ λ, a full numerical calculation is necessary.

The perturbation calculation also predicts the magnitude of Mott polarization, which we
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.

now test against numerical results. The first-order polarization is given by (18), whereas the

numerical polarization is determined by (45). Figure 7 compares the perturbation series and

numerical results for a low coupling, ME = 0.002. The left-hand plot (a) shows that there is

an order-of-magnitude agreement between the two results. Näively, in the limit ME → 0, we

would expect to find perfect agreement between the two. We do not observe this. However,

it is remarkable that we can obtain excellent agreement by artificially removing the effects

of absorption from the numerical results. If we set the imaginary part of the numerical

phase shifts to zero, we obtain the right-hand plot, Fig. 7(b). It is apparent therefore that

the perturbation method is somewhat flawed, as it does not account for absorptive effects.

This is related to the fact that, whereas plane waves form a complete basis for the hydrogen

atom, they do not form a complete basis on a black-hole spacetime. We discuss this problem
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[dotted] for ME = 0.002. (a) With absorption. The perturbation result (18) does not match the
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agreement with the perturbation result.

further in Section VI.

C. Scattering at higher couplings, λ ∼ rs

Figure 8 shows numerically-determined scattering cross sections for a massless fermion at

larger couplings. As expected, we observe spiral scattering oscillations, and a zero on-axis

in the backward direction. The magnitude of the oscillations, and their angular frequency,

increases with black hole mass. The zero in the backward direction can be verified by sub-

stituting Pl(π) = (−1)l into the partial wave series (42). The massless glory approximation

(20) of Zhang and DeWitt-Morette [9] proves a good fit to the numerical results close to

θ = 180◦, as shown in Fig. 9. It correctly predicts the approximate magnitude and angular

width of the oscillations.

The scattering cross sections for massless scalar and spinor waves are compared in Fig.

10. In the backward direction the scalar wave is at a maximum on-axis, whereas the spinor

wave is at a minimum, as predicted by the glory approximation. At intermediate angles,

the regular oscillations in the intensity of the scalar and spinor waves appear to be 180◦ out

of phase.
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FIG. 8: Glory scattering cross sections for the massless spin-half wave for various couplings ME ≡

GME/~c3.

Scattering cross sections for the massive spin-half wave are shown in Fig. 11. Here,

the solid line shows the partial-wave result, and the broken lines show the semi-classical

approximations to the glory (22). The dotted line is the result of using the modified Darwin

approximation (6), and the dashed line is calculated by integrating the orbit equations

numerically. It is clear that the numerical approach (dashed) provides the better fit. This

is because, for slower particles, we find bglory is too far from bc for the first-order Darwin

approximation to be sufficient. In general, the Darwin approximation underestimates the

magnitude of the glory.

Figures 12(a) and 12(b) show the magnitude of Mott polarization as a function of scatter-

ing angle, for a range of couplings. The relationship between polarization, scattering angle,

particle velocity, and black hole mass is not immediately obvious. However, Fig. 13 shows

that the oscillations in polarization are clearly related to the glory and spiral scattering

oscillations, suggesting a semiclassical model for Mott polarization may be possible. This

awaits further work.
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The solid line shows the numerical cross section. The dashed line shows the result of the semi-

classical approximation (22), and the dotted line shows the result of using the modified Darwin

approximation to estimate the glory impact parameter.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented an investigation into the scattering and absorption of

massive spin-half waves by a Schwarzschild black hole. We extended the approximations

of Darwin [19] and Zhang and DeWitt-Morette [9] to derive a semiclassical (λ ≪ rs) ap-

proximation for massive fermion glory scattering. We also took the perturbation analysis of

Doran and Lasenby [14] to next order, to derive new formulae for the scattering cross section

and Mott polarization in the low coupling limit, λ ≫ rs. Finally, we applied partial-wave

techniques to solve the Dirac equation on the Schwarschild spacetime, and presented our
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FIG. 13: Glory oscillations and polarization for ME = 2 and v = 0.9. (a) Partial polarization,

P . (b) Scattering cross section. The solid line shows the total cross section, and the dotted and

dashed lines show the contributions from the amplitudes f and g defined by Eq. (40) and (41).

numerical results. We showed that our approximations provide good fits to the numerical

results in the appropriate limits.

