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J. Lee,48 J. Lee,27 S.W. Lee,52 R. Lefèvre,3 N. Leonardo,31 S. Leone,45 S. Levy,13 J.D. Lewis,16 K. Li,59

C. Lin,59 C.S. Lin,16 M. Lindgren,16 E. Lipeles,9 T.M. Liss,23 A. Lister,19 D.O. Litvintsev,16 T. Liu,16 Y. Liu,19

N.S. Lockyer,44 A. Loginov,35 M. Loreti,42 P. Loverre,50 R.-S. Lu,1 D. Lucchesi,42 P. Lujan,28 P. Lukens,16

G. Lungu,17 L. Lyons,41 J. Lys,28 R. Lysak,1 E. Lytken,47 P. Mack,25 D. MacQueen,32 R. Madrak,16 K. Maeshima,16

P. Maksimovic,24 G. Manca,29 F. Margaroli,5 R. Marginean,16 C. Marino,23 A. Martin,59 M. Martin,24 V. Martin,37

M. Mart́ınez,3 T. Maruyama,54 H. Matsunaga,54 M.E. Mattson,57 R. Mazini,32 P. Mazzanti,5 K.S. McFarland,48

D. McGivern,30 P. McIntyre,52 P. McNamara,51 R. McNulty,29 A. Mehta,29 S. Menzemer,31 A. Menzione,45

P. Merkel,47 C. Mesropian,49 A. Messina,50 M. von der Mey,8 T. Miao,16 N. Miladinovic,6 J. Miles,31 R. Miller,34

J.S. Miller,33 C. Mills,10 M. Milnik,25 R. Miquel,28 S. Miscetti,18 G. Mitselmakher,17 A. Miyamoto,26 N. Moggi,5

http://lanl.arXiv.org/abs/hep-ex/0512074v1


2

B. Mohr,8 R. Moore,16 M. Morello,45 P. Movilla Fernandez,28 J. Mülmenstädt,28 A. Mukherjee,16 M. Mulhearn,31
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We measure the dipion mass spectrum in X(3872) → J/ψ π+π− decays using 360 pb−1 of p̄p
collisions at

√
s = 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions

for odd C-parity (3S1,
1P1, and 3DJ ) charmonia decaying to J/ψ π+π−, as well as even C-parity

states in which the pions are from ρ0 decay. The latter case also encompasses exotic interpretations,
such as a D0D∗0 molecule. Only the 3S1 and J/ψ ρ hypotheses are compatible with our data. Since
3S1 is untenable on other grounds, decay via J/ψ ρ is favored, which implies C = +1 for theX(3872).
Models for different J/ψ-ρ angular momenta L are considered. Flexibility in the models, especially
the introduction of ρ-ω interference, enable good descriptions of our data for both L = 0 and 1.

PACS numbers: 14.40.Gx 13.25.Gv 12.39.Mk

The charmonium-like X(3872) stands as a major spec-
troscopic puzzle. Its mass [1, 2, 3, 4] and what is
known of its decays make assignments to the normal
spectrum of cc̄ states problematic [5, 6]. Its remarkable
proximity to the D0D∗0 mass—indistinguishable within
uncertainties—has fueled speculations that it is a loosely

bound deuteron-like D0D∗0 “molecule”, i.e. a (uc̄)-(cū)
system [1, 7]. Although a molecule is prominent among
exotic interpretations, others have been proffered [8].
Non-qq̄ mesons are allowed within QCD, but an unequiv-
ocal example remains elusive. Even as a conventional me-
son, the X(3872) remains interesting as the cc̄ spectrum
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FIG. 1: Examples of “slices” in dipion mass mππ of the J/ψ π+π− mass distributions, and their X(3872) fits. The raw yields
NX prior to efficiency corrections are quoted, and the arrow in the first panel marks the X(3872) mass.

above the ψ(3770) is not well known.

Insight into the X(3872) is offered by the dipion mass
spectrum in X → J/ψ π+π−. Belle observed a preference
for high ππ-masses, contrary to expectations for triplet-
D cc̄-states [9]—the näıve interpretation. Belle noted
that X → J/ψ ρ0 decay—isospin violating for charm-
onium—produces high masses, and thus may be a hint
for a D0D∗0 molecule. Dipion spectra have been pub-
lished [1, 10]; and a preliminary analysis partially based
on ππ masses argues for a JPC = 1++ assignment [6],
consistent with that expected for a D0D∗0 molecule.

