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Prediction of Narrow Jπ = 1/2+, 3/2+, and 3/2− states of Θ+ in a Quark model with

Antisymmetrized Molecular Dynamics
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The exotic baryon Θ+(uudds̄) is studied with microscopic calculations in a quark model by
using a method of antisymmetrized molecular dynamics. We predict that the lowest even state is
Jπ = 1/2+(I = 0) or Jπ = 3/2+(I = 0), and the lowest odd state is Jπ = 3/2−(I = 1). They nearly
degenerate in the uudds̄ system. We discuss K+n decay widths and estimate them to be Γ < 7 for
the Jπ = {1/2+, 3/2+}, and Γ < 1 MeV for the Jπ = 3/2− state.

The evidence of an exotic baryon Θ+ has recently been reported by several experimental groups [1–9]. Since the
quantum numbers determined from its decay modes of Θ+ indicate that the minimal quark content is uudds̄, this
discovery proved the existence of the multiquark hadron. The study of pentaquarks became a hot subject in hadron
physics.

The prediction of a Jπ = 1/2+ state of uudds̄ by a chiral soliton model [10] motivated the experiments of the first
observation of Θ+ [1]. Their prediction of even parity is unnatural in the naive quark model. Theoretical studies
were done to describe Θ+ by many groups [11–16], some of which predicted the opposite parity, Jπ = 1/2− [14–16].
The problem of spin and parity of Θ+ is not only open but also essential to understand the dynamics of pentaquark
systems.

In this paper we would like to clarify the mechanism of the existence of the pentaquark baryon. We try to
extract a simple picture for the pentaquark baryon with its energy, width, spin, parity and also its shape from
explicit calculation. In order to achieve this goal, we study the pentaquark with a flux-tube model [19,20] based on
strong coupling QCD, by using a method of antisymmetrized molecular dynamics (AMD) [17,18]. In the flux-tube
model, the interaction energy of quarks and anti-quarks is given by the energy of the string-like color-electric flux,
which is proportional to the minimal length of the flux-tube connecting quarks and anti-quarks at long distances
supplemented by perturbative one-gluon-exchange (OGE) interaction at short distances. For the q4q̄ system the
flux-tube configuration has an exotic topology, Fig.1(c), in addition to an ordinary meson-baryon topology, Fig. 1(d),
and the transition between different topologies takes place only in higher order of the strong coupling expansion.
Therefore, it seems quite natural that the flux-tube model accommodates the pentaquark baryon. In 1991, Carlson
and Pandharipande studied exotic hadrons in the flux-tube model [21]. They calculated for only a few q4q̄ states
with very limited quantum numbers and concluded that pentaquark baryons are absent. We apply the AMD method
to the flux-tube model. The AMD is a variational method to solve a finite many-fermion system. This method is
powerful for the study of nuclear structure. One of the advantages of this method is that the spatial and spin degrees
of freedom for all particles are independently treated. This method can successfully describe various types of structure
such as shell-model-like structure and clustering (correlated nucleons) in nuclear physics. In the application of this
method to a quark model, we take the dominant terms of OGE potential and string potential due to the gluon flux
tube. Different flux-tube configurations are assumed to be decoupled. We calculate all the possible spin parity states
of uudds̄ system, and predict low-lying states. By analysing the wave function, we discuss the properties of Θ+ and
estimate the decay widths of these states with a method of reduced width amplitudes.

In the present calculation, the quarks are treated as non-relativistic spin- 1
2 Fermions. We use a Hamiltonian as

follows,

H = H0 + HI + Hf , (1)

where H0 is the kinetic energy of the quarks, HI represents the short-range OGE interaction between the quarks and
Hf is the energy of the flux tubes. For simplicity, we take into account the mass difference between the ud quarks
and the s quark, ∆ms, only in the mass term of H0 but not in the kinetic energy term. Then, H0 is represented as
follows;

H0 = Nqmq + Ns∆ms +
∑

i

p2
i

2mq
− T0, (2)

where Nq is the total number of quarks and Ns is the total number of strange quarks. T0 denotes the kinetic energy
of the center-of-mass motion.

HI represents the short-range OGE interaction between quarks and consists of the Coulomb and the color-magnetic
terms,
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FIG. 1. Flux-tube configurations for confined states of qq̄ (a), q3 (b), q4q̄ (c), and disconnected flux-tube of q4q̄ (d). Figures
(e) and (f) represent the flux tubes in the color configurations, [ud][ud]s̄ and [uu][dd]s̄, respectively.