We showed that non-zero particle mass leads to a phenomenon familiar from electromag-

netic scattering: Mott polarization. This is a partial polarization created in the direction

orthogonal to the scattering plane. In the electromagnetic case, an estimate of the polariza-
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tion arises from the second-order term in the Born approximation [21]. In the gravitational

case, a similar estimate arises from our second-order perturbation analysis in the Kerr-Schild

gauge, Eq. (18). However, our estimate only agrees with the numerical calculation if we

artificially suppress black hole absorption (see Fig. 7). This highlights a shortcoming in the

Born approximation method: it cannot account for absorption effects. To see why, consider

the Hamiltonian form of the Dirac equation in PG coordinates, Eq. (55). As r → 0, all

solutions go as ψ ∼ r−3/4, and have a net ingoing current. Clearly, such solutions cannot

be described by a linear sum of plane waves used in the Born approximation. A related

observation is that the Hamiltonian is not Hermitian as probability flux is removed at the

origin [27]. It is not immediately clear how we extend the Born approximation to such open

systems. Despite such difficulties, however, we have seen that the Born approximation in

its present form provides a good fit to numerical scattering cross sections when λ≫ rs, and

it remains a useful tool.

One intriguing question raised by this work is: when, if ever, are fermion diffraction

patterns from black holes of physical relevance? Since diffraction effects are only significant

when rs ∼ λ, the question may be rephrased: do small black holes exist in nature? By

small, we mean black holes with an event horizon smaller than the Compton wavelength of

the lightest fermion (thought to be the electron neutrino). Recent experimental evidence

suggests that neutrinos have non-zero mass. A neutrino with a hypothetical mass mνe
∼ 0.01

eV has a Compton wavelength of 1 × 10−5 m, and this size corresponds to a black hole of

mass M ∼ 1022 kg. Black holes of this magnitude or smaller are unlikely to be created by

astrophysical processes; however, it is possible that small primordial black holes were created

in the early universe. An alternative scenario for small black hole genesis arises in recently-

proposed theories with Large Extra Dimensions [37]. If such theories are well-founded, it

is possible that black holes may one day be created at a particle accelerator (see [38] for a

review of these ideas).

Despite these possibilities, fermion diffraction patterns may never be observed. A more

physically-relevant problem is that of gravitational-wave scattering from rotating, large black

holes (M > 1030 kg). Previous studies of massless spin-two waves on the Kerr spacetime

have shown that the situation is complicated by effects including frame-dragging, spin-

rotation coupling, and superradiance. Futterman, Handler and Matzner [16] present s = 2

scattering cross sections for a special case: the alignment of black hole spin axis and incident
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wave momentum. However, we are not aware of a general analysis of off-axis gravitational

scattering, though progress has been made for the simpler spin-zero case [39]. We suggest

that a general study of spin-half scattering from a Kerr black hole would be a useful addition

to the literature, for two reasons. Firstly, Unruh [40] has shown that superradiance does not

occur for massless spin-half waves. Secondly, though we would expect to see the effects of

spin-rotation coupling, the fewer degrees of freedom in the s = 1/2 case will make the results

easier to interpret. Such a study would contribute to our understanding of gravitational-

wave scattering, as well as being interesting in its own right. We therefore hope to extend

the methods of this paper to the Kerr black hole in the near future.

APPENDIX A: NEAR-HORIZON SCATTERING APPROXIMATION

In [19], Darwin derived an approximation for the deflection Θ of an unbound massless

particle passing close to the horizon. Here we extend that calculation to the massive case,

where v < 1.

Following the approach of Chandrasekhar [15], we look for roots of the orbit equation

(2). For unbound orbits that avoid the singularity, the orbit equation has three three real

roots, u1 < 0, u3 > u2 > 0. The roots can be written in terms of the eccentricity e and latus

rectum l

u1 = −e− 1

l
, u2 =

e+ 1

l
, u3 =

1

2M
− 2

l
(A1)

where e and l satisfy

1 − µ(3 + e2)

Ml
=

1 − v2

v2b2
,

1

l2
(e2 − 1)(1 − 4µ) =

1

b2
, (A2)

and µ = M/l. Making the substitution u = (1 + e cosχ)/l in (2) yields

dχ

dφ
= (1 − 6µ+ 2µe)1/2

[

1 − k2 cos2(χ/2)
]1/2

(A3)

where

k2 =
4µe

1 − 6µ+ 2µe
(A4)

The variable χ runs from 0 ≤ χ ≤ χ∞ = cos−1(−e−1). The solutions of (A3) are elliptic

functions, and we can write the final angle as

φ∞ =
2

(1 − 6µ+ 2µe)1/2

[

K(k) − F (1
2
π − 1

2
χ∞, k)

]

(A5)
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The critical orbit occurs where u2 = u3, k = 1. Then

ec =
√

1 + 8v2 ,

lc = 2M(
√

1 + 8v2 + 3) ,

bc =

√

8v4 + 20v2 − 1 + (1 + 8v2)3/2M√
2v2

. (A6)

The critical parameters are functions of the particle speed v only and lie in the ranges

