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Abstract

Conformastationary metrics – those of the form

ds2 = f
(

dt −Akdxk
)2

− f−1
(

dx2 + dy2 + dz2
)

have been derived by Perjes and by Israel & Wilson as source-free

solutions of the Einstein-Maxwell equations. By analogy with the

conformastatic metrics which have charged dust sources it was as-

sumed that conformastationary metrics would be the external metrics

of charged dust in steady motion. However for axially symmetric con-

formastationary metrics we show that, as well as moving dust, hoop

tensions are always necessary to balance the centrifugal forces induced

by the motion. Exact examples of conformastationary metrics with

disk sources are worked out in full. Generalisations to non-axially

symmetric conformastationary metrics are indicated.

PACS numbers: 04.20.-q, 04.40.-b, 04.20.Jb.

1 Introduction

Using considerable mathematical ingenuity Perjes (1971) and later Israel &
Wilson (1972) showed that metrics of the form

ds2 = (V V ∗)−1
(

dt −Akdxk
)2 − V V ∗

(

dx2 + dy2 + dz2
)

, (1.1)
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where V is a complex solution of Laplace’s equation
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

V = 0 , (1.2)

satisfy the Einstein-Maxwell equations for the electromagnetic fields,

E + iH = ∇

(

1

V

)

, (1.3)

D + iB = |V |(E + iH) + iA × (E + iH) ,

whenever A is a solution of

∇ × A = i (V ∇V ∗ − V ∗

∇V ) . (1.4)

In the above ∇ stands for
(

∂

∂x
,

∂

∂y
,

∂

∂z

)

and to obtain metrics that become flat at infinity we need V → 1 there.

Hereafter we write
f = (V V ∗)−1 . (1.5)

However, except for extreme Kerr-Newman metrics (see below), such solu-
tions are not known to be the external solutions of any real matter distribu-
tions. When A ≡ 0 the metrics are conformastatic and then we know that
they are external metrics of static charged dust with the electric and gravi-
tational forces in exact balance [see Synge 1960] and for the continuous case,
e.g., Lynden-Bell et al. (1999). Most workers guessed that the conformasta-
tionary metrics would be the metrics of moving charged dust with those forces
balancing because cylindrical conformastatic systems would make conformas-
tationary balanced systems when set in uniform motion along the cylinder.
However we show here that axially symmetrical conformastationary solutions
with disk sources always need hoop tension to balance the centrifugal forces
so that moving charged dust sources are insufficient to maintain equilibrium
when the dust is accelerated with respect to the static frame. In such cases
the electromagnetic and gravitational forces balance but the centrifugal forces
would be unbalanced for charged dust without the introduction of these hoop
tensions.
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The theory of disk sources has a long history. Morgan & Morgan (1969)
introduced pressureless counter-rotating disks while Lynden-Bell & Pineault
(1978) gave a self-similar disk in real rotation. Lemos (1989) discussed the
peculiarly interesting case of the counter-rotating photon disk which has
accelerating Minkowski space on each side and generalised the self-similar
disks to include surface pressures. More general solutions have been obtained
by Chamorro et al (1987) and quite a number of exact solutions with and
without any radial pressure are now known (Bičák et al 1993 a+b, Bičák and
Ledvinka 1993, Pichon & Lynden-Bell 1996, Gonzáles & Letelier 1999). Discs
can now be constructed with the full freedom in the pressure distribution
and surface density but truly rotating disks can only be constructed for
those special external metrics which are already known solutions of Einstein’s
equations. Essentially all others need to be computed although Neugebauer
and Meinel (1995) made their calculations of the finite uniformly rotating
dust disk as analytic as possible. A similar procedure to that of constructing
the physical disk sources of the vacuum Kerr metrics has recently been used
to find disks with rotating matter and electric currents which are sources
of Kerr-Newman fields (Ledvinka et al. 1999). The extreme Kerr-Newman
solutions are special cases of conformastationary fields.

The wonderful simplicity of the conformastatic metrics in which electro-
static forces balance gravity, see e.g., (Lynden-Bell et al. 1999), encouraged
us to discover whether the conformastationary metrics had sources of similar
simplicity. We were somewhat dismayed to find that hoop tensions were a
necessity although we had gained the insight that they are only required to
balance the centrifugal accelerations. With that exception the electromag-
netic and gravitational forces balance with the latter including gravomagnetic
forces.

