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ABSTRACT

This is an introduction to the use of QCD perturbation theory, em-

phasizing generic features of the theory that enable one to separate

short-time and long-time effects. I also cover some important classes

of applications: electron-positron annihilation to hadrons, deeply in-

elastic scattering, and hard processes in hadron-hadron collisions.
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1 Introduction

A prediction for experiment based on perturbative QCD combines a particular

calculation of Feynman diagrams with the use of general features of the theory.

The particular calculation is easy at leading order, not so easy at next-to-leading

order and extremely difficult beyond the next-to-leading order. This calculation of

Feynman diagrams would be a purely academic exercise if we did not use certain

general features of the theory that allow the Feynman diagrams to be related to

experiment:

• the renormalization group and the running coupling;

• the existence of infrared safe observables;

• the factorization property that allows us to isolate hadron structure in parton

distribution functions.

In these lectures, I discuss these structural features of the theory that allow a

comparison of theory and experiment. Along the way we will discover something

about certain important processes:

• e+e− annihilation;

• deeply inelastic scattering;

• hard processes in hadron-hadron collisions.

By discussing the particular along with the general, I hope to arm the reader with

information that speakers at research conferences take to be collective knowledge

– knowledge that they assume the audience already knows.

Now here is the disclaimer. We will not learn how to do significant calculations

in QCD perturbation theory. Three lectures is not enough for that.

I hope that the reader may be inspired to pursue the subjects discussed here

in more detail. A good source is the Handbook of Perturbative QCD1 by the

CTEQ collaboration. More recently, Ellis, Stirling and Webber have written an

excellent book2 that covers the most of the subjects sketched in these lectures. For

the reader wishing to gain a mastery of the theory, I can recommend the recent

books on quantum field theory by Brown,3 Sterman,4 Peskin and Schroeder,5 and

Weinberg.6 Another good source, including both theory and phenomenology, is

the lectures in the 1995 TASI proceedings, QCD and Beyond.7



2 Electron-positron annihilation and jets

In this section, I explore the structure of the final state in QCD. I begin with the

kinematics of e+e− → 3 partons, then examine the behavior of the cross section

for e+e− → 3 partons when two of the parton momenta become collinear or one

parton momentum becomes soft. In order to illustrate better what is going on,

I introduce a theoretical tool, null-plane coordinates. Using this tool, I sketch

a space-time picture of the singularities that we find in momentum space. The

singularities of perturbation theory correspond to long-time physics. We see that

the structure of the final state suggested by this picture conforms well with what

is actually observed.

I draw a the distinction between short-time physics, for which perturbation

theory is useful, and long-time physics, for which the perturbative expansion is out

of control. Finally, I discuss how certain experimental measurements can probe

the short-time physics while avoiding sensitivity to the long-time physics.

2.1 Kinematics of e+e− → 3 partons

Figure 1: Feynman diagram for e+e− → q q̄ g.

Consider the process e+e− → q q̄ g, as illustrated in Fig. 1. Let
√
s be the

total energy in the c.m. frame and let qµ be the virtual photon (or Z boson)

momentum, so qµqµ = s. Let pµ
i be the momenta of the outgoing partons (q, q̄, g)

and let Ei = p0
i be the energies of the outgoing partons. It is useful to define

energy fractions xi by

xi =
Ei√
s/2

=
2pi · q
s

. (1)

Then

0 < xi. (2)



Energy conservation gives

∑

i

xi =
2(
∑

pi) · q
s

= 2. (3)

Thus only two of the xi are independent.