1 ≤ ec ≤ 3, 8M ≤ lc ≤ 12M , and 3M ≤ rmin ≤ 4M . We now consider orbits close to the

critical orbit, by expanding in a power series in δ = l − lc

l = lc + δ ,

e = ec +
4v2

(ec + 1)(ec + 3)

δ

M
,

b = bc +M
ec

2
√

2v(ec + 3)1/2(ec + 1)5/2

δ2

M2

k2 = 1 − 1

ec(ec + 3)

δ

M
. (A7)

Note that b varies only quadratically with δ. We employ the following approximations for

the elliptic functions

K(k) ≈ ln
4

(1 − k2)1/2
,

F (z, 1) ≈ 1
2
ln

(

1 + sin z

1 − sin z

)

, (A8)

and substitute into (A5). Finally, we define the deflection Θ = 2φ∞−π to obtain result (6).

APPENDIX B: SECOND-ORDER BORN SERIES

Doran and Lasenby [14] showed how to calculate the first-order contribution to the

fermion cross section in a consistent way. By expanding the scattering amplitude as a

power series in the black hole mass M , they found the first term in the scattering amplitude

series to be

M1 ≡ us(pf)Γ̂1ur(pi) , where Γ̂1 = − 4πGM

|pf − pi|2
(2Eγ0 −m) (B1)
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and demonstrated its gauge invariance. Below, we calculate the second term in the scattering

amplitude, M2, in the Kerr-Schild gauge. We find the real part to be

M2 = −π2G2M2

|pf − pi|
us(pf)

[

(4Eγ0 −m) +
4(Eγ0 −m)(4E2 −m2)

|pi + pf |2
(1 − | sin(θ/2)|)

]

ur(pi)

(B2)

which yields a second-order contribution to the cross section given by (17). As in the

Coulomb case, the imaginary part of the scattering amplitude contains a divergent term,

but the resulting polarization is finite at first-order.

The second order scattering amplitude, M2 = us(pf )Γ̂2ur(pi), is defined by

Γ̂2 =

∫

d3k

(2π)3
B(pf ,k)

6k +m

k2 −m2 + iǫ
B(k,pi), (B3)

where

B(p2,p1) = −2πGM

|q|2 (4Eγ0− 6p1− 6p2) −
4πGM

|q|4 (p2
2 − p1

2)( 6p2− 6p1)

+
iπ2GM

|q|3
[

(p2
2 − p1

2)γ0 − 2E( 6p2− 6p1)
]

, (B4)

and q = p2 − p1. Our task is made easier by splitting the calculation into several parts, so

that

B(p2,p1) = c1T̂1(p2,p1) + c2T̂2(p2,p1) + ic3T̂3(p2,p1), (B5)

where

(1) c1 = −2πGM, T̂1(p2,p1) =
(4Eγ0− 6p1− 6p2)

|q|2 ,

(2) c2 = −4πGM, T̂2(p2,p1) =
(p2

2 − p1
2)( 6p2− 6p1)

|q|4 ,

(3) ic3 = iπ2GM, T̂3(p2,p1) =
(p2

2 − p1
2)γ0 − 2E( 6p2− 6p1)

|q|3 . (B6)

We now consider each pair of terms in (B3) in turn, and wherever possible employ the

simplification that 6piur(pi) = mur(pi) and us(pf ) 6pf = us(pf)m.

First, let us consider term (2 x 2), to illustrate a method for evaluating these integrals.

(2 x 2) = c2
2

∫

d3k

(2π)3

(k2 − p2)2( 6k −m)

|k − pf |4|k − pi|4
. (B7)
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We start by defining Q = (pf − pi)/2, R = (pi + pf)/2 and moving to the centre of mass

frame, where the 1 axis is along R and the 3 axis is along Q. Then

k 7→ k + R,

6k 7→6k+ 6R −Eγ0,

k2 − p2 7→ k2 −Q2 + 2R · k. (B8)

Next, we employ spheroidal coordinates, {u, v, φ}, so

k1 = |Q| sinh u sin v cosφ,

k2 = |Q| sinh u sin v sinφ,

k3 = |Q| cosh u cos v. (B9)

With these coordinates the measure of integration is

d3k = |Q|3 sinh u sin v
(

sinh2 u+ sin2 v
)

dudvdφ (B10)

and the important quantities in the integral become

|k − p2||k − p1| 7→ |k −Q||k + Q| = |Q|2(sinh2 u+ sin2 v)

k2 −Q2 = |Q|2(sinh2 u− sin2 v). (B11)

With these replacements, 6 k −m 7→6 k+ 6R − Eγ0 −m = 6 k − Eγ0. This has only a spatial

component, so will couple to the odd part R · k of the rest of the integral. Therefore