HI = αc

∑

i<j

FiFj

[

1

rij
− 2π

3m̄im̄j
s(rij)σi · σj

]

. (3)

Here, αc is the quark-gluon coupling constant, and FiFj is defined by
∑

α=1,···,8 Fα
i Fα

j , where Fα
i is the generator of

color SU(3), 1
2λα

i for quarks and − 1
2 (λα

i )∗ for anti-quarks. m̄i is the mass of i-th quark, which is mq for a u or d quark
and ms for a s̄ quark. The usual δ(rij) function in the spin-spin interaction is replaced by a finite-range Gaussian,

s(rij) =
[

1
2
√

πΛ

]3

exp
[

− r2

ij

4Λ2

]

, as in Ref. [21]. Of course, the full OGE interaction contains other terms such as tensor

and spin-orbit interactions. However, since our main interest here is to see the basic properties of the pentaquark, we
do not include these minor contributions.

In the flux-tube quark model [19], the confining string potential is written a Hf = σLf − M0, where σ is the
string tension, Lf is the minimum length of the flux tubes, and M0 is the zero-point string energy. M0 depends
on the topology of the flux tubes and is necessary to fit the qq̄, q3 and q4q̄ potential obtained from lattice QCD or
phenomenology. In the present calculation, we adjust the M0 to fit the absolute masses for each of three-quark and
pentaquark.

For the meson and 3q-baryon systems, the flux tube configurations are the linear line and the Y -type configuration
with a junction as shown in Fig.1(a) and (b), respectively. The string potential given by the Y -type flux tube
in a 3q-baryon system is supported by Lattice QCD [22]. For the pentaquark system, the different types of flux-
tube configurations appear as shown in Fig. 1.(e),(f), and (d), which correspond to the states, |Φ(e)〉 = |[ud][ud]s̄〉,
|Φ(f)〉 = |[uu][dd]s̄〉, and |Φ(d)〉 = |(qqq)1(qq)1〉, respectively. ([qq] is defined by color anti-triplet of qq.) In the present
calculation of the energy, we neglect the transition among |Φ(e)〉, |Φ(f)〉 and |Φ(d)〉 because they have different flux-tube
configurations. It is reasonable in the first order approximation, as mentioned before. In the practical calculation of the
expectation values of the string potential 〈Φ|Hf |Φ〉 with respect to a meson system(Φqq̄), a three-quark system(Φq3),
and the pentaquark states Φ(e), Φ(f), Φ(d), the minimum length of the flux tubes Lf is approximated by a linear
combination of two-body distances as,

Lf ≈ r12 in 〈Φqq̄ |Hf |Φqq̄〉, (4)

Lf ≈ 1

2
(r12 + r23 + r31) in 〈Φq3 |Hf |Φq3〉, (5)

Lf ≈ 1

2
(r12 + r34) +

1

8
(r13 + r14 + r23 + r24) +

1

4
(r1̄1 + r1̄2 + r1̄3 + r1̄4) in 〈Φ(e,f)|Hf |Φ(e,f)〉, (6)

Lf ≈ 1

2
(r12 + r23 + r31) + r1̄4 in 〈Φ(d)|Hf |Φ(d)〉. (7)

We note that the confinement is reasonably realized by the approximation in Eq.6 for Φ(e,f) as follows. The flux-tube
configuration (e)(or (f)) consists of seven bonds and three junctions. In the limit that the length(R) of any one
bond becomes much larger than other bonds, the string potential 〈Hf 〉 approximated by the Eq.6 behaves as a linear
potential σR. It means that all the quarks and anti-quarks are bounded by the linear potential with the tension σ.
In that sense, the approximation in Eq.6 for the connected flux-tube configurations is regarded as a natural extension
of the approximation(Eq.5) for 3q-baryons. It is convenient to introduce an operator O ≡ − 3

4σ
∑

i<j FiFjr − M0.

One can easily prove that the above approximations, 4,5,6,7, are equivalent to 〈Φ|Hf |Φ〉 ≈ 〈Φ|O|Φ〉 within each of
the flux-tube configurations because the proper factors arise from FiFj depending on the color configurations of the
corresponding qq (or qq̄) pairs.
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TABLE I. Calculated masses (GeV) of the q3 systems. The expectation values of the kinetic, string, Coulomb and
color-magnetic terms are also listed.