Let θij be the angle between the momenta of partons i and j. We can relate

these angles to the momentum fractions as follows:

2p1 · p2 = (p1 + p2)
2 = (q − p3)

2 = s− 2q · p3, (4)

2E1E2(1 − cos θ12) = s(1 − x3). (5)

Dividing this equation by s/2 and repeating the argument for the two other pairs

of partons, we obtain three relations for the angles θij :

x1x2(1 − cos θ12) = 2(1 − x3),

x2x3(1 − cos θ23) = 2(1 − x1),

x3x1(1 − cos θ31) = 2(1 − x2). (6)

We learn two things immediately. First,

xi < 1. (7)

Second, the three possible collinear configurations of the partons are mapped into

xi space very simply:

θ12 → 0 ⇔ x3 → 1,

θ23 → 0 ⇔ x1 → 1,

θ31 → 0 ⇔ x2 → 1. (8)

The relations 0 ≤ xi ≤ 1, together with x3 = 2 − x1 − x2, imply that the

allowed region for (x1, x2) is a triangle, as shown in Fig. 2. The edges xi = 1 of

the allowed region correspond to two partons being collinear, as shown in Fig. 3.

The corners xi = 0 correspond to one parton momentum being soft (pµ
i → 0).

2.2 Structure of the cross section

One can easily calculate the cross section corresponding to Fig. 1 and the similar

amplitude in which the gluon attaches to the antiquark line. The result is

1

σ0

dσ

dx1dx2
=
αs

2π
CF

x2
1 + x2

2

(1 − x1)(1 − x2)
, (9)



Figure 2: Allowed region for (x1, x2). Then x3 is 2 − x1 − x2.

Figure 3: Allowed region for (x1, x2). The labels and small pictures show the

physical configuration of the three partons corresponding to subregions in the

allowed triangle.

where CF = 4/3 and σ0 = (4πα2/s)
∑

Q2
f is the total cross section for e+e− →

hadrons at order α0
s. The cross section has collinear singularities:

(1 − x1) → 0 , (2&3 collinear);

(1 − x2) → 0 , (1&3 collinear). (10)

There is also a singularity when the gluon is soft: x3 → 0. In terms of x1 and x2,

this singularity occurs when

(1 − x1) → 0, (1 − x2) → 0,
(1 − x1)

(1 − x2)
∼ const. (11)

Let us write the cross section in a way that displays the collinear singularity



at θ31 → 0 and the soft singularity at E3 → 0:

1

σ0

dσ

dE3 d cos θ31
=
αs

2π
CF

f(E3, θ31)

E3(1 − cos θ31)
. (12)

Here f(E3, θ31) a rather complicated function. The only thing that we need to

know about it is that it is finite for E3 → 0 and for θ31 → 0.

Now look at the collinear singularity, θ31 → 0. If we integrate over the singular

region holding E3 fixed we find that the integral is divergent:

∫ 1

a
d cos θ31

dσ

dE3 d cos θ31
= log(∞). (13)

Similarly, if we integrate over the region of the soft singularity, holding θ31 fixed,

we find that the integral is divergent:

∫ a

0
dE3

dσ

dE3 d cos θ31
= log(∞). (14)

Evidently, perturbation theory is telling us that we should not take the pertur-

bative cross section too literally. The total cross section for e+e− → hadrons is

certainly finite, so this partial cross section cannot be infinite. What we are seeing

is a breakdown of perturbation theory in the soft and collinear regions, and we

should understand why.

Figure 4: Cross section for e+e− → q q̄ g, illustrating the singularity when the

gluon is soft or collinear with the quark.

Where do the singularities come from? Look at Fig. 4 (in a physical gauge).

The scattering matrix element M contains a factor 1/(p1 + p3)
2 where

(p1 + p3)
2 = 2p1 · p3 = 2E1E3(1 − cos θ31). (15)

Evidently, 1/(p1 + p3)
2 is singular when θ31 → 0 and when E3 → 0. The collinear

singularity is somewhat softened because the numerator of the Feynman diagram



contains a factor proportional to θ31 in the collinear limit. (This is not exactly

obvious, but is easily seen by calculating. If you like symmetry arguments, you can

derive this factor from quark helicity conservation and overall angular momentum

conservation.) We thus find that

|M|2 ∝
[

θ31
E3θ

2
31

]2

(16)

for E3 → 0 and θ31 → 0. Note the universal nature of these factors.

