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Abstract

The exotic baryon Θ+(uudds̄) is studied with microscopic calculations in

a quark model by using a method of antisymmetrized molecular dynam-

ics(AMD). We predict narrow states, Jπ = 1/2+(I = 0), Jπ = 3/2+(I = 0),

and Jπ = 3/2−(I = 1), which nearly degenerate in a low-energy region of the

uudds̄ system. We discuss NK decay widths and estimate them to be Γ < 7

for the Jπ = {1/2+, 3/2+}, and Γ < 1 MeV for the Jπ = 3/2− state.

The evidence of an exotic baryon Θ+ has recently been reported by several experimental

groups. This discovery proved the existence of the multiquark hadron, whose minimal quark

content is uudds̄ as given by the decay modes. The study of pentaquarks has become a hot

subject in hadron physics. A chiral soliton model [1] predicted a narrow Θ+(Jπ = 1/2+)

state whose parity contradicts the naive quark model expectation. Theoretical studies were

done to describe Θ+ by many groups [2,3]. The spin parity of Θ+ is not only a open problem

but also a key property to understand the dynamics of pentaquark systems.

In this paper we would like to clarify the mechanism of the existence of narrow pentaquark

states. We try to extract a simple picture for the pentaquark baryon with levels, width, spin-

parity and structure from explicit calculation. In order to achieve this goal, we study the

pentaquark with a flux-tube model [6,7] based on strong coupling QCD, by using a AMD

method [4,5].
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In the flux-tube model, the interaction energy of quarks and anti-quarks is given by the

energy of the string-like color-electric flux, which is proportional to the minimal length of the

flux-tube connecting quarks and anti-quarks at long distances supplemented by perturbative

one-gluon-exchange (OGE) interaction at short distances. For the q4q̄ system the flux-tube

configuration has an exotic topology, Fig.1(c), in addition to an ordinary meson-baryon

topology, Fig. 1(d). An important point is that the transition between the different flux-

tube topologies (c) and (d) is strongly suppressed because it takes place only in higher order.

(In 1991, Carlson and Pandharipande studied exotic hadrons in the flux-tube model [8] and

calculated a few q4q̄ states with very limited quantum numbers.)

We apply the AMD method to the flux-tube model and calculate the uudds̄ system. The

AMD is a variational method to solve a finite many-fermion system. One of the advantages of

this method is that the spatial and spin degrees of freedom for all particles are independently

treated. This method can successfully describe various types of structure such as shell-model-

like structure and clustering (correlated nucleons) in nuclear physics [4,5]. With the AMD

method we calculate all the possible spin parity states of uudds̄ system, and analyze the

wave function to estimate the decay widths of the obtained states with a method of reduced

width amplitudes.

In the present calculation, the quarks are treated as non-relativistic spin-1
2

Fermions. We

use a Hamiltonian as H = H0 + HI + Hf , where H0 is the kinetic energy of the quarks, HI

represents the short-range OGE interaction between the quarks and Hf is the energy of the

flux tubes. H0 and HI are represented as follows;

H0 =
∑

i

mi +
∑

i

p2
i

2mq

− T0, (1)

HI = αc

∑

i<j

F α
i F α

j

[

1

rij

−
2π

3mimj

s(rij)σi · σj

]

, (2)

where mi(the i-th quark mass) is mq for a u or d quark and ms for a s̄ quark, and T0 denotes

the kinetic energy of the center-of-mass motion. Here, we do not take into account the mass

difference between ud and s in the second term of H0, for simplicity. αc is the quark-gluon

coupling constant, and F α
i is the generator of color SU(3). In HI , we take only the dominant
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terms, Coulomb and color-magnetic terms, and omit other terms.
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FIG. 1. Flux-tube configurations for confined states of qq̄ (a), q3 (b), q4q̄ (c), and disconnected

flux-tube of q4q̄ (d). Figures (e) and (f) represent the flux tubes in the color configurations,

[ud][ud]s̄ and [uu][dd]s̄, respectively. The string potentials given by the flux tubes (b) and (c) are

supported by Lattice QCD [9].