(2 x 2) = c2
2

∫

d3k

(2π)3

4(k2 − Q2)(R · k)( 6k − Eγ0)

|k −Q|4|k + Q|4

=
c2

2(m−Eγ0)

2|Q|π2

∫

dudv
sinh3 u sin3 v(sinh2 u− sin2 v)

(sinh2 u+ sin2 v)3
. (B12)

The integral evaluates to π2/16, and the result is

(2 x 2) =
π2G2M2

|pf − pi|
(m−Eγ0). (B13)

Similar techniques can be used to evaluate terms (3 x 3), and (1 x 2) + (2 x 1). We find

(3 x 3) =
π2G2M2

2|pf − pi|
(m− 7Eγ0), (B14)

(1 x 2) + (2 x 1) =
π2G2M2

2|pf − pi|
(9Eγ0 − 5m). (B15)
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The other cross terms, (1 x 3) and (2 x 3), can be shown to be zero by symmetry consid-

erations. The remaining term, (1 x 1), has two parts: an integral which is tractable using

the above techniques, and an integral with a pole at |k| = |p| that is familiar from the

second-order Coulomb calculation of Dalitz [21]. Explicitly,

(1 x 1) =
(

2π2G2M2
)

[

(m− 2Eγ0)

|pf − pi|
+ (2Eγ0 −m)2(m+ Eγ0)(I/π

3)

+(4E2 −m2)(Eγ0 −m)(J/π3)
]

(B16)

where I and J are defined in terms of a low-frequency cut-off λ as

I =

∫

d3k

[(k − pf )
2 + λ2][(k − pi)

2 + λ2]( 6k2− 6p2 + iǫ)

( 6pi+ 6pf)r

2
J =

∫

krd
3k

[(k − pf )
2 + λ2][(k − pi)

2 + λ2]( 6k2− 6p2 + iǫ)
. (B17)

To lowest order in λ these integrals evaluate to (see Itzykson and Zuber [41])

I =
−iπ2

2p3 sin2(θ/2)
ln

(

2p| sin(θ/2)|
λ

)

J = sec2(θ/2)I +
π3

4p3 cos2(θ/2)
(1 − csc(θ/2)) − iπ2

2p3 cos2(θ/2)
ln(λ/2p)

I − J =
π3

4p3 cos2(θ/2)
(csc(θ/2) − 1) +

iπ2

4p3 cos2(θ/2)
ln(sin2(θ/2)). (B18)

The imaginary parts of I and J diverge as λ→ 0. However we note that the difference I−J
is finite. We can rewrite the I and J parts of (1 x 1) as

2I(2E2 −m2)(2Eγ0 −m) + (I − J)(4E2 −m2)(m− Eγ0). (B19)

The 2Eγ0 −m associated with the I term ensures that this term does not contribute to the

polarization at first order, as we see below.

The result of summing (B13), (B14), (B15) and (B16) is

Γ̂2 = − π2G2M2

|pf − pi|

[

(4Eγ0 −m) +
4(Eγ0 −m)(4E2 −m2)

|pi + pf |2
(1 − | sin(θ/2)|)

]

+ i
πG2M2(4E2 −m2) ln(sin2(θ/2))

2p3 cos2(θ/2)
(m− Eγ0) + i∞(2Eγ0 −m). (B20)

The second order contribution to the scattering cross section is

(

dσ

dΩ

)

2

=
(m

2π

)2 1

2

(

Tr

{

Γ̂1
6pi +m

2m
Γ̂2

6pf +m

2m

}

+ Tr

{

Γ̂2
6pi +m

2m
Γ̂1

6pf +m

2m

})

, (B21)
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where Γ̂ = γ0Γ̂
†γ0. After employing the appropriate gamma matrix trace theorems, this

evaluates to (17). The imaginary part of (B20) does not contribute to the total unpolarized

scattering cross section, but it does contribute to the net polarization. The polarized cross

section in direction ŝ is given by

(

dσ

dΩ

)

pol

=

(

1

2π

)2
1

16

(

Tr
{

γ5 6sΓ̂1 6piΓ̂2 6pf

}

+ Tr
{

γ5 6sΓ̂2 6piΓ̂1 6pf

})

=
2G3M3Em

π2|pf − pi|2
(4E2 −m2)Im(I − J)ŝ · (pi × pf). (B22)

Here we have made use of the result

Tr {γ5 6a 6b 6c 6d} = −4iǫαβγδa
αbβcγdδ, (B23)

where ǫαβγδ is antisymmetric under exchange of any pair of indices. The fraction of polarized

flux P is found by dividing polarized flux (B22) by the unpolarized flux at first order (16)

to obtain result (18).
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