
ar
X

iv
:g

r-
qc

/9
60

80
46

 v
1 

  1
9 

A
ug

 9
6

Integral Constraints on Cosmological Perturbations

and their Energy

Nathalie Deruelle1,2, Joseph Katz3, Jean-Philippe Uzan1
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Abstract. We show the relation between Traschen’s integral equations and the

energy, and “position of the centre of mass”, of the matter perturbations in a

Robertson-Walker spacetime. When perturbations are “localised” we get a set of

integral constraints that includes hers. We illustrate them on a simple example.
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1. Introduction

One “puzzle” in the theory of cosmological perturbations [1] is Traschen’s “integral

constraints” [2] (see also [3]) : besides the six standard Robertson-Walker Killing

vectors, she extracted from Einstein’s linearised equations four other vectors, that she

called “integral constraint vectors”. Each of those vectors yields an equation for the

matter perturbations, relating a volume to a surface integral. The equations become

constraints when perturbations are “localised”, for which the surface integrals are

zero. Those constraints have been widely used [4]–[7].

A first question we may ask is, are there more than four such vectors ? We will see

that the answer is “yes”, but that her vectors are particularly useful, especially when

perturbations are localised. Indeed the constraints she obtains involve the matter

variables only. However, other, simple, constraints on the geometry exist as well, as

we shall see in Section 2.

Second, several authors [2]–[4], [6] have interpreted Traschen’s equations as a

generalisation of conservation laws for energy and momentum in cosmology. Such

quantities however are not straightforward to define in general relativity. When

Killing vector fields or an asymptotic Killing vector fields exist, then of course we

can write integral quantities for the energy, momentum, angular momentum etc...

But Traschen’s four “integral constraint vectors” are not Robertson-Walker Killing

vectors. Thus, are we allowed to interpret the conservation laws they imply as defining

“energy” and “momentum” ?

A proper definition of conserved quantities such as energy, momentum etc, involves

the introduction of a background spacetime [8] and hence depends a priori on the

choice for the background, as well as on the way points of the physical spacetime

and of the background are identified, i.e. on the mapping (see e.g. [9] and references

therein). Applying this formalism to perturbed Robertson-Walker spacetimes (Section

3) we will first see how the choice of de Sitter spacetime as background is almost

compulsory. Using its ten Killing vectors, we will write ten Noether conservation laws,

that is ten equations relating volume to surface integrals. They will define, besides

the known momentum and angular momentum, an energy, δE, and a “position of the

centre of mass”, δ ~Z, of the perturbations of the physical, perturbed Robertson-Walker

spacetime. All will depend on the constant R̄ defining the de Sitter background and on
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the mapping. We shall thus see that Traschen’s integrals are not conserved quantities.

However, when the perturbations are localised, Traschen’s constraints are equivalent

to δE = 0 and δ ~Z = 0, independently of any mapping.

The comparison between Traschen’s integrals and the conserved quantities is

instructive in that it suggests to raise to a special status a particular mapping in

which Traschen’s integral constraint vectors become proportional to de Sitter Killing

vectors (see [10] for the mathematical origin of this property). This is done in Section

4 where energy etc are expressed in that mapping, in a way where all explicit reference

to the background has disappeared.

Finally, in Section 5, we dwell on what is meant by “localised” perturbations by

looking at the simple case of spherically symmetric perturbations. We shall see that

imposing the constraints amounts to imposing that not only the matter perturbations,

but also the metric perturbations, be localised in space. Hence spacetime outside the

perturbed region is strictly Robertson-Walker and the constraints can, as already

shown in [1] on a Swiss cheese model, be interpreted as “fitting conditions” of the

perturbed spacetime to a Robertson-Walker universe. That also shows that the

constraints hold only for perturbations which are produced at some instant t in a

finite region of space and then propagate in a up to then perfectly isotropic and

homogeneous universe. The origin of such perturbations cannot be described by

Einstein’s equations : they must arise from local processes like “explosive” events or

phase transitions producing bubbles of true vacuum, cosmic strings or other topological

defects. And, indeed, it is in those contexts that Traschen’s constraints have been used

[2], [5]–[7].

With this paper we hope to throw some light on the meaning, and range of

application, of integral constraints in cosmology. We will also clarify the issue of

defining energy, momentum etc in spacetimes which are not asymptotically flat, in

particular as regards the role of background spacetimes and mappings in cosmology.

