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Abstract

We propose the entropy density as the thermodynamic condition driving the chemical freeze-out.

Taking its value from lattice calculations for two and three quark flavors, we find that it is ex-

cellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic

endpoints of the freeze-out curve are reproduced as well.
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I. INTRODUCTION

At low temperatures T , matter consists of confined hadrons. At the critical temperature

Tc, it is conjectured that the hadrons are dissolved into quark-gluon plasma (QGP). Reducing

the temperature of QGP leads to hadronization, the transition from deconfined QGP to

confined hadrons. At a certain temperature Tch, the system goes into chemical equilibration,

freezing-out. Below this value, thermal equilibration takes place and the compositions of

matter turn once again to be the non-interacting confined hadrons.

Theoretical characterize of the freeze-out curve is still lacking. We assume that the system

at Tch still has inelastic interactions but in chemical equilibration, i.e. there is a balance

between particle-absorption and -production. The best experimental way to determine the

freeze-out parameters Tch and µ in high-energy collisions is to measure the ratios of particle

yields. It has been found that the thermal models are very well able to reproduce the particle

ratios at different incident energies [1, 2, 3]. The question we intent to answer is: what is

the universal thermodynamic condition which describes the freeze-out curve at all incident

energies?

To answer this question, we first recall the physical chemistry. Without energy input the

chemical reactions always proceed toward equilibrium. The equilibrium constant Ceq in the

reaction aA + bB ↔ cC + dD can be calculated according to the ”law of mass action” [4]

Ceq =
[C]ceq [D]deq
[A]aeq [B]beq

, (1)

where (A, B) and (C, D) are the reactants and products, respectively. (a, b) and (c, d) are

the corresponding concentrations. In heavy-ion collisions, the decay channels, from which

the different particles are produced, looks alike this simple chemical reaction. The backward

direction can be viewed as an annihilation or absorption process. The change in Gibbs free

energy determines the likely direction. When the concentrations in Eq. (1) are known, then

for an ideal gas (no enthalpy change),

δG ≈ δG0 + T ln Ceq. (2)

The standard free energy δG0 is given by Ceq in Eq. (1) at T 6= Tch. At equilibrium, δG

vanishes and therefore Ceq ≈ exp(−δG0/T )

s = ln (1/Ceq) − n
(µ

T

)

, (3)
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where s and n are the equilibrium entropy and particle density, respectively. At µ = 0,

s = ln(1/Ceq). With increasing µ, s monotonically decreases.

Second, we recall phenomenological observation: With increasing the incident energy, an

increase in the particle production is expected. The hadron resonance gas model (HRGM)

is based on this observation. The chemical potential µ relates the energy change with

the particle number. This relation is controlled by ”second law of thermodynamics”, the

entropy. At equilibrium, the entropy gives the amount of energy that produces no further

work in the system.

The primary tool for measuring the chemical equilibrium at a certain incident energy

is to measure the multiplicities of different produced particles. The statistical models are

used to fit the experimental particle ratios. The resulting fit parameters are Tch and µ. Our

objective in this work is to define one universal condition to describe these parameters at

different energies.

Apparently, the freeze-out curve has two characteristic points: one at Tch 6= 0 and µ = 0

and another at Tch = 0 and µ 6= 0. Any suggested model has to be able to reproduce

both of them simultaneously. The first point has been the subject of different experimental

studies [5]. It has been found that Tch(µ = 0) ≈ 174 MeV. From lattice simulations for

different quark flavors, the resulting transition temperature has almost the same value as

Tch(µ = 0). This implies that the transition and freeze-out lines seem to be coincident at

low µ. For the second point, we are left with applying effective models. In the hadron

resonance gas model at T = 0, the nucleons N are supposed to be dominant; other heavier

resonances are negligible and the particle density must be equal to the normal nuclear density

n0 ≈ 0.17 fm−3. For such a degenerate Fermi gas, the chemical potential corresponding to

n0 is µch ≈ 0.979 GeV.