The new aspect of electromagnetic disks is that while components of E

within the surface must be continuous across the disk the surface components
of H have a discontinuity equal to the surface currents in it. The normal
component of B has to be continuous to preserve the magnetic flux through
the surface. These conditions are readily satisfied if one chooses a complex
solution of Laplace’s equation V (x, y, z) defined only in the region z > 0
and then continues it into z < 0 by the definition V (x, y,−z) = V ∗ (x, y, z) .
With this definition the real part of V is continuous across z = 0 although the
imaginary part is not, and the imaginary part of ∂V

∂z
is continuous although

the real part is not. Furthermore, V V ∗ is continuous. It follows that V
obeys Laplace’s equation (1.2) everywhere excepting z = 0 where the charges
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and currents lie, and from (1.3) the continuity conditions on E and B are
automatically accounted for by the above continuation of V to negative z
values. The discontinuities in external curvatures give both the surface mass
density and the matter currents as considered by Bičák & Ledvinka (1993)
and by Pichon & Lynden-Bell (1996); see also Ledvinka et al. (1999).

We detail these equations below. The symmetry of the solutions above
and below the disk already ensures that the intrinsic curvatures in the disk
metric calculated from the metrics above and below exactly fit.

2 Conformastationary metrics with axial

symmetry

We consider the metric (1.1) for axially symmetric spacetimes in

xµ =
(

x0 = t, x1 = R, x2 = z, x3 = φ
)

coordinates.

Following (1.1), Ak has then only one non-vanishing component in these
coordinates

Akdxk ≡ ARdφ . (2.1)

The metric can be written

ds2 = f (dt −ARdφ)2 − f−1γkℓdxkdxℓ

= f (dt −ARdφ)2 − f−1
(

dR2 + dz2 + R2dφ2
)

, (2.2)

where f and A are functions of (R, z). The components of the metric thus
are:

g00 = f , g11 = g22 = −f−1 , g03 = −ARf , g33 = −R2f−1
(

1 − f 2A2
)2

,

(2.3)
with their inverse being

g00 = f−1
(

1 − f 2A2
)

, g11 = g22 = −f , g03 = − 1

R
fA , g33 = − 1

R2
f ,

(2.4)
and √−g =

√

−detgµν = f−1R . (2.5)
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The local tetrad h(α)
µ used below is the one appearing in (2.2), i.e.,

h(0)
µ = f 1/2 (1, 0, 0,−AR) , h(1)

µ = f−1/2 (0, 1, 0, 0) , h(2)
µ = f−1/2 (0, 0, 1, 0) ,

h(3)
µ = f−1/2 (0, 0, 0, R) . (2.6)

The dual tetrad reads (the tetrad indices being shifted by Minkowski metric)

hµ
(0) = f−1/2(1, 0, 0, 0), hµ

(1) = f 1/2(0, 1, 0, 0),

hµ
(2) = f 1/2(0, 0, 1, 0), hµ

(3) = f 1/2
(

A, 0, 0, R−1
)

. (2.7)

This is the orthonormal frame used by static observers who are at rest with
respect to infinity. The zero-angular-momentum observers whose worldlines
are orthogonal to t = const. hypersurfaces will use ”locally non-rotating
frames” (e.g., Misner et al 1973) given by

e(0)
µ = f 1/2

[

(1 − f 2A2)−1/2, 0, 0, 0
]

,

e(1)
µ = h(1)

µ , e(2)
µ = h(2)

µ ,

e(3)
µ = f−1/2

[

Af 2
(

1 − f 2A2
)

−1/2
, 0, 0, R

(

1 − f 2A2
)1/2

]

, (2.8)

and

eµ
(0) = f−1/2

[

(1 − f 2A2)1/2, 0, 0, −Af 2R−1(1 − f 2A2)−1/2
]

,

eµ
(1) = hµ

(1), eµ
(2) = hµ

(2),

eµ
(3) = f 1/2

[

0, 0, 0, R−1
(

1 − f 2A2
)

−1/2
]

. (2.9)

The coordinate angular velocity (i.e., velocity relative to infinity) of a zero-
angular-momentum observer is given by

ω = −g03

g33
= − f 2A

1 − f 2A2
. (2.10)
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3 Axially Symmetric Conformastatic Metrics

with a disk at z = 0

The metric of the z = 0 hypersurface is

dσ2 = f(dt −ARdφ)2 − f−1
(

dR2 + R2dφ2
)