2. Traschen’s Vectors and Integral Constraints on Cosmological

Perturbations

Traschen [4] has shown the existence of some vectors V µ in Robertson-Walker
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universes, which enter integral equations for arbitrary perturbations. In this Section,

we find them in a simple way and recall what they are useful for. Let perturbed

Robertson-Walker universes be described in coordinates xµ = (x0 ≡ t, xk), (µ, ν... =

0, 1, 2, 3 ; i, j, ... = 1, 2, 3), such that the metric reads

ds2 = dt2 − a2(t)(fij + hij)dxidxj (1)

fij is the metric of a 3-sphere, plan or hyperboloid depending on whether the index

k = (+1, 0,−1) [11]

fij = δij + k
δimδjnxmxn

1 − kr2
with r2 ≡ δijx

ixj (2)

the scale factor a(t) is determined by Friedmann’s equation and hij(x
µ) is a small

perturbation of fij . We choose to work in a synchronous gauge (h00 = hi0 = 0) merely

to simplify calculations (we shall present gauge invariant calculations elsewhere).

If δTµ
ν is the perturbation of the stress-energy tensor, the linearised Einstein

constraint equations read [12]
{

δG0
0 ≡ 1

2a2

(

∇m∇nh̃mn + kh̃
)

− ȧ
2a

˙̃
h = κδT 0

0

δG0
k ≡ 1

2∇l
˙̃
h

l

k = κδT 0
k

(3)

κ is Einstein’s constant, all indices are raised with the metric f ij , ∇ denotes the

covariant derivative with respect to fij , a dot denotes time derivative and we have

introduced the notation

h̃ij ≡ hij − fijh with h ≡ f ijhij = −1

2
h̃ (4)

Let us now write equations (3) under an integral form

1

κ

∫

Σ

δG0
µζ̂µd3x =

∫

Σ

δT 0
µ ζ̂µd3x ,

1

κ

∫

Σ

δG0
k ζ̂kd3x =

∫

Σ

δT 0
k ζ̂kd3x (5)

ζν being an arbitrary vector field ; a hat denotes multiplication by
√−g = a3

√
f =

a3/
√

1 − kr2 (at zeroth order) ; Σ is a volume in the hypersurface t = Const, and

d3x ≡ dx1dx2dx3. If we perform the appropriate integrations by part to extract

surface terms, equations (3-5) read

∫

Σ

√
−g

[

δT 0
µζµ +

(

∇(lζk) + Hf lkζ0
)

˙̃
hlk

2κ

−
(

∇lkζ0 + kf lkζ0
) h̃lk

2κa2

]

d3x =

∫

∂Σ

B̂l(ζ)dSl (6)
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and
∫

Σ

√−g

(

δT 0
k ζk +

1

2κ
˙̃
h

l

k∇lζ
k

)

d3x =
1

κ

∫

∂Σ

√−g
˙̃
h

l

kζkdSl (7)

H is the Hubble parameter H ≡ ȧ/a, ∂Σ is the boundary of the volume Σ,

dSk ≡ ǫklmdx[ldxm], parentheses mean symmetrisation, brackets antisymmetrisation,

and

Bl(ζ) ≡ 1

2κ

[

1

a2

(

ζ0∇kh̃kl − h̃ml∇mζ0
)

+ ζk ˙̃
h

l

k

]

(8)

If hij and ∂ρhij vanish on the boundary ∂Σ, the surface terms in (6-7) disappear, in

which case equations (6-7) become constraints (one for each vector ζµ) on the matter

perturbations δT 0
µ .

Equations (6-7) are identically satisfied for all vector ζµ, if we take for the

perturbations a solution of the Einstein equations. They simply relate a solution

and its boundary conditions. Now, if one is looking for solutions satisfying some

particular boundary conditions (like localised perturbations), then they constrain the

set of solutions and can give some of their properties. Since ζµ is a priori arbitrary,

there exists as many integral equations and constraints as independent vector fields,

that is an infinite number.

However there are not so many vector fields which can be considered as useful.

Indeed, for an arbitrary ζµ, one needs the full metric hkl and hence one must solve

the full Einstein equations to compute the integrals. Trashen’s vectors ζµ = V µ [4]

are such that

∇(lV k) + Hf lkV 0 = 0 , ∇lkV 0 + kf lkV 0 = 0 (9)

so that the coefficients of h̃kl and
˙̃
hlk in (6) separately vanish. Traschen’s vectors

therefore enable to decouple the perturbations of the matter andthose of the geometry

and give informations on the matter perturbations (density, pressure...) alone, without

having to solve the full Einstein equations. Indeed equation (6) then becomes

δPTr(V ) ≡
∫

Σ

δT 0
µ V̂ µ d3x =

∫

∂Σ

B̂l(V ) dSl (10)

which are the ten Traschen’s integral equations [4]. As for Equation (7), it becomes

∫

Σ

√
−g

(

δT 0
k V k − H

2κ
˙̃
hV 0

)

d3x =
1

2κ

∫

∂Σ

√
−g

˙̃
hl

kV kdSl (11)
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Traschen’s vectors V µ are ten linearly independent, particular, solutions of

equations (9) and any solution of (9) is a linear combination of the V µ with time

dependent coefficients. The explicit expressions of the V µ are given in Appendix

