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We report on precision measurements of the masses and widths of the narrow, orbitally excited
states D0

1 and D∗0
2 using the CDF II detector at the Fermilab Tevatron. Both states (collectively

called D∗∗) are reconstructed in the decay channel D∗∗
→ D∗+π−. The D∗0

2 is also reconstructed
in the D∗∗

→ D+π− channel. Using a dataset with an integrated luminosity of 210 pb−1, the
measured masses and widths for the D0

1 are 2421.7± 0.7± 0.6 MeV/c2 and 20.0± 1.7± 1.3 MeV/c2

respectively, while for the D∗0
2 they are 2463.3 ± 0.6 ± 0.8 MeV/c2 and 49.2 ± 2.3 ± 1.2 MeV/c2.

These values are currently the single best measurements available.

PACS numbers: 14.40.Lb,12.40.Yx

The orbitally-excited charmed meson states, collec-
tively referred to as D∗∗, are P-wave excitations of the
quark-antiquark system involving one charm and one
light quark. If we write the total angular momentum as
~J = ~jq +~sQ;~jq = ~sq +~L, where ~L is the orbital angular
momentum and Q(q) denotes the charm (light) quark,
then in the heavy-quark limit mQ ≫ ΛQCD the spin
of the charm quark ~sQ decouples from the other de-
grees of freedom. In that limit, the four P-wave states
can be separated into mass degenerate pairs: jq = 1/2
(JP = 0+, 1+) and jq = 3/2 (JP = 1+, 2+). Heavy
quark symmetry [1] provides a systematic treatment of
the mQ-dependent “hyperfine” splittings within each
doublet, as well as the average mass splittings between
doublets, as illustrated in Figure 1.
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FIG. 1: The mass ordering of the L=0 and L=1 D-meson
system. The arrows show the “hyperfine” splitting of the
P-wave jq = 1/2 and jq = 3/2 states. Properties of the
broad P-wave jq = 1/2 states are not well established.

The D0
1 and D∗0

2 states, which form the jq = 3/2

doublet, are expected to decay into final states D∗π,
with an overall D-wave configuration, whereas the
jq = 1/2 states D∗0

0 and D′
10

′, are expected to decay
in an overall S-wave configuration. Thus the jq = 3/2
states are expected to have narrow decay widths, com-
parable to their mass splitting [2], while the jq = 1/2
states are expected to be much broader. Recent theory
estimations give the mass values of the two jq = 3/2
states [3, 4, 5, 6, 7, 8].

These narrow orbitally-excited charmed mesons
have been observed by several experiments [9, 10, 11,
12, 13, 14, 15, 16]. In principle, given the large charm
cross section at the Tevatron pp̄ collider, very high
statistics samples can be collected for precision mea-
surements of the properties of these states. However,
at the trigger level it is difficult to separate low-mass
fully hadronic D-meson decays from the overwhelming
QCD background. The CDF II detector overcomes
this obstacle with a novel two-track trigger, which se-
lects long-lived charged hadrons from secondary ver-
tices, thus suppressing prompt charged hadrons from
the QCD background. The dataset for this analy-
sis, based on the vertex trigger, was taken between
March 2001 to November 2003, corresponding to an in-
tegrated luminosity of 210 pb−1. This sample is ideal
for studies of charm-particle decays into two or more
hadrons. In this analysis, both the D0

1 and D∗0
2 states

have been observed in the D∗+π− channel, followed by
the decay D∗+ → D0π+ and D0 → K−π+. The D∗0

2

state has also been observed in the D+π− channel (fol-
lowed by D+ → K−π+π+), where the corresponding
D0

1 decay is forbidden by parity and angular momen-
tum conservation. Charge-conjugate decay modes are
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included in the analysis.

A description of CDF can be found in Ref [17];
here only the pertinent detector components are de-
scribed. This measurement uses tracks measured in
the pseudorapidity range |η| < 1.1 [18], reconstructed
by a silicon microstrip vertex detector (SVXII) [19]
and the Central Outer Tracker (COT) [20], both in
a 1.4 T solenoidal magnetic field. The SVXII con-
sists of double-sided sensors arranged in five cylindrical
layers at radii between 2.5 and 10.6 cm, each provid-
ing an r − φ position measurement with a precision of
≈ 10 µm. The COT is an open-cell drift chamber with
96 layers of sense wires, grouped into 8 super-layers of
alternating axial and 2◦ stereo readout, and providing
track measurements between 40 and 137 cm in radius.