At the Tevatron, large X(3872) samples are available,
albeit with high backgrounds. Previously, we have mea-
sured the X mass and confirmed the propensity for high
ππ masses [2]. We also have made a preliminary measure-
ment of the inclusive production fraction arising from b
hadrons [11]. Here we measure the ππ mass spectrum.

We use a sample of p̄p collisions at
√
s = 1.96 TeV col-

lected with the Collider Detector at Fermilab (CDF II)
between February 2002 and August 2004. The detec-
tor is described in detail elsewhere [12], and only the
most relevant components for this analysis are summa-
rized here. The central tracking system is immersed in
a 1.4 T solenoidal magnetic field for the measurement
of charged particle momenta pT transverse to the beam-
line. It is composed of six layers of silicon-strip detectors
(L00 [13] and SVX [14]) surrounded by an open-cell drift
chamber called the Central Outer Tracker (COT) [15].
The active volume of the COT is a 3.1 m long cylinder
with 8 superlayers of 12 wires each. The outermost de-
tection system is planes of multi-layer drift chambers for
detecting muons [16]. The Central Muon system (CMU)
covers |η| ≤ 0.6, where pseudorapidity η ≡ − ln[tan(θ/2)]
and θ is the angle of the particle with respect to the di-
rection of the proton beam. Additional chambers (CMX)
extend the muon coverage to |η| = 1.0.

A dimuon trigger is used to obtain a J/ψ → µ+µ−

sample. At Level 1 of a three-level trigger system, the eX-
tremely Fast Tracker (XFT) [17] uses COT information

to select tracks based on pT . XFT tracks with pT ≥ 1.5
(2.0) GeV/c are extrapolated to the CMU (CMX) cham-
bers and compared with the positions of muon-chamber
tracks. The event passes Level 1 if two or more XFT
tracks are matched to muon tracks. Opposite-charge and
opening-angle cuts are imposed at Level 2. At Level 3,
full COT tracking information is used to reconstruct
µ+µ− candidates. Events with candidates from 2.7 to
4.0 GeV/c2 in mass are recorded for further analysis.

This analysis [18] is based on an integrated luminosity
of 360 pb−1. Candidate selection follows Ref. [2] with
two exceptions (see below). After constraining µ+µ−

candidates to a common vertex, the dimuon mass must
be within 60 MeV/c2 (∼ 4 standard deviations) of the
J/ψ mass [19]. This one degree-of-freedom (DoF ) fit
must have χ2 < 15. Pairs of charged tracks, each with
pT ≥ 0.4 GeV/c and assumed to be pions, are fit with the
µ+µ− tracks to a common vertex. In this fit, the dimuon
mass is constrained to the J/ψ mass, and we demand
χ2 < 25 (6 DoF ). We reduce combinatorial backgrounds
by requiring pT (J/ψ) ≥ 4 GeV/c and ∆R ≤ 0.7 for both
pions, where ∆R ≡

√

(∆φ)2 + (∆η)2, ∆φ is the differ-
ence in azimuthal angle between the J/ψ ππ system and
the pion, and ∆η is the difference in pseudorapidity. The
mass range for the sample includes both X(3872) and
ψ(2S) signals [2]; the latter is used as a control sample.

We depart from Ref. [2] by dropping a cut on the num-
ber of candidates allowed per event. This removes a pos-
sible bias and improves the X signal at high ππ masses.
We also add fiducial criteria: pT (J/ψ ππ) > 6 GeV/c
and |η(J/ψ ππ)| < 0.6. This eliminates the region of
rapidly changing efficiency and sacrifices ∼ 25% of the
ψ(2S) yield, leaving 11500±220 ψ(2S) mesons. We have
1260±130X(3872) candidates formππ > 500 MeV/c2 [2].

To extract dN/dmππ spectra, we divide the sample
into “slices” of mππ and fit each J/ψ π+π− mass distri-
bution for the signal per slice. The J/ψ π+π− mass fits
use a Gaussian for the X(3872) signal and an exponen-
tial times power law for the background. We also fit the
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ψ(2S) control signal in the same way, but use two Gaus-
sians for the better defined shape arising from the larger
ψ(2S) signal. As slices may have small signals—or none
at all—we inhibit the fit from latching onto fluctuations
by fixing the position and width of the signal to values
from full-sample fits. Sample slices are shown in Fig. 1.