(uud)1 (uud)1 (uuu)1
Sπ 1

2

+ 1

2

− 3

2

+

Kinetic(H0) 1.74 1.87 1.66
String(HF ) 0.02 0.27 0.07

Coulomb −0.65 −0.52 −0.62
Color mag. −0.17 −0.09 0.14

E 0.94 1.52 1.24

exp. (MeV) N(939) N∗(1520), N∗(1535) ∆(1232)

We solve the eigenstates of the Hamiltonian with a variational method in the AMD model space [17,18]. We take
a base AMD wave function in a quark model as follows.

Φ(Z) = (1 ± P )A
[

φZ1
φZ2

· · ·φZNq
X

]

, (8)

φZi
=

(

1
πb2

)3/4
exp

[

− 1
2b2 (r −

√
2bZi)

2 + 1
2Z2

i

]

, (9)

where 1 ± P is the parity projection operator, A is the anti-symmetrization operator, and the spatial part φZi
of the

i-th single particle wave function given by a Gaussian whose center is located at Zi in the phase space. X is the spin-
isospin-color function. For example, in case of the proton, X is given as X = (| ↑↓↑〉S − | ↑↑↓〉S)⊗ |uud〉⊗ ǫabc|abc〉C .
Here, |m〉S(m =↑, ↓) is the intrinsic-spin function and |a〉C(a = 1, 2, 3) expresses the color function. Thus, the wave
function of the Nq quark system is described by the complex variational parameters, Z = {Z1, Z2, · · · , ZNq

}. By using
the frictional cooling method [17] the energy variation is performed with respect to Z.

For the pentaquark system (uudds̄),

X =
∑

m1,m2,m3,m4,m5

cm1m2m3m4m5
|m1m2m3m4m5〉S ⊗ {|ududs̄〉 or |uudds̄〉} ⊗ ǫabgǫcehǫghf |abcef̄〉C , (10)

where |ududs̄〉 and |uudds̄〉 correspond to the configurations [ud][ud]s̄ and [uu][dd]s̄ in Fig.1, respectively. Since we are
interested in the confined states, we do not use the meson-baryon states, (qqq)1(qq̄)1. This assumption of decoupling
between the reducible and irreducible configurations of the flux tubes can be regarded as a kind of bound-state
approximation. The coefficients cm1m2m3m4m5

for the spin function are determined by diagonalization of Hamiltonian
and norm matrices. After the energy variation, the intrinsic-spin and parity Sπ eigen wave function Φ(Z) for the
lowest state is obtained for each Sπ.

In the numerical calculation, the linear and Coulomb potentials are approximated by seven-range Gaussians. We
use the parameters, αc = 1.05, Λ = 0.13 fm, mq = 0.313 GeV, σ = 0.853 GeV/fm, and ∆ms = ms − mq = 0.2 GeV.
The quark-gluon coupling constant αc is chosen so as to fit the N and ∆ mass difference. The string tension σ is
adopted to adjust the excitation energy of N∗(1520). The width parameter b is chosen to be 0.5 fm.

In table.I, we display the calculated energy of q3 states with Sπ = 1/2+(N), Sπ = 3/2+(∆), Sπ = 1/2−(N∗). The
zero-point energy M0 of the string potential is chosen to be M0

q3 = 972 MeV to fit the masses of q3 systems, N , N∗

and ∆. The contributions of the kinetic and each potential terms are consistent with the results of the Ref. [21]. We
checked that the obtained states are almost eigen states of the angular momentum L and the L projection gives only
minor effects on the energy.

Now, we apply the AMD method to the uudds̄ system. For each spin parity, we calculate energies of the [ud][ud]s̄
and [uu][dd]s̄ states and adopt the lower one. In table.II, the calculated results are shown. We adjust the zero-point
energy of the string potential M0 as M0

q4q̄ = 2385 MeV to fit the absolute mass of the recently observed Θ+. This

M0
q4q̄ for pentaquark system is chosen independently of M0

q3 for 3q-baryon. If M0
q4q̄ = 5

3M0
q3 is assumed as Ref. [21],

the calculated mass of the pentaquark is around 2.2 GeV, which is consistent with the result of Ref. [21].
The most striking point in the results is that the Sπ = 3/2− and Sπ = 1/2+ states nearly degenerate with the