CDF collects events with a three-level trigger sys-
tem. At Level 1, two oppositely-charged tracks are re-
constructed in the COT by the eXtremely Fast Tracker
(XFT) [21] and are required to have a transverse
momentum pT ≥ 2 GeV/c each, and pT1 + pT2 ≥
5.5 GeV/c. At Level 2, the Silicon Vertex Tracker
(SVT) [22] associates SVX II r-φ position measure-
ments with XFT tracks, providing a precise measure-
ment of the track impact parameter (d0), the dis-
tance of closest approach of the track trajectory to
the beam axis in the transverse plane. Decays of long-
lived particles are identified by requiring two tracks
with 120µm ≤ d0 ≤ 1.0 mm, an opening angle be-
tween the two tracks satisfying 2◦ ≤ |∆φ| ≤ 90◦,
and Lxy > 200µm, where Lxy is the transverse dis-
tance from the beam axis to the two track intersec-
tion projected along the total transverse momentum
of the track pair. A complete event reconstruction of
D0 → K−π+ is performed at Level 3, where the Level
1 and Level 2 trigger requirements are confirmed.

The narrow width and small mass difference be-
tween the D∗∗ states require stringent tracking cali-
bration to achieve adequate mass resolution. The cal-
ibration procedure is done in two steps. The first step
is to determine the error matrix for the COT track
parameters, accounting for multiple scattering inside
the COT volume. These uncertainties depend on the
COT material description and hit resolution in the
drift model. The error matrix is computed using sim-
ulated J/ψ → µ+µ− decays, by analyzing pull distri-
butions of the five helix parameters between generated
and reconstructed muon tracks. Maximum likelihood
fits are performed in bins of p2

T of the J/ψ to derive
the pT -dependent rescaling factors. The second step is
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FIG. 2: a) The J/ψ mass as a function of pT , before
(dashed) and after (solid) tracking calibration. The slope
is reduced from 0.50± 0.03 to 0.006 ± 0.010 MeV/c2 per
GeV/c.
b) The D0 mass as a function of pT , after calibration. The
dashed lines indicate the world average 1σ error band of
∼ 1 MeV/c2.

similar to that used in B mass measurements at CDF
[23], but with improved energy loss calculations. We
first use photon conversions to electron-positron pairs
to determine the radiation length distribution of the
inner detector material and then tune the energy loss
parameters using the reconstructed J/ψ mass as a cal-
ibration. For this tuning we describe the detector as a
series of cylindrical layers of different materials; in each
layer we calculate the average dE/dx energy loss in the
traversed medium and then refit the track parameters.
The calibration uses the J/ψ → µ+µ− decays from
data to iteratively adjust the material composition and
thickness of each layer for different regions in z, until
the J/ψ mass dependence on the transverse momen-
tum is negligible. Finally, the absolute mass scale is
reached by adjusting the magnetic field by 0.1% to
set the value of the J/ψ mass to the world average
value [25]. Figure 2a shows the J/ψ mass versus pT

before and after calibration, where the slope changes
from 0.50 ± 0.03 MeV/c2 per GeV/c to 0.006 ± 0.010
MeV/c2 per GeV/c and the mean corresponds to the
world average J/ψ mass.

The tracking calibration has been cross-checked with
several other particle samples which populate different
mass ranges or different decay topologies, such as K0

S ,
Υ(1S), B± (to check for charge asymmetry biases) and
D0. For all cases the masses agree well with the world
averages, and the charge asymmetry was found to be
negligible. The results of these tests are summarized
in Table I. Figure 2b illustrates the results for the D0,
of particular relevance for this analysis.
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Meson Decay Slope m−mPDG

mode (MeV/c2/GeV/c) (MeV/c2)
K0

s π+π− -0.07±0.16 -0.042±0.086
B± J/ψK± 0.11±0.06 -0.27±1.037
J/ψ µ+µ− -0.006±0.01 0±0.45
Υ(1S) µ+µ− -0.16±0.21 -0.7±1.9
D0 K−π+ (−9 ± 6) × 10−6 0.1±0.55