= gabdxadxb, (3.1)

where indices a, b = 0, 1, 3 and f = f(R , 0), A = A(R , 0). The components
gab and gab are given in (2.3) and (2.4) while

√

−detgab = f−1/2R . (3.2)

The unit normal vector to the hypersurface z = 0 is

nµ = ǫnf 1/2(0, 0, 1, 0) z = 0 , (3.3)

ǫn = 1 (ǫn = −1) if nµ points in the positive (negative) z direction.
We shall now consider two spacetimes M1 and M2 with the metric (2.2)

in which (see 1.5) f = (V V ∗)−1 and the complex V is a solution of e.g., (1.2)
or, in (R, z, φ) coordinates,

∆V =
1

R
∂R (R∂RV ) + ∂2

zV = 0 . (3.4)

In M1 sources of V are on the z < 0 side, in M2 V is exchanged with V ∗

and the ”conjugate” sources are on the positive side z > 0 – see Figure 1.
So M2 is the complexified mirror symmetric image of M1 in z = 0 . The
spacetime we are interested in is the third spacetime M which is composed
of M1 for z > 0 and M2 for z < 0.
M is thus an empty space except on z = 0, where there is a thin disk of matter
with metric (3.1) . The energy-momentum tensor of the disk T µ

ν ∝ δ(z). The
discontinuity in the z direction of T a

b defines the energy-momentum tensor
of the disk τa

b , more precisely,

lim
ǫ→0

∫ ǫ

−ǫ
T a

b f−1/2dz = τa
b , (3.5)

other components are zero: T 2
a = T a

2 = T 2
2 = 0 . Thus, by integrating

Einstein’s equations, Gν
µ = κT ν

µ with κ = 8πG/c4 , across the disk we can
calculate τa

b in terms of the metric components.
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Figure 1:

The non-zero components of τab = τa
c gcb are particularly simple if written

in terms of two new quantities

ζ = −
(

∂zf
−1
)

z=0
, χ = (∂zA)z=0 . (3.6)

We find that,

κτ 00 = 2f 1/2 (ζ + fAχ) , κτ 03 =
1

R
f 3/2χ , κτ 11 = κτ 33 = 0 . (3.7)

The projected components in the local tetrad (2.6) are respectively

κτ (0)(0) = κτ
(0)
(0) = 2f 3/2ζ , κτ (0)(3) = κτ

(3)
(0) = f 3/2χ , κτ (2)(2) = κτ (3)(3) = 0 .

(3.8)
The vanishing of τ 33 and, hence, also of the stress τ (3)(3) as measured by

static observers, is the specific feature of conformastationary metrics (2.2).
With more general metrics of the form

ds2 = e2ν(dt −ARdφ)2 − e−2ν
[

e2λ
(

dR2 + dz2
)

+ R2dφ2
]

, (3.9)

in which λ (z, R) 6= 0, as is the case e.g., with the Kerr-Newman metrics, one
obtains (see Ledvinka et al. 1999)

κτab = eλ
(

e−2λgab

)

z=0
. (3.10)
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In our case this formula implies (3.7), (3.8) (even though the covariant com-
ponent τ33 6= 0). However in general τ 33 is non-vanishing. The frame compo-
nents τ (3)(3) are non-vanishing if expressed in some other than static frame.
In particular the frames (2.8) of zero-angular momentum observers give non-
vanishing τ (3)(3) (see 4.11 below).

4 The material properties of the disk and its

motion

If the disk is made of matter with proper rest-mass-energy surface density
σ, surface “hoop pressure” Π and angular coordinate velocity Ω , the 3 ve-
locity components are

Ua = U0(1, 0, Ω), Ω =
dφ

dt
, (4.1)

and
gabU

aU b = 1 . (4.2)

The energy-momentum tensor is

τ 1b = 0 , τab = (σ + Π)UaU b − Πgab a, b = 0, 3 only. (4.3)

If we compare (3.7) with (4.3), we find that

κσ = f 3/2
[

ζ +
√

ζ2 − χ2

]

, κΠ = −f 3/2
[

ζ −
√

ζ2 − χ2

]

, (4.4)

and

ΩR =
fχ

ζ +
√

ζ2 − χ2 + fAχ
. (4.5)