Integration over the double singular region of the momentum space for the

gluon has the form

∫

E2
3dE3d cos θ31dφ

E3
∼
∫

E3dE3dθ
2
31dφ. (17)

Combining the integration with the matrix element squared gives

dσ ∼
∫

E3dE3dθ
2
31dφ

[

θ31
E3θ

2
31

]2

∼
∫

dE3

E3

dθ2
31

θ2
31

dφ. (18)

Thus we have a double logarithmic divergence in perturbation theory for the soft

and collinear region. With just a little enhancement of the argument, we see

that there is a collinear divergence from integration over θ31 at finite E3 and a

separate soft divergence from integration over E3 at finite θ31. Essentially the

same argument applies to more complicated graphs. There are divergences when

two final state partons become collinear and when a final state gluon becomes soft.

Generalizing further,8 there are also divergences when several final state partons

become collinear to one another or when several (with no net flavor quantum

numbers) become soft.

We have seen that if we integrate over the singular region in momentum space

with no cutoff, we get infinity. The integrals are logarithmically divergent, so if we

integrate with an infrared cutoff MIR, we will get big logarithms of M2
IR/s. Thus

the collinear and soft singularities represent perturbation theory out of control.

Carrying on to higher orders of perturbation theory, one gets

1 + αs × (big) + α2
s × (big)2 + · · · . (19)

If this expansion is in powers of αs(MZ), we have αs ≪ 1. Nevertheless, the

big logarithms seem to spoil any chance of the low order terms of perturbation

theory being a good approximation to any cross section of interest. Is the situation

hopeless? We shall have to investigate further to see.



2.3 Interlude: Null plane coordinates

Figure 5: Null plane axes in momentum space.

In order to understand better the issue of singularities, it is helpful to introduce

a concept that is generally quite useful in high energy quantum field theory, null

plane coordinates. The idea is to describe the momentum of a particle using

momentum components pµ = (p+, p−, p1, p2) where

p± = (p0 ± p3)/
√

2. (20)

For a particle with large momentum in the +z direction and limited transverse

momentum, p+ is large and p− is small. Often one chooses the plus axis so that

a particle or group of particles of interest have large p+ and small p− and pT .

Using null plane components, the covariant square of pµ is

p2 = 2p+p− − p2
T . (21)

Thus, for a particle on its mass shell, p− is

p− =
p2

T +m2

2p+
. (22)

Note also that, for a particle on its mass shell,

p+ > 0 , p− > 0 . (23)

Integration over the mass shell is

(2π)−3
∫ d3~p

2
√
~p2 +m2

· · · = (2π)−3
∫

d2pT

∫

∞

0

dp+

2p+
· · · . (24)



We also use the plus/minus components to describe a space-time point xµ:

x± = (x0 ± x3)/
√

2. In describing a system of particles moving with large mo-

mentum in the plus direction, we are invited to think of x+ as “time.” Classically,

the particles in our system follow paths nearly parallel to the x+ axis, evolving

slowly as it moves from one x+ = const. plane to another.

We relate momentum space to position space for a quantum system by Fourier

transforming. In doing so, we have a factor exp(ip · x), which has the form

p · x = p+x− + p−x+ − pT · xT . (25)

Thus x− is conjugate to p+ and x+ is conjugate to p−. That is a little confusing,

but it is simple enough.

2.4 Space-time picture of the singularities

Figure 6: Correspondence between singularities in momentum space and the de-

velopment of the system in space-time.

We now return to the singularity structure of e+e− → qq̄g. Define pµ
1 +pµ

3 = kµ.

Choose null plane coordinates with k+ large and kT = 0. Then k2 = 2k+k−

becomes small when

k− =
p2

3,T

2p+
1

+
p2

3,T

2p+
3

(26)

becomes small. This happens when p3,T becomes small with fixed p+
1 and p+

3 , so

that the gluon momentum is nearly collinear with the quark momentum. It also

happens when p3,T and p+
3 both become small with p+

3 ∝ |p3,T |, so that the gluon

momentum is soft. ( It also happens when the quark becomes soft, but there is a



numerator factor that cancels the soft quark singularity.) Thus the singularities

for a soft or collinear gluon correspond to small k−.