Sπ = 1/2− states. The Sπ = 1/2+ correspond to Jπ = 1/2+ and 3/2+ with S = 1/2, L = 1, the Sπ = 3/2− is
Jπ = 3/2−(S = 3/2, L = 0). The lowest Sπ = 1/2−(Jπ = 1/2−, L = 0) state appears just below the Sπ = 3/2−.
However this state, as we discuss later, is expected to be much broader than other states. The Jπ = 1/2+ and 3/2+

exactly degenerate in the present Hamiltonian which does not contain the spin-orbit force. Other spin-parity states
are much higher than these low-lying states.
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TABLE II. Calculated masses(GeV) of the uudds̄ system. M0

q4q̄
=2385 MeV is used to adjust the energy of the lowest state to

the observed mass. The expectation values of the kinetic, string, Coulomb, color-magnetic terms, and that of the color-magnetic
term in qq̄ pairs are listed. In addition to the lowest 1/2− state with the [uu][dd]s̄ configuration, we also show the results of
the /2− state with [ud][ud]s̄ configuration, which lies in the low-energy region.

[uu][dd]s̄ [ud][ud]s̄ [ud][ud]s̄ [ud][ud]s̄ [uu][dd]s̄ [ud][ud]s̄ [ud][ud]s̄

Sπ 1

2

− 3

2

− 1

2

+ 1

2

− 5

2

− 3

2

+ 5

2

+

Kinetic(H0) 3.23 3.22 3.36 3.19 3.19 3.36 3.33
String(HF ) −0.67 −0.66 −0.55 −0.64 −0.64 −0.56 −0.54

Coulomb −1.05 −1.04 −0.99 −1.03 −1.03 −0.99 −0.98
Color mag. −0.01 0.01 −0.25 0.04 0.19 −0.06 0.17

qq̄Color mag. −0.06 −0.01 0.00 0.02 0.06 0.02 0.04

E 1.50 1.53 1.56 1.56 1.71 1.75 1.98

Next, we analyze the spin structure of these states, and found that the Jπ = {1/2+, 3/2+}(S = 1/2, L = 1)
states consist of two spin-zero ud-diquarks, while the Jπ = 3/2− consists of a spin-zero ud-diquark and a spin-one
ud-diquark. Since the spin-zero ud-diquark has the isospin I = 0 and the spin-one ud-diquark has the isospin I = 1
because of the color asymmetry, the isospin of the Jπ = 3/2− state is I = 1. The lowest even-parity states have isopin
I = 0. The Jπ = 1/2+ state corresponds to the Θ+(1530) in the flavor 10-plet predicted by Diakonov et al. [10]. It is
surprising that the odd-parity state, Jπ = 3/2− has the isopin I = 1, which means that this state is a member of the
flavor 27-plet and belong to a new family of Θ baryon. We denote the Jπ = {1/2+, 3/2+}, I = 0 states by Θ+

0 , and
the Jπ = 3/2−, I = 1 state by Θ+

1 . The mass difference E(Θ+
0 ) − E(Θ+

1 ) is about 30 MeV in the present work.
Although it is naively expected that unnatural spin parity states are much higher than the natural spin-parity 1/2−

state, the results show the abnormal level structure of the (ududs̄) system, where the high spin state, Jπ = 3/2−,
and the unnatural parity states, Jπ = {1/2+, 3/2+}, nearly degenerate just above the Jπ = 1/2− state. By analysing
the details of these states, the abnormal level structure can be easily understood with a simple picture as follows.
As shown in table.II, the Jπ = {1/2+, 3/2+}(S = 1/2, L = 1) states have larger kinetic and string energies than the
Jπ = 3/2−(S = 3/2, L = 0) and Jπ = 1/2−(S = 1/2, L = 0) states, while the former states gain the color-magnetic
interaction. It indicates that the degeneracy of parity-odd states and parity-even states is realized by the balance of
the loss of the kinetic and string energies and the gain of the color-magnetic interaction. In the Jπ = {1/2+, 3/2+} and
the 3/2− states, the competition of the energy loss and gain can be understood by a simple picture from the point of
view of the diquark structure as follows. As already mentioned by Jaffe and Wilczek [11], the relative motion between
two spin-zero diquarks must have the odd parity (L = 1) because the L = 0 is forbidden between the two identical
diquarks due to the color antisymmetry. In the Jπ = 3/2− state, one of the spin-zero ud-diquarks is broken to be
a spin-one ud-diquark, and the L = 0 is allowed because two diquarks are not identical. The L = 0 is energetically
favored in the kinetic and string terms, and the energy gain cancels the color-magnetic energy loss of a spin-one
ud-diquark. Although we can not describe the Jπ = 1/2− state by such a simple di-quark picture, the competition of
energy loss and gain in this state is similar to the Jπ = 3/2−, for each contribution of the kinetic, string and potential
energies is almost the same between the Jπ = 1/2− and the Jπ = 3/2− as shown in table II. It means that the gain
of the kinetic energy of the L = 0 state compete with the color-magnetic energy loss in the Jπ = 1/2− as well as the
Jπ = 3/2−.