In the flux-tube quark model [6], the confining potential is written as Hf = σLf − M0,

where σ is the string tension, Lf is the minimum length of the flux tubes, and M0 is the zero-

point energy. M0 depends on the topology of the flux tubes and is necessary to fit the qq̄,

q3 and q4q̄ potential. In the present calculation, we adjust the M0 to fit the absolute masses

for each of 3q-baryon and pentaquark. For the meson and 3q-baryon systems, the flux tube

configurations are given as Fig.1(a) and (b). For the pentaquark system, the different types

of flux-tube configurations appear as shown in Fig.1(e),(f), and (d), which correspond to

the states, |Φ(e)〉 = |[ud][ud]s̄〉, |Φ(f)〉 = |[uu][dd]s̄〉, and |Φ(d)〉 = |(qqq)1(qq)1〉, respectively

([qq] is defined by color anti-triplet of qq). In the present calculation of energy variation, we

neglect the transitions among |Φ(e)〉, |Φ(f)〉 and |Φ(d)〉 and solve 5q wave functions within the

model space (e) or (f), which corresponds to the confined states. It is reasonable because the

transitions are suppressed as mentioned before. In the practical calculations of the string

potential 〈Φ|Hf |Φ〉, the minimum length of the flux tubes Lf is approximated by a linear

combination of two-body distances as Lf ≈ 1
2
(r12 + r23 + r31) for a 3q-baryon, and Lf ≈

1
2
(r12 +r34)+ 1

8
(r13 +r14 +r23 +r24)+ 1

4
(r1̄1 +r1̄2 +r1̄3 +r1̄4) for Φ(e) or Φ(f) of the pentaquark

systems. We note that the confinement is reasonably realized by the approximation for

Φ(e,f) as follows. The flux-tube configuration (e)(or (f)) consists of seven bonds and three

junctions. In the limit that the length(R) of any one bond becomes much larger than other

bonds, the approximated 〈Hf〉 behaves as a linear potential σR. It means that all the
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quarks and anti-quarks are bounded by the linear potential with the tension σ. Therefore,

the approximation for Φ(e) or Φ(f) is a natural extension of the usual approximation for 3q-

baryons. It is easily proved that the approximations are equivalent to 〈Φ|Hf |Φ〉 ≈ 〈Φ|Ô|Φ〉,

where Ô ≡ −3
4
σ

∑

i<j F α
i F α

j rij − M0, within each of the flux-tube configurations.

We solve the eigenstates of the Hamiltonian with a variational method in the AMD

model space [4,5]. We take a base AMD wave function in a quark model as follows.

Φ(Z) = (1 ± P )A
[

φZ1
φZ2

· · ·φZNq
X

]

, φZi
∝ e−

1

2b2
(r−

√
2bZi)2 , (3)

where 1 ± P is the parity projection operator, A is the anti-symmetrization operator, and

the spatial part φZi
of the i-th single-particle wave function is written by a Gaussian with

the center Zi(Zi is a complex parameter). X is the spin-isospin-color function. For the

pentaquark(uudds̄) system, X is expressed as

X =
∑

m1,m2,m3,m4,m5
cm1m2m3m4m5

|m1m2m3m4m5〉S

⊗ {|ududs̄〉 or |uudds̄〉} ⊗ ǫabgǫcehǫghf |abcef̄〉C , (4)

where |ududs̄〉 and |uudds̄〉 correspond to the configurations [ud][ud]s̄ and [uu][dd]s̄ in Fig.1,

respectively. Here, |a〉C(a = 1, 2, 3) denotes the color function, and |m〉S(m =↑, ↓) is the

intrinsic-spin function. Since we are interested in the confined states, we adopt those model

space for the color configurations (qq)3̄(qq)3̄q̄, but do not use the meson-baryon configura-

tions (qqq)1(qq̄)1. The variational parameters are Z = {Z1, Z2, · · · , Z5} and cm1m2m3m4m5

which specify the spatial and spin configurations. The energy variation for Z is performed

by a frictional cooling method, and the coefficients cm1m2m3m4m5
are determined by diago-

nalization of Hamiltonian and norm matrices. After the energy variation, the intrinsic-spin

and parity Sπ eigen wave function Φ(Z) for the lowest state is obtained for each Sπ.