The fitted dN/dmππ yield is corrected for detector and
selection efficiencies determined by Monte Carlo simula-
tion. Only the efficiencies relative to other mππ slices
are needed. An important input affecting the efficiency
is the production pT spectrum. For the X(3872), there is
no a priori model, and we rely upon data. The generated
spectra, exponentials raised to a quadratic polynomial in
pT , are adjusted until the simulation, after detector and
reconstruction effects, reproduces the respectiveX(3872)
or ψ(2S) spectra of the data. We use a parameterization
of the well-knownmππ shape of the ψ(2S) for both states.

Uncertainties on our spectra are dominated by statis-
tics, but we examined two sources of systematic effects:
the fits for signal yields and the efficiency corrections.

To check the yield stability, we changed the width of
the J/ψ π+π− fit range of 200 MeV/c2 by ±50 MeV/c2,
altered the signal and background models, and allowed
the signal mean and width to float. We saw no bias in
the yields, but nevertheless allotted an uncertainty based
on the statistical precision to which we could observe
one: 3.6 ψ(2S) and 8.4 X(3872) candidates per slice.
The highest three X-slices—highest two for the ψ(2S)—
are treated specially for effects near the upper kinematic
limit: the background begins to turn-on under the signal,
and resolution effects can distort the signal shape in the
mass fit. Yield systematics are assigned to these slices
based on variations in the fit model for these issues.

The other type of uncertainty is from the efficiency cor-
rections. The ψ(2S) model for dN/dmππ is inexact. We
assign an uncertainty based on phase space as an alter-
nate shape—including re-tuning the pT spectrum. The
ratio of the alternate correction to the nominal one quan-
tifies the change in shape of the efficiency when switching
from the ψ(2S)-like dN/dmππ to phase space. The ratio
of efficiencies for the ψ(2S) varies by ∼ 3% over the main
region of interest, mππ > 360 MeV/c2, and by ∼ 2.5% for
the X(3872) above 570 MeV/c2. For the uncertainty in
the meson pT spectra, we use alternate spectra one stan-
dard deviation steeper and shallower in their pT fall-off
based on the errors from the pT spectrum fit to the data.
We again take the ratio of the new efficiencies relative to
the nominal shape to quantify the uncertainty. For the
mass ranges of interest the ψ(2S) variation is almost 3%,
but less than 1% for the X . The pT spectrum of the X
is more poorly measured than for the ψ(2S); but with
higher dipion masses, the X suffers smaller variations in
efficiency, and thus a smaller uncertainty.

The dN/dmππ spectrum for our ψ(2S) control signal,
after corrections and including systematic uncertainties,
is shown in Fig. 2 with a scale preserving the raw fitted
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FIG. 2: The CDF dipion mass spectrum for the ψ(2S) with
a fit of a QCD multipole expansion calculation for 3S1 [21].
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FIG. 3: The dipion mass spectrum for the X(3872), and fits
to various hypotheses (see text). The fitted curve for the 1P1

model is scaled up by a factor of 5 for better visibility.

yield of 11 500 candidates. It agrees well with results
from the BES Collaboration using a sample of 20 000
events [20]. This is reflected by the mutual agreement
in fits to a QCD multipole expansion model [21]. BES
obtained −0.336 ± 0.009 ± 0.019 for this model’s single
shape parameter “B/A,” whereas our fit yields −0.342±
0.022 (6.9% fit probability). The systematic uncertainties
are incorporated in this and later X-fits, including the
mππ correlations in the efficiency uncertainties.

The X(3872) dipion spectrum is shown in Fig. 3. We
fit our data with multipole expansion calculations for
C-odd cc̄ options [22]. The 3DJ states are a natural
choice for the X according to potential models [5]. A
fit of 3DJ → J/ψ π+π− [21] is unacceptable with a χ2 of
113 for 14 DoF . The 1P1 → J/ψ π+π− [23] fit is worse
(χ2/DoF = 146/14). The ψ(2S) spectrum is similar to
that of the X , and indeed, our 3S1 [21] fit to the X has
a 28% probability. However, no new 3S1 cc̄-state can be
near 3872 MeV/c2 as the ψ(3S) lies at ∼4040 MeV/c2 [5].