We remark that the existence of two spin-zero ud-diquarks in the Jπ = {1/2+, 3/2+} states predicted by Jaffe and
Wilczek [11] is actually confirmed in our ab initio calculations. In fact, the component with two spin-zero ud-diquarks
is 97% in the present Jπ = {1/2+, 3/2+} state. In Fig.2, we show the quark and anti-quark density distribution in the
Jπ = {1/2+, 3/2+} states. In the intrinsic state before parity projection, we found the spatial development of ud-uds
clustering, as seen in the density. As a result, it has a parity-asymmetric shape. In the intrinsic wave function, the
Gaussian centers of two diquarks are located far from each other and the s̄ stays in the vicinity of one of diquarks.
After the parity projection, the s̄ is exchanged between two diquarks.

We give a comment on the LS-splitting between Jπ = 1/2+ and 3/2+(S = 1/2, L = 1). In the present calculation,
where the spin-obit force is omitted, the Jπ = 1/2+ and 3/2+ states exactly degenerate. Even if we introduce the
spin-orbit force into the Hamiltonian, the LS-splitting should not be large in this diquark structure because the effect
of the spin-orbit force from the spin-zero diquarks is very weak as discussed in Ref. [24].

It is important that in the decay mode, Θ+
1 (Jπ = 3/2−) → KN , the D wave is dominant, which makes the width

of Θ+
1 narrower than than that of Θ+

0 (Jπ = 1/2+, 3/2+) because of higher centrifugal barrier. We estimate the
KN -decay widths of these states by using a method of reduced width amplitudes [23]. In this method, the decay
width Γ is estimated by the product Γ0

L × Sfac, where Γ0
L(a, Eth) is given by the penetrability of the barrier as a
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FIG. 2. The q and q̄ density distribution in the Jπ = 1/2+, 3/2+(S = 1/2, L = 1) states of the uudds̄ system. The u density
(a), s̄ density (b), and total quark-antiquark density (c) of the intrinsic state before parity projection are shown. The schematic
figure of the corresponding flux-tube configuration is illustrated in (d).

function of the threshold energy Eth and the channel radius a, as Γ0
L(a, Eth) ≡ h̄2k

µ
1

j2

L
(ka)+n2

L
(ka)

(µ is the reduced

mass, k is the wave number, and jL(nL) is the regular(irregular) spherical Bessel function). Sfac is the probability of
the decaying particle at the channel radius a. In the following discussion, we choose the channel radius a = 1 fm and
Eth = 100 MeV. Since the transitions between the different flux tube configurations, a confined state [ud][ud]s̄ and
a decaying state (udd)1(us̄)1, are of higher order, the Sfac should be small in general when the suppression by the
flux-tube transition is taken into account. Here, we discuss the maximum values of the widths, by considering just
the simple overlap with respect to the quark degrees of freedom.

In case of even parity Jπ = 1/2+, 3/2+ states, the KN decay modes are the P -wave, which gives Γ0
L=1 ≈ 100

MeV fm−1. By assuming (0s)2 and (0s)3 harmonic-oscillator wave functions for K+ and n, we calculate the overlap
between the obtained pentaquark wave function and the K+n state. The probability Sfac = 0.034 fm−1 is evaluated
by the overlap. Roughly speaking, the main factors in this meson-baryon probability are the factor 1

3 from the color

configuration, the factor 1
4 from the intrinsic spin part, and the other factor which arises from the spatial overlap.

By using the probability Sfac = 0.034, the K+n partial decay width is evaluated as Γ < 3.4 MeV. Since the K0p
decay width is the same as the K+n decay, the total width of the Jπ = 1/2+, 3/2+ states is estimated to be Γ < 7
MeV. This is consistent with the discussion in Ref. [25]. For more quantitative discussions, the coupling with the
KN continuum states is important. We should point out that, in introducing the coupling, one should not treat only
the quark degrees of freedom but should take into account the suppression due to the rearrangement of flux-tube
topologies between the meson-baryon states and the confined states.