Now consider the Fourier transform to coordinate space. The quark propagator

in Fig. 6 is

SF (k) =
∫

dx+dx−dx exp(i[k+x− + k−x+ − k · x]) SF (x). (27)

When k+ is large and k− is small, the contributing values of x have small x− and

large x+. Thus the propagation of the virtual quark can be pictured in space-

time as in Fig. 6. The quark propagates a long distance in the x+ direction

before decaying into a quark-gluon pair. That is, the singularities that can lead

to divergent perturbative cross sections arise from interactions that happen a long

time after the creation of the initial quark-antiquark pair.

2.5 Nature of the long-time physics

Figure 7: Typical paths of partons in space contributing to e+e− → hadrons,

as suggested by the singularities of perturbative diagrams. Short wavelength

fields are represented by classical paths of particles. Long wavelength fields are

represented by wavy lines.

Imagine dividing the contributions to a scattering cross section into long-time

contributions and short-time contributions. In the long-time contributions, per-

turbation theory is out of control, as indicated in Eq. (19). Nevertheless the

generic structure of the long-time contribution is of great interest. This structure



is illustrated in Fig. 7. Perturbative diagrams have big contributions from space-

time histories in which partons move in collinear groups and additional partons

are soft and communicate over large distances, while carrying small momentum.

The picture of Fig. 7 is suggested by the singularity structure of diagrams at

any fixed order of perturbation theory. Of course, there could be nonperturbative

effects that would invalidate the picture. Since nonperturbative effects can be

invisible in perturbation theory, one cannot claim that the structure of the final

state indicated in Fig. 7 is known to be a consequence of QCD. One can point,

however, to some cases in which one can go beyond fixed order perturbation theory

and sum the most important effects of diagrams of all orders (for example, Ref. 9).

In such cases, the general picture suggested by Fig. 7 remains intact.

We thus find that perturbative QCD suggests a certain structure of the final

state produced in e+e− → hadrons: the final state should consist of jets of nearly

collinear particles plus soft particles moving in random directions. In fact, this

qualitative prediction is a qualitative success.

Given some degree of qualitative success, we may be bolder and ask whether

perturbative QCD permits quantitative predictions. If we want quantitative pre-

dictions, we will somehow have to find things to measure that are not sensitive to

interactions that happen long after the basic hard interaction. This is the subject

of the next section.

2.6 The long-time problem

We have seen that perturbation theory is not effective for long-time physics. But

the detector is a long distance away from the interaction, so it would seem that

long-time physics has to be present.

Fortunately, there are some measurements that are not sensitive to long-time

physics. An example is the total cross section to produce hadrons in e+e− anni-

hilation. Here effects from times ∆t ≫ 1/
√
s cancel because of unitarity. To see

why, note that the quark state is created from the vacuum by a current opera-

tor J at some time t; it then develops from time t to time ∞ according to the

interaction picture evolution operator U(∞, t), when it becomes the final state

|N〉. The cross section is proportional to the sum over N of this amplitude times

a similar complex conjugate amplitude with t replaced by a different time t′. We

Fourier transform this with exp(−i√s (t− t′)), so that we can take ∆t ≡ t− t′ to



be of order 1/
√
s. Now replacing

∑ |N〉〈N | by the unit operator and using the

unitarity of the evolution operators U , we obtain

∑

N

〈0|J(t′)U(t′,∞)|N〉〈N |U(∞, t)J(t)|0〉 (28)

= 〈0|J(t′)U(t′,∞)U(∞, t)J(t)|0〉 = 〈0|J(t′)U(t′, t)J(t)|0〉.

Because of unitarity, the long-time evolution has canceled out of the cross section,

and we have only evolution from t to t′.