In the numerical calculation, the linear and Coulomb potentials are approximated by

seven-range Gaussians. We use the parameters, αc = 1.05, Λ = 0.13 fm, mq = 0.313 GeV,

σ = 0.853 GeV/fm, and ∆ms = ms − mq = 0.2 GeV. The quark-gluon coupling constant

αc is chosen so as to fit the N and ∆ mass difference. The string tension σ is adopted to
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adjust the excitation energy of N∗(1520). The width parameter b is chosen to be 0.5 fm.

By choosing M0 as M0
q3 = 972 MeV, the masses of N , N∗(1520) and ∆ are fitted [10], and

the masses of Λ, Σ and Σ∗1385 are well reproduced with these parameters.

Now, we apply the AMD method to the uudds̄ system. For each spin parity, we calcu-

late energies of the [ud][ud]s̄ and [uu][dd]s̄ states and adopt the lower one. In table.I, the

calculated results are shown. We adjust the zero-point energy of the string potential M0

as M0
q4q̄ = 2385 MeV to fit the absolute mass of the recently observed Θ+. This M0

q4q̄ for

pentaquark system is chosen independently of M0
q3 for 3q-baryon. If M0

q4q̄ = 5
3
M0

q3 is assumed

as Ref.[8],the calculated mass of the pentaquark is around 2.2 GeV, which is consistent with

the result of Ref.[8].

The most striking point in the results is that the Sπ = 3/2− and Sπ = 1/2+ states nearly

degenerate with the Sπ = 1/2− states. The Sπ = 1/2+ correspond to Jπ = 1/2+ and 3/2+

with S = 1/2, L = 1, and the Sπ = 3/2− is Jπ = 3/2−(S = 3/2, L = 0). The lowest state

Jπ = 1/2−(Sπ = 1/2−, L = 0) exists just below the Jπ = 3/2− state, however, this state, as

we discuss later, is expected to be much broader than other states. Other spin-parity states

are much higher than these low-lying states.

The LS-partners, Jπ = 1/2+ and 3/2+ exactly degenerate in the present Hamiltonian

where the spin-orbit and tensor terms are omitted. If we introduce the spin-orbit force into

the Hamiltonian the LS-splitting is small in the diquark structure because the effect of the

spin-orbit force from the spin-zero diquarks is very weak as discussed in Ref. [12]. As shown

later, since the present results show that the diquark structure is realized in the Jπ = 1/2+

and 3/2+ states, the LS-splitting should not be large in the uudds̄ system.

Next, we analyze the spin structure of these states, and found that the Jπ =

{1/2+, 3/2+}(S = 1/2, L = 1) states consist of two spin-zero ud-diquarks, while the

Jπ = 3/2− consists of a spin-zero ud-diquark and a spin-one ud-diquark. Since the spin-

zero ud-diquark has the isospin I = 0 and the spin-one ud-diquark has I = 1 because of

the color asymmetry, the isospin of the Jπ = 3/2− state is I = 1, while the even-parity

states Jπ = 1/2+, 3/2+ are I = 0. We consider that the Jπ = 1/2+ state corresponds to
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[uu][dd]s̄ [ud][ud]s̄ [ud][ud]s̄ [ud][ud]s̄ [uu][dd]s̄

Sπ 1
2
− 3

2
− 1

2
+ 1

2
− 5

2
−

Kinetic(H0) 3.23 3.22 3.36 3.19 3.19

String(HF ) −0.67 −0.66 −0.55 −0.64 −0.64

Coulomb −1.05 −1.04 −0.99 −1.03 −1.03

Color mag. −0.01 0.01 −0.25 0.04 0.19

qq̄Color mag. −0.06 −0.01 0.00 0.02 0.06

E 1.50 1.53 1.56 1.56 1.71

TABLE I. Calculated masses(GeV) of the uudds̄ system. The expectation values of the kinetic,

string, Coulomb, color-magnetic terms, and that of the color-magnetic term in qq̄ pairs are listed.