TABLE I: Summary of mass measurements used to validate
the tracker calibration

Events considered in this analysis are required to
have at least four tracks with total charge zero, out of
which two are consistent with the trigger requirements
(pT > 2 GeV/c and |d0| > 100µm). For the first chan-
nel (D∗∗ → D∗+π−, followed by D∗+ → D0π+ and
D0 → K−π+), these “trigger tracks” are required to
have an invariant mass within 24 MeV/c2 of the D0

mass of 1864.5 MeV/c2 [25]. Particles are assigned in
turn the K and π masses, and all Kπ combinations
falling within the mass window are retained, to avoid
any bias in the D0 mass. This D0 candidate is associ-
ated with another track with pT > 400 MeV/c to form
a D∗+ candidate, with the requirement that the mass
difference between theD∗+ and theD0 be smaller than
147 MeV/c2. In addition, to reduce both background
and misassignment of the K and π masses, the third
track is required to have the same charge as the can-
didate pion track, as expected from leading order D∗+

decays. Finally, the D∗+ is associated with a negative
track with pT > 400 MeV/c, to form a four-track D∗∗

candidate. For the second channel (D∗0
2 → D+π−,

followed by D+ → K−π+π+), no mass window is re-
quired for the trigger tracks. The D+ candidate is
constructed from three tracks with a mass and charge
assignment compatible with being a K−π+π+ system;
two of these tracks must satisfy the trigger require-
ments, while the third must have pT > 800 MeV/c.
We first ensure that all three tracks originate from a
common vertex which is well separated from the pri-
mary vertex, by requiring the χ2 from a 3-dimensional
fit to the three tracks to be smaller than 12, and have
an associated Lxy > 1 mm. Then, D+ candidates are
defined as three-track systems with invariant mass be-
tween 1.85 and 1.89 GeV/c2. Finally, to obtain a neu-
tral D∗∗ candidate, the three tracks are combined with
a fourth, of opposite charge with respect to the sum of
the first three. The two D∗∗ resonances are analyzed
in terms of the invariant mass difference between the
four-track and the three-track system, which is crucial

to separate the resonances from the background. Fig-
ure 3 and 4 show the results for the D∗∗ resonances in
the two decay channels.
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FIG. 3: Invariant mass difference between D∗π system
and the D∗. The points represent the data, and lines rep-
resent the projection of the fit results for the individual
components described in the text.
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FIG. 4: Invariant mass difference between the D+π− sys-
tem and the D+, with the same definitions as Figure 3.

In Figure 3, signals from the D0
1 at 0.40 GeV/c2

and the D∗0
2 at 0.46 GeV/c2 are clearly visible above

the combinatorial background. Due to the unknown
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shape of the combinatorial background it is not possi-
ble with these data to derive with sufficient confidence
the properties, or even the existence of the broad state
(BS) D0′

1 (the 1+ component of the jq = 1/2 doublet)
from our data. Since a state with width around 200
MeV/c2 is suggested by a Belle measurement [15] its
potential effect is included as a systematic error.

The distribution of the mass difference in Figure
4 presents two features: a broad peak around 0.4
GeV/c2, and a narrow pronounced peak around 0.6
GeV/c2. The broad peak is due to the feed-down de-
cays of the type D∗∗ → D∗+π− accessible for both D0

1

and D∗0
2 , followed by D∗+ → D+π0, where the π0 is

not observed. Similar to the D0′

1 in Figure 3, part of
this peak could be due to a broad neutral D∗0

0 state
with a mass around 2410 MeV/c2 and width of about
250 MeV/c2, as reported by FOCUS [11]. The peak
around 0.6 GeV/c2 is the main D∗0

2 signal.
A simultaneous binned likelihood fit to both his-

tograms in Figures 3 and 4 is used to extract the mass
and width for the D0

1 and D∗0
2 . The likelihood function

consists of:

i) a signal term for each narrow state in the D∗+

channel, and only a D∗0
2 term in the D+ chan-

nel. These terms are a convolution of a non-
relativistic Breit-Wigner (BW) distribution with
a resolution histogram taken from Monte Carlo
simulation, and depends on the amplitudes A1,2,
the mass differences with respect to the three-
track states M1,2 and widths Γ1,2. The D∗0

2

widths are common for the two channels. The
likelihood component is:

fD1,2
(∆m) = A1,2×BW (∆m,M1,2,Γ1,2)⊗Resolution.