Equations (4.4), (4.5) are the relationships between the matter param-
eters and the geometry. The co-moving mass energy density σ is positive
of

ζ = −
(

∂zf
−1
)

z=b
> 0 . (4.6)

It then follows that the pressure is actually a tension (Π < 0) which satisfies
the dominant energy condition −Π ≤ σ here. The normalisation condition
(4.2) implies

1

(U0)2
= f−1

[

f 2 (1 − RΩA)2 − R2Ω2
]

, (4.7)
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which, after substituting from (4.5), gives

U0 =
ζ + (ζ2 − χ2)

1/2
+ fAχ

{

2f
[

ζ2 − χ2 + ζ (ζ2 − χ2)1/2
]}1/2

. (4.8)

One easily finds the physical velocity measured by local static observers to
be

vLOC = RΩ/f (1 − RΩA) , (4.9)

whereas that measured by the zero-angular-momentum observers reads

vZAMO = f−1R (Ω − ω)
(

1 − f 2A2
)

, (4.10)

where ω is given by (2.10) .
In contrast to the vanishing stress in the φ direction in the static frames
(see 3.8) the stress does not vanish in the zero-angular-momentum observers’
frame:

τ (3)(3)
ZAMO = (σ + Π)

(

U0
)2 A2f 3

(

1 − f 2A2
)

[R(ω − Ω)]2 + Π , (4.11)

where (U0)2 is given by (4.8) .

The disk can only exist if
|χ| ≤ ζ , (4.12)

otherwise σ , Π , and Ω are not real. The limit χ = 0 represents a static
disk (Ω = 0) with κσ = 2f 3/2ζ, producing a conformastatic spacetime on
both sides.

5 The electromagnetic currents in the disk

On both sides of the disk, spacetime is free of charges and currents. Maxwell’s
equations thus are

∂νF̂
µν = 0 , (5.1)

a “̂ ” means multiplication by
√−g = f−1R (see 2.5), and Fµν = ∂µAν−∂νAµ.

According to Perjes (1971) and Israel and Wilson (1972), and following (1.1)
and (5.1), F̂ kℓ is of the form

F̂ kℓ = −ηkℓm∂mΦ , (5.2)
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with

ηkℓm =
1
√

γ
ǫkℓm =

1

R
ǫkℓm . (5.3)

ǫkℓm is the alternating symbol, and Φ is some function of R, z . Both A0 and
Φ, which, together with gµν , define F̂ µν completely, are given by

A0 − iΦ = fV ∗ − 1 . (5.4)

The spatial components of the vector potential, Ak , are here not used. To
find the charge and electric current densities in the disk we must integrate
Maxwell’s equations

∂νF̂
µν = −4πĵµ

Q (5.5)

accross the disk where the current density ĵµ
Q ∼ δ(z). The discontinuities in

the z direction defines the components îµQ of the surface current density

lim
ǫ→0

∫ ǫ

−ǫ
ĵµ
Qf−1/2dz = îµQ , (5.6)

and the symmetry z → −z implies that the discontinuity in the F̂ 2ν compo-
nents are just equal to twice F̂ 2ν on the positive side of the disk (z = 0+).
Thus, taking account of (2.5),

(

F µ2
)

z=0+
= −2πf 1/2iµQ . (5.7)

In terms of F̂ kℓ , given by (5.2) with (5.3), and with

F0k = −∂kA0 , (5.8)

where A0 is also defined by (5.4), we find that

(∂zA0)z=0+
= −2πf 1/2

(

i0Q + ωRi3Q
)

, (5.9)

1

R
(∂RΦ)z=0+

= −2πf−1/2i3Q , (5.10)

while i2Q = 0 . Notice that if V is real, κσ = i0Q and the static disk is
composed of charged dust in which gravitational attraction is in equilibrium
with electrostatic repulsion.
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6 Summarising the results obtained so far

Given a metric of the form (2.2), with two functions f(R, z) and A(R, z), a
solution exists, associated with any complex function V (R, z) satisfying the
Laplace equation (3.4). The corresponding gravitational potentials f and A
are defined by (1.5) and (1.4) respectively, the electromagnetic “potentials”
A0 and Φ by (5.4). A disk at z = 0 with V (r, z > 0) and V ∗(R, z < 0)
contains matter rotating with angular velocity Ω given by (4.5), proper mass-
energy surface density σ and hoop tensions −Π given by (4.4). The surface
current i3Q is given by (5.10), and the charge per unit surface, i0Q, is defined
by (5.9). A simple example is given later.