The Sπ = 3/2+ and Sπ = 5/2+ states are higher than the Sπ = 5/2− state.

the Θ+(1530) in the flavor 10-plet predicted by Diakonov et al. [1]. The odd-parity state,

Jπ = 3/2− has I = 1, which means that this state is a member of the flavor 27-plet. We

denote the Jπ = 1/2+, 3/2+(I = 0) by Θ+
0 , and the Jπ = 3/2−(I = 1) by Θ+

1 .

Although it is naively expected that unnatural spin parity states are much higher than

the natural spin-parity 1/2− state, the results show the abnormal level structure of the

(ududs̄) system, where the high spin state, Jπ = 3/2−, and the unnatural parity states,

Jπ = {1/2+, 3/2+}, nearly degenerate just above the Jπ = 1/2− state. By analysing the

details of these states, the abnormal level structure can be easily understood with a simple

picture as follows. As shown in table.I, the Jπ = {1/2+, 3/2+}(S = 1/2, L = 1) states

have larger kinetic and string energies than the Jπ = 3/2−(S = 3/2, L = 0) and Jπ =

1/2−(S = 1/2, L = 0) states, while the former states gain the color-magnetic interaction. It

indicates that the degeneracy of the even-parity states with the odd-parity states is realized

by the balance of the loss of kinetic and string energies and the gain of the color-magnetic

interaction. In the Jπ = {1/2+, 3/2+} and the 3/2− states, the competition of the energy

loss and gain can be simply understood from the point of view of the diquark structure as

follows. As already mentioned by Jaffe and Wilczek [2], the relative motion between two
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FIG. 2. q and q̄ density distribution in the Jπ = 1/2+, 3/2+(S = 1/2, L = 1) states of Theta+.

The u-quark density (a), s̄ density (b), and total quark-antiquark density (c) of the intrinsic state

before parity projection are shown. The d-quark density is same as the u-quark density. The

root-mean-square radius of q and q̄ is 0.63 fm (the nucleon size is 0.5 fm).

spin-zero diquarks must have the odd parity (L = 1) because of Pauli blocking between the

two identical diquarks. In the Jπ = 3/2− state, one of the spin-zero ud-diquarks is broken

to be a spin-one ud-diquark to avoid the Pauli blocking, then, the L = 0 is allowed because

diquarks are not identical. The L = 0 is energetically favored in the kinetic and string

terms, and the energy gain cancels the color-magnetic energy loss of a spin-one ud-diquark.

Although we can not describe the Jπ = 1/2− state by such a simple diquark picture, the

competition of energy loss and gain in this state is similar to the Jπ = 3/2−.

We remark that the existence of two spin-zero ud-diquarks in the Jπ = {1/2+, 3/2+}

states predicted by Jaffe and Wilczek [2] is actually confirmed in our ab initio calculations.

We found that the component with two spin-zero ud-diquarks is 97% in the present Jπ =

{1/2+, 3/2+} state. In Fig.2, we show the quark and anti-quark density distributions in

the Jπ = {1/2+, 3/2+} states. In the intrinsic state before parity projection, we found the

spatial development of ud-uds clustering, which causes a parity-asymmetric shape (Fig.2

(c)).