1. They split into two families. The first one contains the six Robertson-Walker

Killing vectors of spatial translations, V µ = Pµ, and spatial rotations, V µ = Rµ

(see equations (A1-A2) for their explicit expression). For those six vectors Traschen’s

equations (10) as well as equations (11) are equivalent to

{
∫

Σ
δT 0

i d3x = 1
2κ

∫

∂Σ
˙̃
hl

idSl for k = 0
∫

Σ
δT 0

i
(δirxs−δisxr)√

1−kr2
d3x = 1

2κ

∫

∂Σ
˙̃
hl

i
(δirxs−δisxr)√

1−kr2
dSl for k 6= 0

(12)

The second family of vectors contains four vectors, one Tµ and three Kµ, that

Traschen called “integral constraint vectors” or ICVs : see equations (A6) and (A7)

in Appendix 1 for their explicit expressions. Note that they are not Robertson-Walker

conformal Killing vectors. For those four vectors Traschen’s equations (10) read

δPTr(T ) ≡ a3

∫

Σ

(

δρ − HδT 0
l xl

)

d3x =

∫

∂Σ

B̂l(T )dSl (13)

{

δP i
Tr(K) ≡ a3

∫

Σ

[

xiδρ + HδT 0
l

(

kδli − xlxi
)]

d3x√
1−kr2

=
∫

∂Σ
B̂li(K)dSl for k 6= 0

δP i
Tr(K) ≡ a3

∫

Σ

[

xiδρ + HδT 0
l

(

1
2
δlir2 − xlxi

)]

d3x =
∫

∂Σ
B̂li(K)dSl for k = 0

(14)

As for Equations (11) they become

∫

Σ

(

δT 0
l xl +

1

2κ
˙̃
h

)

d3x =
1

2κ

∫

∂Σ

˙̃
hl

kxkdSl (15)

{
∫

Σ

[

δT 0
l

(

kδli − xlxi
)

− 1
2κ

˙̃
hxi

]

d3x√
1−kr2

= 1
2κH

∫

∂Σ
˙̃

hl
kKki dSl√

1−kr2
for k 6= 0

∫

Σ

[

δT 0
l

(

1
2δlir2 − xlxi

)

− 1
2κ

˙̃
hxi

]

d3x = 1
2κH

∫

∂Σ
˙̃

hl
kKkidSl for k = 0

(16)

Since Tµ and Kµ are not Robertson-Walker Killing vectors the interpretation of

δPTr(T ) and δP i
Tr(K) is not straightforward.

Traschen considered perturbations that are “localised”, for which the surface

integrals vanish. Equations (12-14) then become constraints which read

∫

Σ

δT 0
i d3x = 0 ,

∫

Σ

δT 0
i

(δirxs − δisxr)√
1 − kr2

d3x = 0 (17)

∫

Σ

(

δρ − HδT 0
l xl

)

d3x = 0 (18)
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{
∫

Σ

[

xiδρ + HδT 0
l

(

kδli − xlxi
)]

d3x√
1−kr2

= 0 for k 6= 0
∫

Σ

[

xiδρ + HδT 0
l

(

1
2
δlir2 − xlxi

)]

d3x = 0 for k = 0
(19)

which are useful when studying localised (or “causal”) density perturbations,

especially when they are scalar that is such that δT 0
k = 0, which is the case in most

practical applications [2]–[4], [5]–[7].

The constraints (17-19) are the only ones which involve only the matter

perturbations. However when perturbations are localised Equations (15-16) also

become constraints
∫

Σ

(

δT 0
l xl +

1

2κ
˙̃
h

)

d3x = 0 (20)

{
∫

Σ

[

δT 0
l

(

kδli − xlxi
)

− 1
2κ

˙̃
hxi

]

d3x√
1−kr2

= 0 for k 6= 0
∫

Σ

[

δT 0
l

(

1
2δlir2 − xlxi

)

− 1
2κ

˙̃
hxi

]

d3x = 0 for k = 0
(21)

This simple new constraints which involve only the geometry when the perturbations

are scalar could be useful in numerical calculations. We shall use them in a simple

case in Section 5.

3. Defining energy and motion of the centre of mass in perturbed

Robertson-Walker universes

Several authors have interpreted equations (13-14) as defining the energy and

momentum of the perturbations of a Robertson-Walker universe. However, to define

properly energy, momentum, angular momentum etc we shall introduce a background,

as in Katz [8] and Katz Bičak and Lynden-Bell [9].

Consider a spacetime (M, gµν(xλ)), a background (M̄, ḡµν(xλ)) and a mapping

between these two spacetimes, i.e. a way to identify points of M and M̄.