7 Forces

The equations of motion of the disk are given, [see for instance equation (10)
of Goldwirth and Katz (1995) which uses the same notations] in terms of the
normal unit vectors to z = 0 given in (3.3):

∇bτ
b
a = −

[

T ν
µ

∂xµ

∂xa
nν

]+

−

= −2T ν
a nν |0+ = +2f−1/2T 2

a . (7.1)

T ν
µ is the electromagnetic field energy-momentum tensor. The only non-

trivial equation follows for a = 1 for which

∇bτ
b
1 − 2f−1/2T 2

1 = −1

2
τab∂1gab − 2f−1/2T 2

1 = 0. (7.2)

This equation expresses the equilibrium of gravitational and electromagnetic
forces. To see this explicitly, consider first the T 2

1 term in (7.2).
From

T µ
ν =

1

4π

(

F µρFρν +
1

4
δµ
ν F ρσFρσ

)

(7.3)

we get

−2f−1/2T 2
1 = −f−1/2 1

2π

(

F 20F01 + F 23F31

)

, (7.4)

or, in terms of (5.7),

F1 = −2f−1/2T 2
1 = i0QF01 + i3QF31. (7.5)
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This is the radial component of the electromagnetic force,

Fk = i0QEk + ηkℓmiℓQBm, (7.6)

in which the components of the electric and magnetic fields are respectively
defined by

Ek = F0k = −∂kA0, Bk = −1

2
ηkℓmFℓm. (7.7)

Fk is considered here as a 3-vector in γkℓ space - see (2.2). In vector notations,
(7.6) has a familiar look

F = i0QE + iQ × B. (7.8)

Consider now the τab− term in (7.2):

−1

2
τab∂1gab = −1

2
τ 00∂1g00 − τ 03∂1g03 . (7.9)

With τ
(0)
(0) and τ

(3)
(0) given by (3.8) and gab in (2.3), (7.9) may be rewritten as

−1

2
τab∂1gab = τ

(0)
(0)

(

−∂1lnf 1/2
)

+ τ
(3)
(0) f∂1A3. (7.10)

This is the radial component of the gravitational force,

Fk = κ
(

i0MEk + ηklmilMBm
)

, (7.11)

expressed in terms of the gravoelectric and gravomagnetic field components
defined by

Ek = −∂klnf 1/2 , Bm = −1

2
ηmklf∂kAl , (7.12)

and the matter current in the disk,

iaM = τ
(a)
(0) . (7.13)

With (7.8) and (7.11) - (7.13), (7.2) appears clearly as the balance of
electromagnetic and gravitational forces; in vector notation,

κ
(

i0ME + iM × B
)

+ i0QE + iQ ×B = 0 . (7.14)

It is worth noting that electric and magnetic forces are not separately in
equilibrium, i.e. i0ME + i0QE 6= 0 unless A = 0.
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Another notable point of equation (7.13) is the absence of centrifugal and
pressure forces. These are in equilibrium by themselves; it is best seen by
considering explicitly τ (3)(3) which vanishes. With (4.3) we find that

τ (3)(3) = f−1R2τ 33 = f−1 (σ + Π)
(

U0
)2

(ΩR)2 + Π = 0 (7.15)

In a weak gravitational field (f ∼ 1, Π ≪ σ) and with a slowly rotating
disk (U0 ≃ 1), equation (7.15) becomes the classical condition

σ (ΩR)2 + Π ≃ 0 , (7.16)

for the equilibrium in a rotating narrow circular band between the centrifugal
force and the tensions that keep it from flying apart. Of course, under this
weak-field assumption, τ (3)(3)

ZAMO≈ 0 (see 4.11) implies (7.16) as well.