We estimate the KN -decay widths of these states by using a method of reduced width

amplitudes [11]. The decay width Γ is estimated by the product Γ0
L×Sfac, where Γ0

L(a, Eth)

is given by the penetrability of the barrier [10], and Sfac(a) is the probability of the decaying

particle at the channel radius a. In the following discussion, we use the channel radius a = 1

fm and the threshold energy Eth = 100 MeV. We here estimate the maximum values of the
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widths, by taking into account only quark degrees of freedom. We omit the suppression of the

transition between the confined state and the meson-baryon state due to the rearrangement

of flux-tubes, which makes Sfac small in general.

In case of even parity Jπ = 1/2+, 3/2+ states, the KN decay modes are the P -wave, which

gives Γ0
L=1 ≈ 100 MeV fm−1. We calculate the overlap between the obtained pentaquark

wave function and the K+n state, and evaluate the probability as Sfac = 0.034 fm−1.

Roughly speaking, the main factors in this meson-baryon probability are the factor 1
3

from

the color configuration, the factor 1
4

from the intrinsic spin part, and the other factor which

arises from the spatial overlap. By using this value, the total width for K+n and K0p

decays of the Jπ = 1/2+, 3/2+ states is estimated to be Γ < 7 MeV. For more quantitative

discussions, it is important to treat the coupling with the KN continuum states, where one

must take into account the suppression due to the rearrangement of flux-tube topologies.

It is interesting that the KN decay width of the Jπ = 3/2− state is extremely small due

to the D-wave centrifugal barrier. In fact, Γ0
L=2 ≈ 30 MeV fm−1 is much smaller than the

P -wave case. Moreover, the Jπ = 3/2−(Sπ = 3/2−,L = 0) has no D-wave component, there-

fore, no overlap with the KN(L = 2) states in the present calculation. Even if we introduce

the spin-orbit or tensor forces, the KN probability(Sfac) in the Jπ = 3/2− pentaquark state

is expected to be minor. Consequently, the Jπ = 3/2− state should be extremely narrow.

If we assume the Sfac in the Jπ = 3/2− to be half of that in the Jπ = 1/2+, 3/2+ states,

the KN decay width is estimated to be Γ < 1 MeV. Contrary to the narrow features of the

Jπ = 3/2− state, in case of Jπ = 1/2−, S-wave(L = 0) decay is allowed and this state should

be much broader.

In conclusion, we proposed a quark model in the framework of the AMD method, and ap-

plied it to the uudds̄ system. The level structure of the the uudds̄ system and the properties

of the low-lying states were studied. We predicted that the narrow Jπ = {1/2+,3/2+}(ΘI=0)

and Jπ = 3/2− (ΘI=1) states nearly degenerate. The widths of Θ+
0 and Θ+

1 are estimated

to be Γ < 7 MeV and Γ < 1 MeV, respectively. Two spin-zero diquarks are found in the

Θ+
0 , which confirms Jaffe-Wilczek picture. The origin of the novel level structure is the 5q
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dynamics of the confined system bounded by the connected flux-tubes. We consider that

the present results for the Jπ = {1/2+, 3/2+}(Θ+
I=0) states correspond to the experimental

observation of Θ+, while the ΘI=1 is not observed yet. The existence of many narrow states,

Jπ = 1/2+, 3/2+, and 3/2−, may give an light to further experimental observations.

Concerning other pentaquarks, we give a comment on Ξ(ddssū). The AMD calcula-

tions indicate that the diquark structure disappears in the ddssū(1/2+) due to the SU(3)-

symmetry breaking in the color-magnetic interaction. As a result, the estimated width of

the ddssū(1/2+) state is Γ ≈ 100 MeV, which is much broader than Θ+(1/2+). Also the

3/2− state is not so narrow because a S-wave decay channel Ξ∗(1530)π is open.

Finally, we would like to remind the readers that the absolute masses of the pentaquark

in the present work are not predictions. We have an ambiguity of the zero-point energy of

the string potential, which depends on the flux-tube topology in each of meson, 3q-baryon,

pentaquark systems. We adjust that for the pentaquarks to reproduce the observed Θ+

mass. To confirm the zero-point energy, experimental information for other pentaquark

states are desired.
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