We take as lagrangian density for gravity

L̂G =
1

2κ
[ĝµν(∆ρ

µν∆σ
ρσ − ∆ρ

µσ∆σ
ρν) − (ĝµν − ¯̂g

µν
)R̄µν ] (22)

where we have introduced the difference ∆λ
µν between Christoffel symbols in M and

M̄ and where R̄µν is the Ricci tensor of the background. We recall that a hat denotes

multiplication by
√−g. L̂G vanishes when gµν = ḡµν , and is quadratic in the first
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order derivatives of gµν . It reduces to the familiar “ΓΓ−ΓΓ” form when the Riemann

tensor of the background is zero and when the coordinates are cartesian (such that

Γ̄λ
µν = 0). Since the “∆” are tensors, L̂G is a true scalar density.

If we now perform a small displacement ∆xµ = ζµ∆λ, where ζµ is an arbitrary

vector field and ∆λ an infinitesimal parameter, and use the fact that L̂G is a scalar

density, we have that, with Lζ denoting the Lie derivative,

LζL̂G − ∂µ(L̂Gζµ) = 0 (23)

Computing explicitely LζL̂G from (22), it can be shown (cf [9]) that there exists

an identically conserved vector Îµ (that is such that ∂µÎµ ≡ 0), and hence an

antisymmetric tensor Ĵ [µν] such that

Îµ = ∂ν Ĵ [µν] (24)

The explicit expression for Îµ is

Îµ =

[

(T̂µ
ν − ¯̂

T
µ

ν ) +
1

2κ
l̂ρσR̄ρσδµ

ν + t̂µν

]

ζν + σ̂µ[ρσ]∂[ρζσ] + Ẑµ(ζν) (25)

with l̂µν ≡ ĝµν − ¯̂g
µν

. (In equation (25) indices are moved with the background metric

ḡµν .) We can interpret the first term (T̂µ
ν − ¯̂

T
µ

ν ) as the energy-momentum tensor

density of matter with respect to the background. The second term can be seen as

a coupling between the spacetime and the background. The third one reduces to the

Einstein pseudo-tensor density when the background is flat and the coordinates are

cartesian. The next term, quadratic in the metric, is the helicity tensor density of the

gravitational field with respect to the background. The last term is a function of the

vectors ζµ which vanishes when those vectors are Killing vectors of the background.

The explicit expressions for the various quantities introduced, as well as that for J [µν]

can be found in [9] (see also Appendix 2).

Let us stress that the equality Îµ({gµν , ḡµν, ζν}) = ∂ν Ĵ [µν]({gµν , ḡµν, ζν}) and the

integral equation that can be deduced from it, are valid for all {gµν , ḡµν, ζν}. We

have written identities which involve an arbitrary vector ζµ (just as in Eq (5-7)), two

metrics and their derivatives. Such identities are, in the terminology of Bergman [13],

strong conservation laws. They reduce to the Noether conservation laws when the

vectors ζµ become Killing vectors ξ̄µ of the background.
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This means that, in order to obtain the maximum number of Noether conservation

laws, one must consider a background with maximal symmetry, in which case ten

integral equations (one for each Killing vector ζµ = ξ̄µ) can be written. They are

P (ξ̄) ≡
∫

Σ

ÎµdΣµ ≡
∫

Σ

{[

(T̂µ
ν − ¯̂

T
µ

ν ) +
1

2κ
l̂ρσR̄ρσδµ

ν + t̂µν

]

ξ̄ν

+σ̂µ[ρσ]∂[ρξ̄σ]

}

dΣµ ≡
∫

∂Σ

ĴµνdΣµν (26)

where dΣµ is the volume element of a spacelike hypersurface Σ, dΣµν the surface

element of its boundary ∂Σ.

We know two maximally symmetric spacetimes, Minkowski and de Sitter

spacetimes (we shall not consider here the perhaps interesting anti-de Sitter

possibility). If ξ̄µ = T̄µ refers to the time translations in Minkowski spacetime or the

quasi-time translations of de Sitter spacetime, then the quantity P (T̄ ) will be called

energy. When one uses the three Killing vectors associated with the Lorentz rotations

of Minkowski or the quasi-Lorentz rotations of de Sitter spacetimes, ξ̄µ = K̄µ, P (K̄)

will be the “position of the centre of mass” [12]. The introduction of a maximally

symmetric background thus allows to define an energy etc, even if the physical

spacetime does not possess symmetries, globally or asymptotically. The justification

for defining energy etc by (26) can be found in e.g. [9]. Minkowski spacetime has

been extensively used as background to study spacetimes which are asymptotically

flat (even if the role of the background is not apparent, as is the case with pseudo-

tensors when cartesian coordinates are used from the start). We want to define energy

etc in cosmology, and that will, as we shall see shortly, make us choose de Sitter rather

than Minkowski spacetime as background.