The above C-odd states produce dipions, to lowest L
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between the pions, with JPC = 0++. C-even states yield
1−− isovector dipions, which we associate with the ρ0.
Isospin conservation suppresses cc̄ decays to J/ψ ρ. Thus,
this mode is seen as suggestive of aD0D∗0 molecule [1, 7].
Even as charmonium, however, the X may break isospin
by coupling to D0D∗0 due to its close proximity in mass.

We model X → J/ψ ρ by a relativistic Breit-Wigner
multiplied by phase space and generalized for a J/ψ-ρ
system of angular momentum L. That is, dN/dmππ ∝
k2L+1
∗

f2
LX(k∗)|Bρ|2, where k∗ is the J/ψ momentum in

the X rest-frame, Bρ ∝
√

mππΓρ/[m
2
ρ −m2

ππ − imρΓρ],

Γρ(mππ) = Γ0 [q∗/q0]
3
[mρ/mππ][f1ρ(q∗)/f1ρ(q0)]

2, q∗ is
the π momentum in the ρ rest-frame, q0 ≡ q∗(mρ), mρ

is 775.8 MeV/c2, and Γ0 is 146.4 MeV. The fLi(p) are

f0i(p) = 1 and f1i(p) = (1 + R2
i p

2)−
1
2 [24], where Ri is

a radius of interaction for meson “i.” The Ri are poorly
known. A common value for light mesons is 0.3 fm, but
for D mesons larger values like 1 fm are often taken [25].
We use these respective values for Rρ and RX .

Fits with this ρ model are shown in Fig. 3 for L = 0
and 1. Higher L softens the fall-off at the high kinematic
limit, worsening the agreement: the fit probability goes
from 55% for L = 0 down to 7.7% for L = 1 [26]. The
P -wave fit is somewhat disfavored, but the results are
sensitive to RX and Rρ. The latter probability can be
increased by lowering Rρ or raising RX .

Another modeling uncertainty is the effect of ρ-ω inter-
ference. Belle reports evidence forX → J/ψ π+π−π0 and
interprets it as decay via a virtual ω. As such, they mea-
sure the ratio of J/ψ ω to J/ψ ρ branching ratios R3/2 to
be 1.0±0.4±0.3 [27]. The rate of ω → π+π− is normally
negligible, but its interference effects may not be.

We generalize |Bρ|2 to |AρBρ + eiφAωBω2π|2 in
dN2π/dmππ, where Aρ and Aω are (positive) decay am-
plitudes via ρ and ω, and φ is their relative phase. Using
dN3π/dm3π ∝ |AωBω3π|2 for J/ψ π+π−π0 [28], R3/2 de-
termines |Aω/Aρ| given φ. We take a φ of 95◦, the value if
the only phase is from ω → π+π− decaying via ρ-ω mix-
ing [29]. Similar phases are seen in e+e− → π+π− [30].
The ω fraction is small (< 10%), but interference is con-
structive and contributes ∼23% for both L, preferentially
at high masses. Fits with this model are shown in Fig. 4,
along with the breakdown into interference and “pure” ρ
and ω parts. The probability is 19% for the S fit, and
53% for the P fit. The results are not critically depen-
dent on R3/2: probabilities remain above 7% over a ±1
standard deviation span of Belle’s R3/2 for both L val-
ues. The P fit is sensitive to φ and RX , as is shown in
the inset. We conclude that there is ample flexibility in
models of X → J/ψ ρ of either L to describe our data.

In summary, we measured the dipion mass spectrum
in X(3872) → J/ψ π+π−. Our spectrum is inconsistent
with calculations for 1P1 and 3DJ charmonia. A good fit
is obtained for X → J/ψ ρ0, an interpretation supported
by recent evidence for the C-even decay X → J/ψ γ [27].
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FIG. 4: A blow-up of the X(3872) spectrum with J/ψ ρ
fits which include ρ-ω interference (95◦ phase) with relative
amplitudes set by R3/2 = 1.0. Fits for both L = 0 (lines) and
1 (shaded regions) are shown, along with their decomposition
into ρ, ω, and interference terms. The inset shows L = 1 fit
probabilities as a function of φ and RX in 5% contours.

Our data are compatible with both S- and P -wave J/ψ ρ
decays, where in the latter case, this is partly due to
modeling uncertainties. The P fit benefits from con-
structive ρ-ω interference at levels implied by the rate
of X → J/ψ π+π−π0. The J/ψ ρ interpretation does not
by itself distinguish between C-even charmonia (e.g. 1++

or 2−+) and exotic options like an 1++ D0D∗0 molecule.
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