8 A simple example

A simple example is the following complex solution of (3.4):

V = 1 +
q

r
+ i

µ(z + b)

r3
, r2 = R2 + (z + b)2 , z > 0 , (8.1)

q > 0 , b > 0 , and µ are constants. This solution represents a charge
and a magnetic dipole at the same position (0, −b). Following (1.5), the
gravitational potential

f = (V V ∗)−1 =

[

(

1 +
q

r

)2

+
µ2(z + b)2

r6

]

−1

, (8.2)

while, following (8.3),

∇ × A = i (V ∗

∇V − V ∇V ∗) , (8.3)

the solution of which is readily found to be, in (R, z, φ) coordinates, of the
form A = (0, 0,AR) where

A =
µR

r3

(

2 +
q

r

)

. (8.4)
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Electromagnetic potentials A0 and Φ follow from (5.4). Thus,

A0 = 1 − f
(

1 +
q

r

)

, Φ = −fµ(z + b)

r3
, (8.5)

and Fµν or E , B are readily deduced from (8.5). The disk is associated with
two functions of R defined in (3.6);

ζ = −
(

∂zf
−1
)

z=0
=

2b

r3

(

q +
q2

r
− µ2

r3
+

3µ2b2

r5

)

, (8.6)

and

χ = + (∂zA)z=0 = −µbR

r5

(

6 + 4
q

r

)

. (8.7)

Notice that
r(z = 0) =

√
R2 + b2 . (8.8)

Since b > 0 and q > 0, the energy condition ζ > 0 is satisfied for every
b < r < ∞ .

Electromagnetic currents i0Q , i3Q are, according to (5.9), (5.10), defined
in terms of

(∂zA0)0+ = f 2

[

qb

r3
f−1 −

(

1 +
q

r

)

ζ

]

= −2πf 1/2
(

i0Q −ARi3Q
)

, (8.9)

and

1

R
(∂RΦ)0+ = −f 2µb

r5

[

3µ2b2

r6
−
(

1 +
q

r

)(

3 +
q

r

)

]

= −2πf−1/2i3Q . (8.10)

Spacetime becomes flat at infinity in all directions. In particular, for R → ∞
in the disk (z = 0)

f ≃ 1 − 2q

R
+

3q2

R2
, A ≃ +

2µ

R2
, (R → ∞, z = 0) (8.11)

ζ =
2bq

R3
+

2bq2

R4
, χ ≃ −6bµ

R4
; R → ∞ . (8.12)

From this follows that κσ and κΠ defined in (4.4) become

κσ =
4bq

R3
, κΠ = −9bµ2

qR5
, R → ∞ , (8.13)
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and

ΩR ≃ − 3µ

2qR
, R → ∞ . (8.14)

Electric charges and currents behave as follows:

2πi0Q =
bq

R3
, 2πi3Q = −3bµ

R5
, R → ∞ , (8.15)

while

Gi0M ≃ Gσ ≃ 1

2π

bq

R3
, Gi3M = GσΩ ≃ − 3

4π

bµ

R5
. (8.16)

Thus,
Gi0M ≃ i0Q, (8.17)

i.e., “mass and charge density become equal” at great distances while

Gi3Q =
1

2
i3Q (8.18)

Let us finally evaluate the ”constants of motions” with all the G’s and
c’s. According to (2.3) and following (8.2), g00 = f = 1 − 2q/r + O(r−2).
This implies, as is well known, that the total mass-energy of this spacetime is

M =
qc2

G
. (8.19)

On the other hand in x, y, z coordinates, the components of the gravomag-
netic potential Ak defined by (2.1) can be calculated with A given in (8.4).
Thus, in x, y, z coordinates we find that g01 = 2µ

r3 y + O(r−3), g02 = −2µ
r3 x +

O(r−3) and g03 = O(r−3). So, following for instance Carmeli (1982),[17]
equation (12), p.212, we see that the total angular momentum JM is in the
z direction and is given by

JM =
µc3

G
(8.20)

The electric potential given in (8.5) can be written A0 = q
r

+ O(r−2). Thus
the total charge is

Q =
qc2

√
G

(8.21)

On the other hand the components of the magnetic field which are defined
in (7.7) can be calculated from (5.3) in which Φ is given in (8.5). At great
distance −Bk = Bk ≃ −∂kΦ from which follows that Bk = µ

r3 (δ
k3 −3nkn3)+
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O(r−4) with nk = xk/r. This is formula (44.4) of Landau and Lifshitz
(1971)[18] when the total magnetic momentum

JQ =
µc3

√
G

(8.22)

We have thus the following relations among the first integrals of this space-
time :

Q =
√

GM , JQ =
√

GJM (8.23)

We see that the gyromagnetic ratio JQ/
√

GJM = 1.
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