We now apply the formalism summarized above to a perturbed Robertson-Walker

spacetime with metric (1). The maximally symmetric background will be chosen with

the same spatial topology as the physical perturbed Robertson-Walker spacetime and

the metric for the background will be written as

ds̄2 = Ψ(t)2dt2 − ā(t)2fijdxidxj (27)

Equation (27) contains a definition of the mapping for each point of the t = Const.

hypersurface, up to an isometry. The function Ψ(t) defines the mapping of the

cosmic times (and theexplicit expression for the scale factor ā(t)). Those restrictions
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on the mapping render the choice of de Sitter rather than Minkowski spacetime

almost compulsory. Indeed when the Robertson-Walker sections are closed, Minkowski

spacetime as background is excluded, since there is no coordinate system in which it

has closed spatial sections. When the Robertson-Walker sections are flat, in order to

have a one-to-one correspondance between Ψ and ā, Minkowski spacetime, which has

ā = 1 ∀Ψ when k = 0, must again be excluded as background. Hence, only when

k = −1 is Minkowski spacetime (in Milne coordinates) possible as background. One

may also note that in the flat and open cases the physical spacetime is mapped on

only a patch of the de Sitter hyperboloid. This is not a problem as we need not fix

the patch : the de Sitter Killing vectors corresponding to the quasi-time translations

and quasi-Lorentz rotations do not apply the patch onto itself but displace it on the

de Sitter hyperboloid.

The explicit expressions of the ten de Sitter Killing vectors when the metric is

written under the form (27) are given in Appendix 1 (equations (A1-5)). They satisfy

equations very similar to the equations (9) satisfied by Traschen’s ICVs, to wit :

∇(lξ̄k) +
˙̄a

ā
f lk ξ̄0 = 0 , ∇lk ξ̄0 + kf lk ξ̄0 = 0 (28)

The zeroth order conservation quantities PRW (ξ̄) have been defined and studied

by Katz Bičak and Lynden-Bell [9]. Here we focus on their perturbations at first

order. A fairly long but straightforward calculation brings equation (26) to the form :

P (ξ̄) = PRW (ξ̄) + δP (ξ̄), where δP (ξ̄) is the sum of equation (6), with ζµ a de Sitter

Killing vector satisfying equation (28), and a surface term

δP (ξ̄) ≡
∫

Σ

√
−g

(

δT 0
µ ξ̄µ +

1

2
β

˙̃
hξ̄0

)

d3x+

∫

∂Σ

M̂ l(ξ̄)dSl =

∫

∂Σ

(B̂l +M̂ l)(ξ̄)dSl (29)

where

M l(ξ̄) ≡ h

2κ

{[

−2H +
H̄

2Ψ

(

ā2

a2
+ 3Ψ2

)]

ξ̄l +
1

2

(

Ψ2 − ā2

a2

)

fkl

ā2
∇k ξ̄0

}

(30)

Bl is given by equation (8) and we have introduced the notation

κβ ≡ ȧ

a
−

˙̄a

ā
(31)

as well as the Hubble parameter of the background H̄ ≡ ˙̄a/Ψā.
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Using the explicit expressions of the De Sitter/Robertson-Walker Killing vectors

corresponding to spatial translations, ξ̄µ = Pµ (see equation (A1)), the total linear

momentum of the perturbations is thus defined as

δPi(P ) ≡ a3

∫

Σ

d3xδT 0
i +

∫

∂Σ

M̂ l
i (P )dSl =

∫

∂Σ

(B̂l
i + M̂ l

i )(P )dSl (32)

with

M̂ l
i (P ) =

a3h

2κ

[

−2H +
H̄

2Ψ

(

ā2

a2
+ 3Ψ2

)]

δl
i , B̂l

i(P ) =
a3

2κ
˙̃
hl

i (33)

and a similar expression for their total angular momentum corresponding to ξ̄µ = Rµ

as given by equation (A2). One sees that the total linear (and angular) momentum

is the sum of a background and mapping independent volume integral plus a surface

term which does depend on the background and the mapping.