It is interesting that the KN decay width of the Jπ = 3/2− state is strongly suppressed by the D-wave centrifugal
barrier, which makes Γ0

L smaller Γ0
L=2 ≈ 30 MeV fm−1 than the P -wave case. Moreover, the Jπ = 3/2− in the present

calculation is the state with Sπ = 3/2− and L = 0, which has no overlap with the KN 3/2− states (Sπ = 1/2− and
L = 2). Therefore, even if we introduce the spin-orbit or tensor forces, the KN probability(Sfac) in the Jπ = 3/2−

pentaquark state is expected to be rather suppressed than that in the Jπ = 1/2+, 3/2+ states. Consequently, the
Jπ = 3/2− state should be extremely narrow. If we assume the Sfac in the Jπ = 3/2− to be half of that in the
Jπ = 1/2+, 3/2+ states, the KN decay width is estimated to be Γ < 1 MeV. Contrary to the narrow width of the
Jπ = 3/2− state, in the Jπ = 1/2−, S-wave(L = 0) decay is allowed and this state should be much broader than
other states because of the absence of the centrifugal barrier.

The present results for the Jπ = {1/2+, 3/2+}(Θ+
I=0) states are consistent with the experimental observation of

Θ+, while Jπ = 3/2−(ΘI=1) is not observed yet. One should pay attention to the properties of these states, because
the production rates depend on their spin, parity and widths. The existence of many narrow states, Jπ = 1/2+, 3/2+,
and 3/2−, for the Θ+

0 and Θ+
1 may give an answer to the inconsistent mass positions of the Θ+ among the different

experiments. The widths of the Θ++
1 are too narrow to be observed in the K+p scattering. The data of the invariant

K+p mass in the photo-induced reactions [5,9,26] do not seem to exclude the posibility of Θ++
1 peaks.

Within the present framework, the mass differences between Θ+ and other pentaquark systems are given by the effect
of s and ud mass difference ∆ms on the mass term and color-magnetic interactions. Other mechanism beyond simple
quark models should be necessary for more detailed discussions of systematics of pentaquark masses. However, the
Jπ = {1/2+, 3/2+} and Jπ = 3/2− states may degenerate also in other pentaquark systems, because the mechanism of
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the degeneracy is simple as mentioned before. Concerning the prediction of another pentaquark N(1710) by Diakonov
et al., it is worth mentioning that the N(1700)(Jπ = 3/2−), N(1710) (Jπ = 1/2+) and N(1720)(Jπ = 3/2+) can be
candidates of the degenerated Jπ = 3/2−, Jπ = 1/2+ and Jπ = 3/2+ states in pentaquark in the nucleon sector.

In conclusion, we proposed a quark model in the framework of the AMD method, and applied it to the uudds̄
system. The level structure of the the uudds̄ system and the properties of the low-lying states were studied. We
predicted that the narrow Jπ = {1/2+,3/2+}(Θ0) and Jπ = 3/2− (Θ1) states nearly degenerate. The widths of Θ+

0

and Θ+
1 are estimated to be Γ < 7 MeV and Γ < 1 MeV, respectively. Two spin-zero diquarks are found in the Θ+

0 ,
which confirms Jaffe-Wilczek picture. The degeneracy of Θ+

0 and Θ+
1 is realized by the balance of the kinetic and

string energies and the color-magnetic interaction. The origin of the novel level structure is due to the color structure
in the confined five quark system bounded by the connected flux-tubes.

Finally, we would like to remind the readers that the absolute masses of the pentaquark in the present work
are not predictions. We have an ambiguity of the zero-point energy of the string potential, which depends on the
flux-tube topology in each of meson, three-quark baryon, pentaquark systems. In the present calculation of the
pentaquark, we phenomenologically adjust it to reproduce the observed mass of the Θ+. In order to predict absolute
masses of unknown multiquarks with new flux-tube topologies, it is desirable to determine the zero-point energy more
theoretically.

The authors would like to thank to T. Kunihiro, Y. Akaishi and H. En’yo for valuable discussions. This work
was supported by Japan Society for the Promotion of Science and Grants-in-Aid for Scientific Research of the Japan
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