The D∗0
2 masses in the two channels are con-

nected by using the world average value for the
mass difference between D∗+ and D∗.

ii) a background (BG) term for each histogram with
free parameters α, β, γ and δ (set to zero for the
first channel), of the form:

fBG(∆m) = α(∆m−mπ)βe−γ(∆m−mπ) + δ.

iii) a broad state (BS) term for each histogram, mod-
eled as a Breit-Wigner function similar to that
of the narrow resonances, but convoluted with a
Gaussian whose width is taken from simulation:

fBS(∆m) = ABS×BW (∆m,MBS ,ΓBS)⊗Resolution.

iv) a feed-down (FD) term for decays of D0
1 and D∗0

2

to Dπ0π, where the π0 is lost and a smaller mass
is reconstructed. The only additional free pa-
rameter is a common scale factor relative to the
amplitudes of the D∗π channel, since the D0

1 and
D∗0

2 masses and widths are the same. The shift
and resolution are taken from Monte Carlo.

Overall we have 7 parameters for the narrow reso-
nances (amplitude, mass and width for each each res-
onance, plus the D∗0

2 yield in the second channel), 7
for background modeling (one parameter is set to zero
in the first channel), two amplitudes for broad states
and one feed-down normalization, for a total of 17 pa-
rameters. If the mass and width of one or two broad
states are left floating, we can have up to 19 or 21 pa-
rameters. In order to properly describe the tails of the
resolution, avoiding detector biases which occur when
a Gaussian approximation is made, we use the explicit
resolution histogram for signal and feed-down. The de-
tector resolution is about 4 MeV/c2, much smaller than
the intrinsic width of the resonances, but the tails are
significantly larger. On the other hand, Gaussian res-
olution is sufficient for the broad states, since the tails
fall outside the fitting window. The accuracy of the
simulation of the detector resolution has been tested in
a control sample of D0 and D∗+, whose natural width
is negligible with respect to detector resolution. After
taking the detector resolution into account using the
above prescription, we measure a width smaller than
0.2 MeV/c2 for all momentum ranges, and use this
value as a conservative systematic error on the width
due to tracking precision. If instead, the Gaussian ap-
proximation was made for the width, we then observed
width and mass shifts of the order of a few MeV/c2,
much larger than the precision envisaged.

The fitting procedure has been tested on a Monte
Carlo sample of fully simulated D0

1 → D∗+π−, D∗0
2 →

D∗+π− and D∗0
2 → D+π− decays with three times the

statistics of the observed data. The feed-downs are also
included. However, they have a small impact on the
final result. Both background and broad-state events
have been generated from the parametrized data distri-
bution. With this sample, two important cross-checks
on the fitting algorithm have been performed. First,
the full simulation sample is fitted and the results agree
with the simulation input parameters. In addition, a
large number of “toy experiments” with statistics com-
parable to the data are generated and fit to look for
potential biases. The resultant pull distribution for
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each fit parameter is consistent with a Gaussian distri-
bution of zero mean and unit width.

The likelihood fit applied to the data yields roughly
7500 D0

1 and 5000 D∗0
2 candidates for the channel of

Figure 3 and 20000D∗0
2 candidates for that of Figure 4.

Given the large background of unknown shape, there is
no way to derive the presence of a broad state from our
data only. Leaving all its parameters free, the result-
ing broad state yield is small and the χ2 quality of fit
probability is 51%. Three additional hypotheses on the
broad state are tested: a mass and width as measured
by FOCUS [11], as measured by Belle [15], or omitting
the BS term from the fit. The resulting variations in
the measured quantities are shown in Table II. As the

Model ∆(MD0

1

) ∆(ΓD0

1

) ∆(MD∗0

2

) ∆(ΓD∗0

2

) P (χ2)

Free — — — — 51
FOCUS 0.1 0.2 0.1 0.5 50
Belle 0.1 0.3 0.1 0.5 50
Absent 0.1 0.4 0.1 0.6 52

TABLE II: Shift of the measured masses and widths of
D0

1 and D∗0
2 and χ2 probability P for different hypotheses

of the broad state; allowing parameters to float in the fit,
using the values published by FOCUS [11] or Belle [15], or
forcing it to zero in the Dπ channel. Mass shifts are in
MeV/c2 and probability in %.

differences are small and there is no discrimination on
the basis of the χ2 probability, the central result in-
cludes the broad state with free parameters, and other
options provide estimates of systematic uncertainty.