When perturbations are localised equation (32) becomes a constraint which is

Traschen’s constraint (17). When it comes now to the de Sitter Killing vectors

corresponding to quasi-time translations (ξ̄µ = T̄µ) and quasi-Lorentz rotations

(ξ̄µ = K̄µ), not only the definitions, as written in (29-30), of the corresponding

energy and motion of the centre of mass of the perturbations, but also the constraints

which follow when the perturbations are localised, seem to depend on the background

and the mapping. Now, that the definition of conserved quantities be dependent on

conventions for the choice of background or mapping is not a problem. On the other

hand constraints, which contain measurable information (for example they imply a

drastic reduction of the cosmic microwave background anisotropies [2], [5]) cannot

be mapping dependent. To show explicitely that indeed thedefinition of energy and

motion of the centre of mass depends on the mapping and the background (just as the

total linear and angular momentum), but that the constraints do not, we rearrange

equations (29-30) using the explicit expressions (A3-A5) for T̄µ and K̄µ as well as the

relations (15-16) to eliminate
˙̃
h in the volume integral of (28). We obtain

δE =
1

Ψ
δPTr(T ) +

∫

∂Σ

[

M̂ l(T̄ ) +

√−g

2κΨ

(

1 − ȧā

a ˙̄a

)

˙̃
h

l

kT̄ k

]

dSl (34)







δZi = 1
Ψ

δP i
Tr(K) +

∫

∂Σ

[

M̂ li(K̄) +
√
−g

2κΨ

(

1 − ȧā
a ˙̄a

) ˙̃
h

l

kK̄ik

]

dSl for k 6= 0

δZi = 1
ΨδP i

Tr(K) − 1
2H̄ā2

δP i(P ) +
∫

∂Σ

[

M̂ il(K̄) +
√
−g

2κΨ

(

1 − ȧā
a ˙̄a

) ˙̃
h

l

kK̄ik

]

dSl for k = 0
(35)
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We have introduced the short-hand notation δE ≡ δP (T̄ ) and δZi ≡ δP i(K̄),

and the background and mapping independent δPTr are given by equations (13-14).

Hence, the energy and motion of the centre of mass of the perturbations are the sum

of volume integrals which are, up to the overall function of time Ψ, background and

mapping independent, plus surface terms which do depend on the background and the

mapping. We thus see the announced relationship between the energy and motion of

the centre of mass of the perturbations and Traschen’s integrals (10) (13-14). Turning

to localised perturbations for which all surface integrals vanish, we finally see on the

form (34-35) for the conserved quantities that the resulting constraints are background

and mapping independent, and are Traschen’s constraints (18-19).

4. Mapping the cosmic times

The conserved quantities defined in the previous section are background and

mapping dependent. We show in this section that there is a mapping of the cosmic

times of particular significance. To see that, we shall use the relationship found in [9]

between Traschen’s ICVs V µ and de Sitter Killing vectors ξ̄µ. The four ICVs which are

not de Sitter Killing vectors are given by equations (A6-A7); as for the four de Sitter

Killing vectors corresponding to quasi-time translations and quasi-Lorentz rotations

they are given by equations (A3-A5), so that we have

T 0 = ΨT̄ 0 , T k =
H

H̄
T̄ k (36)

{

K0 = ΨK̄0 , Kk = H
H̄

K̄k for k 6= 0

K0 = ΨK̄0 , Kk = H
H̄

(

K̄k + 1
2H̄ā2

P k
)

for k = 0
(37)

(As for the remaining six Traschen and de Sitter Killing vectors, they are identical

and correspond to the six Robertson-Walker Killing vectors Pµ and Rµ. We also note

that Traschen’s ICVs become combinations of full-fledged Killing vectors when the

Robertson-Walker spacetime becomes a de Sitter spacetime [5], [10].)

Now, as emphasised in [9], in the particular mapping

a = ā =⇒ Ψ = H/H̄ and β = 0 (38)
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Traschen’s ICVs become (for k = ±1) strictly proportional to the de Sitter Killing

vectors : V µ = Ψξ̄µ, where the function Ψ is completely determined once the

Robertson-Walker scale factor a(t) is known. For example, in the case of flat spatial

sections, Ψ = 2H
√

3/R̄, where R̄ is the scalar curvature of the de Sitter background.

This property suggests to raise the mapping (38) to a special status. Moreover

the surface terms then acquire a particularly simple form. If, finally, one normalises

R̄ to 12, for which H̄ = 1 when k = 0, then all explicit reference to the de Sitter

background disappears from the definitions (34-35). For example, the energy of the

perturbations of a flat Roberston-Walker spacetime becomes

δE ≡ a3

H

∫

Σ

(δρ − HδT 0
l xl)d3x +

a3

H

H2 − 1

4κ

∫

∂Σ

hxldSl (39)

5. Integral constraints and “localised perturbations”

Ellis and Jaklitsch [1] have given an interpretation of Traschen’s Integral

Constraints in terms of “fitting conditions”, using as an example the “Swiss cheese”

model. We shall do the same for another simple case, that of spherical perturbations.

This will clarify further what is meant by “localised” perturbations and examplify the

use of our constraints (20-21).

Consider a spherical symmetric perturbation of a spatially flat dust universe.