In HRGM [6, 7, 8, 9], we include all observed resonances up to mass 2 GeV. All particle

decays are left away. We use grand canonical ensemble and quantum statistics. Corrections

due to van der Waals repulsive interactions and excluded volume have not been taken into

account. As we discussed in [6], the effective strong interactions are regarded via including

heavy resonances. In the following, we list some thermodynamic expressions for one particle

and its anti-particle in the Boltzmann limit.
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n(T, µ) =
g

π2
Tm2K2

(m

T

)

sinh
(µ

T

)

, (4)

s(T, µ) =
g

π2
m2

[

mK3

(m

T

)

cosh
(µ

T

)

− µK2

(m

T

)

sinh
(µ

T

)]

, (5)

ǫ(T, µ)

n(T, µ)
=

(

3T + m
K1

(

m
T

)

K2

(

m
T

)

)

coth
(µ

T

)

, (6)

where g is the spin-isopsin degeneracy factor and Ki are the modified Bessel functions. These

thermodynamic quantities will be summed over all resonances taken into account. They are

related to the chemical equilibration via Eq. (3).

II. THERMODYNAMIC CONDITIONS
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Fig. 1: The freeze-out curve under the condition of constant energy per particle [3]. The points

are the freeze-out parameters taken from indicated experiments.

An attempt to describe the freeze-out parameters at different energies is given in [3].

The authors started from phenomenological observations at GSI/SIS energy and found

that ǫ/n ≈ 1 GeV. Analytically, the hadron resonance gas at low T can be handled as

a non-relativistic gas consisting of degenerate nucleons, so that the ratio in Eq. (6) is

ǫ/n ≈ mN + 3T/2 ≈ 1 GeV. At relativistic T , the pions and rho-mesons get dominant.

The authors applied Eq. (6) in the non-relativistic limit and got almost the same value. In

grand canonical ensemble, we get under this condition the curve plotted in Fig. 1.
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Fig. 2: The freeze-out curve under the condition of constant baryon number density

nb = 0.17 fm−3 [10]. In calculating the short-dashed curve the percolation theory [11] has been

taken into account.

In Ref. [10], a condition of constant baryon number density nb was imposed. The freeze-

out curve is plotted according to nb = 0.12 fm−3. Baryon-baryon and baryon-meson in-

teractions were assumed to drive the freeze-out. This value of nb, two-third the normal

nuclear density, was argued to be dependent on corrections due to van der Waals repulsive

interactions. In Fig. 2, we draw our own calculations under the condition nb = 0.17 fm−3,

normal nuclear density. We use this value, since we leave away the additional corrections.

In comparing our calculations with [10], we see that the assumption of repulsive interactions

is not well-founded. Nevertheless, we notice that the value we use is satisfactorily able to

reproduce the two endpoints of the freeze-out curve.

Another model we consider is in the framework of percolation theory [11]. At T = 0, the

freeze-out occurs when the nucleons no longer form interconnected matter. The correspond-

ing density is found ≈ 0.17 fm−3 and consequently, µ = 0.979 GeV. At µ = 0, it has been

found that Tch ≈ 175 MeV for γs = 0.5. γs gives the strangeness saturation. γs = 1 is a

condition for QGP, but it is unlikely for the hadron matter [6]. The equation which defines

the freeze-out at finite T and µ reads

n(T, µ) =
1.24

v

(

1 −
nb(T, µ)

n(T, µ)

)

+
0.34

v

(

nb(T, µ)

n(T, µ)

)

, (7)

where v = 4πr3/3 is the volume of the hadron with radius r. The results are shown in Fig. 2.
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We can so far conclude that the last two models [10, 11] are excellent in reproducing

the two characteristic endpoints. Both of them apparently overestimate the experimental

parameters at BNL/AGS and GSI/SIS energies. Model [3] describes well the experimental

results at low energies. It slightly underestimates the BNL/RHIC and CERN/SPS results.

Its largest discrepancy is at very low energies. At µ = 0.979 GeV, which corresponds to n0

at T = 0, we find that the system still has a high temperature of about 30 MeV. For T = 0,

this model results in particle density equals to 25 times n0.

ǫ(µ)

n(µ)
= 9gm4

[

µ

m

√

µ2

m2
− 1

(

µ2

m2
−

1

2

)

−
1

2
ln

(

µ

m
+

√

µ2

m2
− 1

)]/

8
(

µ2 − m2
)3/2

. (8)

For the degenerate Fermi gas of nucleons at µ = 0.979 GeV, ǫ/n in Eq. (8) becomes 2.89 GeV.

III. ENTROPY DENSITY AT CHEMICAL FREEZE-OUT
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Fig. 3: Lattice QCD results (solid points) of entropy density normalized to T 3 for different quark

flavors at µ = 0. The solid curves are HRGM results with re-scaled resonance masses. The

unphysical heavy resonance masses have been set to be comparable with the quark masses used on

lattice. The thin curves give the results corresponding to the physical masses.