Source ∆(MD0

1

) ∆(ΓD0

1

) ∆(MD∗0

2

) ∆(ΓD∗0

2

)

MC statistics 0.3 1.2 0.4 1.2
Broad State 0.1 0.4 0.1 0.5
Track Error scale 0.1 — 0.1 —
Fit model < 0.1 < 0.1 < 0.1 < 0.1
Mass Calibration 0.1 0.2 0.1 0.2
Total (Relative) 0.4 1.3 0.5 1.3
Reference mass 0.5 — 0.7 —
Total (Absolute) 0.6 1.3 0.8 1.3

TABLE III: Summary of systematic error for the mass and
width of the two resonances, all in units of MeV/c2. Since
the measurement is a mass difference, the absolute mass
error includes a systematic error due to the uncertainty of
the mass of the reference particle.

From the likelihood fit we derive results, with sta-
tistical uncertainties only, on the D0

1 and D∗0
2 widths

and mass differences with respect to the D∗+ or D+

into which the D∗∗ decays. To derive absolute masses
from the measured mass differences we add the world
average masses [25] of the D∗+ or D+, and the corre-
sponding uncertainty on this value (both known with
0.5 MeV/c2 precision) to the systematic errors. The re-
maining residual systematic errors are connected with
Monte Carlo statistics and the tracking calibration,
and are listed in Table III.

In summary, the large sample of orbitally-excited
charmed mesons collected by the CDF collaboration
using the vertex trigger allows the measurement of
properties of the L=1 orbitally-excited narrow states
D0

1 and D∗0
2 with unprecedented precision. Using both

D∗+π− and D+π− final states, the measured widths
of these states are:

Γ(D0
1) = 20.0 ± 1.7 ± 1.3 MeV/c2,

Γ(D∗0
2 ) = 49.2 ± 2.3 ± 1.3 MeV/c2.

where the first error is statistical, and the second sys-
tematic, above and for all results which follow. In or-
der to improve the resolution, the mass measurement
is performed in term of differences with respect to the
daughter charmed particle. The measured mass differ-
ences are:

M(D0
1) −M(D∗+) = 411.7± 0.7 ± 0.4 MeV/c2,

M(D∗0
2 ) −M(D+) = 593.9± 0.6 ± 0.5 MeV/c2.

The D∗0
2 mass is given with respect to the D+ since

almost all the information comes from this decay chan-
nel. Adding the world average values for the D∗+ and
D+ masses and including their uncertainties in quadra-
ture to the systematic error, the absolute values of the
masses are:

M(D0
1) = 2421.7± 0.7 ± 0.6 MeV/c2,

M(D∗0
2 ) = 2463.3± 0.6 ± 0.8 MeV/c2.

A comparison of these values with the world averages
and some recent theoretical models can be found in
Figure 5; the results are consistent with the models,
and with better estimations of uncertainties from the
models they should allow one to constrain which theo-
retical picture is consistent with experiment. Compar-
ison with predictions and measurements for the widths
is less insightful due to the larger uncertainties; how-
ever, the width measurements presented here are con-
sistent with other recent measurements [12, 15] .

This is the best single world measurement of the
masses of the orbitally-excited charm states. The to-
tal error is still limited by the statistics, and there is
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FIG. 5: D0
1 (solid) and D∗0

2 (open) mass comparison with
theoretical expectations (triangles) and previous measure-
ments and current world average (circles). Errors for theory
predictions are not readily available.

room for improvement with the data presently being
recorded by the CDF II experiment. A precise deter-
mination of the theory uncertainties would however be
needed to assess the discriminating power of this and
future measurements.
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