Spherical perturbations are scalar. The integral equations (13) (15) for δρ and ḣ

reduce to
∫ R

0

ḣr2dr = G(R) ,

∫ R

0

δρr2dr = F (R) (40)

where R is the radius of the sphere on which the integration is performed and where G

and F are some fonctions of the metric perturbations and their derivatives. Imposing

that perturbations be localised has meant, in the context of this paper, that the surface

terms in (40) be zero for all surfaces outside a sphere of radius one, say. The integral

equations then become constraints,

∫ R

0

ḣr2dr =

∫ R

0

δρ r2dr = 0 ∀ R > 1 (41)
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which imply

δρ = ḣ = 0 ∀ r > 1 ⇒ h = h(r) for r > 1 (42)

However, imposing (41) means more than just (42). To see that let’s go back to

Einstein’s equations. Their solution is known. It is the linearisation of a Tolman-Bondi

solution [14]. It depends on two arbitrary functions t0(r), the delayed Big-Bang, and

ǫ(r), the local curvature. A flat Robertson-Walker universe corresponds to t0 = ǫ = 0.

In the case where t0(r) = 0 and ǫ(r) << 1, the metric reads, with a(t) ≡ ( 3
2
t)2/3

ds2 = dt2 − a2(t)

{[

1 + r2ǫ(r) − 2

3
a(t)(ǫ + rǫ′)

]

dr2 +

[

1 − 2

3
a(t)ǫ

]

r2dΩ

}

(43)

and we have










δρ(r, t) = 1
κa(t)2 Ξ(r)

h(r, t) = 2
3a(t)Ξ(r) − r2ǫ(r)

ḣ(r, t) = 2
3 ȧ(t)Ξ(r)

(44)

where we have introduced the function Ξ(r) = 1
r2 (r3ǫ)′.

Therefore, the conditions (42) only amount to imposing that Ξ(r) = 0 for r > 1

or, equivalently, that the perturbation ǫ(r) be of the form

ǫ(r) = ǫ(1)/r3 ∀ r > 1 ⇒ h = −ǫ(1)/r ∀ r > 1 (45)

where ǫ(1) is a constant, whereas the stronger constraints (41) add the extra condition

ǫ(1) = 0 ⇒ h = 0 ∀ r > 1 (46)

We therefore see on this simple example that “localised” perturbations, that is

perturbations such that the surface terms vanish outside a certain region, are not

simply perturbations for which δρ = 0, but perturbations for which δρ = 0 and hij = 0

outside a certain region. Outside that region, spacetime is strictly Robertson-Walker.

Hence, the constraints hold only for perturbations that arise from local processes

like“explosive” events, or phase transitions producing bubbles of true vacuum, cosmic

strings or other topological defects [2], [5–7].We can thus interpret the constraints in

the following way : if spacetime is strictly Robertson-Walker outside a certain region,

then the metric can be chosen so that hij = 0 outside that region, and Einstein’s

equations then tell us that the conserved quantities of the perturbations inside that

region are all zero. Moreover, since the “background” scale factor, a(t), is the same as

that of the outside Robertson-Walker universe, the constraints can also be interpreted

as “fitting” conditions [1].
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Appendix 1. The ten de Sitter Killing vectors and Traschen’s ICVs

We write the de Sitter metric as :

ds̄2 = Ψ2(t)dt2 − ā2(t)fijdxidxj

where Ψ is an arbitrary function of time and where xi are Weinberg’s [11] coordinates,

so that

fij = δij + k
δimδjnxmxn

1 − kr2
with r2 = δijx

ixj

where k = +1, 0,−1 depending on whether the spatial sections are closed, flat, or

hyperbolic. We have that
√

f = 1/
√

1 − kr2. Let us also introduce the quantities

H̄ ≡ 1

Ψ

˙̄a

ā
, τ ≡ Ψ

˙̄a

Ten independent Killing vectors describe three spatial translations, three spatial

rotations, one quasi-time translation and three quasi-Lorentz rotations. Their explicit

expression is [9]

(a) spatial translations : ξ̄µ = Pµ

P 0 = 0 , P k = δk
r

√

1 − kr2 (A1)

(b) spatial rotations : ξ̄µ = Rµ

R0 = 0 , Rk = δkrxs − δksxr (A2)

(c) quasi-time translations : ξ̄µ = T̄µ

T̄ 0 =
1

Ψ

√

1 − kr2 , T̄ k = −H̄xk
√

1 − kr2 (A3)

(d) quasi-Lorentz rotations : ξ̄µ = K̄µ

K̄0 =
1

Ψ
xr , K̄k = H̄(kδkr − xkxr) if k = ±1 (A4)

K̄0 =
1

Ψ
xr , K̄k = H̄

[

1

2
δkr(r2 − τ2) − xkxr

]

if k = 0 (A5)

In analogy with special relativistic definitions [12], the conserved quantity

corresponding to spatial translations is momentum, angular momentum corresponds
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to spatial rotations, energy to quasi-time translations and position of the centre of

mass to quasi-Lorentz rotations.