As discussed in Sec. I, the condition which guarantees chemical equilibration between

reactants and products is the entropy density [4]. At vanishing free energy, the equilibrium

entropy gives the amount of energy which can’t be used to produce further work. In this
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Fig. 4: The freeze-out curve under our condition of constant entropy density. There is almost no

difference when changing the flavor number. The two solid circles as well as the experimentally

estimated points are very well reproduced.

context, the entropy can be seen as a measure for the degree of sharing and spreading the

energy inside the system. The way of distributing the energy is not just an average value.

But rather the method that controls the chemical equilibration. i.e. produces no additional

work, Eq. (3).

As T → 0 and at µ 6= 0, it is assumed that the hadronic system is in form of degenerate

Fermi gas of nucleons. Then from Eq. (5), the entropy density vanishes. At µ = 0 and

T 6= 0, the system becomes a degenerate Bose gas mainly consists of pions and rho-mesons.

In this case, the entropy gets a finite value. The question is: what is the value of equilibrium

entropy which can be used at finite T and µ? For the reason that there is no theoretical

description of the chemical freezing-out and at small µ the freeze-out and phase transition

are de facto coincident, we reliant on the lattice value [7, 8, 9, 12].

In Fig. 3, we plot the lattice results of s/T 3 versus T/Tc at µ = 0 [8, 12]. We compare

between 2 and 2 + 1 quark flavor results. In 2 + 1 lattice simulations, two light quarks

plus one heavy strange quark are used. Extensive details about simulating lattice results

by HRGM are given in [6, 7, 8, 9]. To compare with two quark flavors, we include only

the non-strange resonances. For three quark flavors, all resonances are included. The solid

curves are HRGM results with re-scaled heavy resonance masses. In order to reasonably

compare HRGM with the lattice simulations in which heavy quark masses are used, the
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resonance masses have to be set at values heavier than the physical ones [7, 8]. The results

with the physical masses are given by the thin curves. The two horizontal lines point at

s/T 3 at Tc; s/T 3 = 5 for nf = 2 and s/T 3 = 7 for nf = 3. The normalization with respect

to T 3 should not be connected with massless ideal gas. Either the hadrons in HRGM or

the quarks on lattice are massive. In lattice QCD simulations, one usually expresses the

physical quantities in dimensionless units.

At each value of µ, we calculate Tch according to the given ratio s/T 3 by Eq. (5). The

results are plotted in Fig. 4. At µ = 0 and T 6= 0, the entropy is finite and as T → 0,

the entropy is vanishing. Here, the quantum entropy is entirly disregarded [13, 14, 15, 16,

17, 18]. The intermediate region is very well reproduced by Eq. (5). We see that the two

characteristic endpoints as well as all experimentally estimated freeze-out parameters are

very well reproduced. Comparing our results with the results shown in Fig. 1 and Fig. 2,

one finds that our results are much better in describing the freeze-out parameters.

IV. CONCLUSION

We propose the entropy density as the thermodynamic condition driving the chemical

freeze-out. Taking its value from lattice QCD simulations at µ = 0 and assuming it (nor-

malized to T 3) remains constant in the entire µ-axis, we obtain the results shown in Fig. 4.

The experimentally estimated freeze-out parameters Tch and µ are very well described under

this condition. The two characteristic endpoints of the freeze-out curve are also reproduced.

So far we conclude that the given ratio s/T 3 characterizes very well the final states observed

in all heavy-ion experiments. Increasing the beam energy leads to an increasing in the par-

ticle yields. The hadron resonance gas model regards this observation in the way, that the

energy increase is represented via including heavier resonances. The energy change with

changing the particle number is given by the chemical potential µ. ”Second law of thermo-

dynamics” controls this relation. At equilibrium, the amount of energy which produces no

work, i.e. at vanishing free energy, is the entropy.

We reviewed the other conditions suggested for the freeze-out curve. As an ideal quantum

gas of hadron resonances, we applied the hadron resonance gas model on calculating the

freeze-out curve according to these conditions. We compared the results of the models

proposed and check their abilities in reproducing the experimentally estimated freeze-out
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parameters and the two characteristic endpoints (Fig. 1 and Fig. 2). We found that there

are different constraints in reproducing the endpoints and fitting the freeze-out parameters.

I thank Rudolf Baier, Tamas Biro, Rajiv Gavai and Helmut Satz for useful discussions.
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