We write Roberston-Walker metrics as

ds2 = dt2 − a2(t)fijdxidxj

We also introduce

H ≡ ȧ

a

With these coordinates we also have that
√−g = a3

√
f = a3/

√
1 − kr2.

In that coordinate system, six of the ten Traschen vectors V µ are nothing but

the previous Robertson-Walker/de Sitter Killing vectors corresponding to spatial

translations and rotations. The extra four, the “integral constraint vectors” Tµ and

Kµ, read

T 0 =
√

1 − kr2 , T k = −Hxk
√

1 − kr2 (A6)

K0 = xr , Kk = H(kδkr − xkxr) for k = ±1 (A7)

K0 = xr , Kk = H

(

1

2
δkrr2 − xkxr

)

for k = 0 (A8)

They are related to the de Sitter Killing vectors corresponding to quasi-time

translations, quasi-Lorentz rotations, and, in the flat case, spatial translations, by

[9]

T 0 = ΨT̄ 0 , T k =
H

H̄
T̄ k ∀ k (A9)

K0 = ΨK̄0 , Kk =
H

H̄
K̄k , for k = ±1 (A10)

K0 = ΨK̄0 , Kk =
H

H̄

(

K̄k +
1

2H̄ā2
P k

)

for k = 0 (A11)

All vectors Ṽ µ = F (t)V µ, with F (t) an arbitrary function of time, are solutions

of Traschen’s equations (9). If one chooses F (t) ≡ Ψ−1, and the function Ψ such that

H = ΨH̄, then the vectors Ṽ µ become a combination of the de Sitter Killing vectors.
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Appendix 2.

One can extract frome Einstein’s equations a conserved current Îµ and an anti-

symmetric tensor Ĵµν such that

Îµ = ∂ν Ĵ [µν] ⇔ ∂µÎµ = 0 (B1)

We give here the expressions of these two quantities [see ref.[9]].

First introduce

l̂µν ≡ ĝµν − ¯̂g
µν

and ∆λ
µν ≡ Γλ

µν − Γ̄λ
µν (B2)

where Γ and Γ̄ are the Christoffel symbols of the spacetime and of the background,

D̄µ and Dµ the two covariant derivatives and for a given quantity A, Â denotes
√−gA

and Ā the value of A on the background. Notice that
¯̂
A =

√−ḡĀ 6= ˆ̄A =
√−gĀ.

expression for Ĵµν

For any vector ζµ we have,

κĴµν = l̂[µρD̄ρζ
ν] + ĝ[µρ∆

ν]
ρλζλ + ζ [µĝν]ρ∆σ

ρσ − ζ [µ∆ν]
ρσ ĝρσ (B3)

expression for Îµ

Îµ =

[

(

T̂µ
ν − ¯̂

T
µ

ν

)

+
1

2κ
l̂ρσR̄ρσδµ

ν + t̂µν

]

ζν + σ̂µ[ρσ]∂[ρζσ] + Ẑµ(ζν) (B4)

T̂µ
ν and

¯̂
T

µ

ν are the two energy-momentum tensors.

2κt̂µν = ĝρσ
(

∆λ
ρλ∆µ

σν + ∆µ
ρσ∆λ

λν − 2∆µ
ρλ∆λ

σν

)

+ ĝµρ
(

∆σ
λσ∆λ

ρν − ∆σ
σρ∆

λ
λν

)

− ĝρσ
(

∆η
ρσ∆λ

λη − ∆η
ρλ∆λ

ησ

)

δµ
ν (B5)

This term reduces to the Einstein pseudo-tensor density when the background is

Minkowski spacetime in cartesian coordinates.

2κσ̂µ[ρσ] =
(

l̂µ[ρḡσ]λ − ḡµ[ρl̂σ]λ
)

∆ν
λν − 2l̂λ[ρḡσ]ν∆µ

λν (B6)

4κẐµ(ζν) =
(

Zµ
ρ ĝρσ + ĝµρZσ

ρ − ĝµσZ
)

∆λ
σλ +

(

ĝρσZ − 2ĝρλZσ
λ

)

∆µ
ρσ + ĝµλ∂λZ

+ ĝρσ
(

D̄µZρσ − 2D̄ρZ
µ
σ

)

(B7)

with

Zρσ = Lζ ḡρσ = D̄(ρζσ) and Z = Zρσ ḡρσ (B8)

When ζµ is a Killing vector of the background, Zρσ = 0 and thus Zµ = 0.
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