There are three ways to view this result. First, we have the formal argument

given above. Second, we have the intuitive understanding that after the initial

quarks and gluons are created in a time ∆t of order 1/
√
s, something will happen

with probability 1. Exactly what happens is long-time physics, but we don’t care

about it since we sum over all the possibilities |N〉. Third, we can calculate at

some finite order of perturbation theory. Then we see infrared infinities at various

stages of the calculations, but we find that the infinities cancel between real gluon

emission graphs and virtual gluon graphs. An example is shown in Fig. 8.

Figure 8: Cancellation between real and virtual gluon graphs. If we integrate the

real gluon graph on the left times the complex conjugate of the similar graph with

the gluon attached to the antiquark, we will get an infrared infinity. However the

virtual gluon graph on the right times the complex conjugate of the Born graph

is also divergent, as is the Born graph times the complex conjugate of the virtual

gluon graph. Adding everything together, the infrared infinities cancel.

We see that the total cross section if free of sensitivity to long-time physics. If

the total cross section were all you could look at, QCD physics would be a little

boring. Fortunately, there are other quantities that are not sensitive to infrared

effects. They are called infrared safe quantities.

To formulate the concept of infrared safety, consider a measured quantity that



is constructed from the cross sections,

dσ[n]

dΩ2dE3dΩ3 · · · dEndΩn
, (29)

to make n hadrons in e+e− annihilation. Here Ej is the energy of the jth hadron

and Ωj = (θj , φj) describes its direction. We treat the hadrons as effectively

massless and do not distinguish the hadron flavors. Following the notation of

Ref. 10, let us specify functions Sn that describe the measurement we want, so

that the measured quantity is

I =
1

2!

∫

dΩ2
dσ[2]

dΩ2

S2(p
µ
1 , p

µ
2 )

+
1

3!

∫

dΩ2dE3dΩ3
dσ[3]

dΩ2dE3dΩ3
S3(p

µ
1 , p

µ
2 , p

µ
3 )

+
1

4!

∫

dΩ2dE3dΩ3dE4dΩ4

× dσ[4]

dΩ2dE3dΩ3dE4dΩ4
S4(p

µ
1 , p

µ
2 , p

µ
3 , p

µ
4 )

+ · · · . (30)

The functions S are symmetric functions of their arguments. In order for our

measurement to be infrared safe, we need

Sn+1(p
µ
1 , . . . , (1 − λ)pµ

n, λp
µ
n) = Sn(pµ

1 , . . . , p
µ
n) (31)

for 0 ≤ λ ≤ 1.

Figure 9: Infrared safety. In an infrared safe measurement, the three jet event

shown on the left should be (approximately) equivalent to an ideal three jet event

shown on the right.

What does this mean? The physical meaning is that the functions Sn and

Sn−1 are related in such a way that the cross section is not sensitive to whether

or not a mother particle divides into two collinear daughter particles that share



its momentum. The cross section is also not sensitive to whether or not a mother

particle decays to a daughter particle carrying all of its momentum and a soft

daughter particle carrying no momentum. The cross section is also not sensitive

to whether or not two collinear particles combine, or a soft particle is absorbed

by a fast particle. All of these decay and recombination processes can happen

with large probability in the final state long after the hard interaction. But,

by construction, they don’t matter as long as the sum of the probabilities for

something to happen or not to happen is one.

Another version of the physical meaning is that for an IR-safe quantity a

physical event with hadron jets should give approximately the same measurement

as a parton event with each jet replaced by a parton, as illustrated in Fig. 9. To

see this, we simply have to delete soft particles and combine collinear particles

until three jets have become three particles.

In a calculation of the measured quantity I, we simply calculate with partons

instead of hadrons in the final state. The calculational meaning of the infrared

safety condition is that the infrared infinities cancel. The argument is that the

infinities arise from soft and collinear configurations of the partons, that these

configurations involve long times, and that the time evolution operator is unitary.

I have started with an abstract formulation of infrared safety. It would be

good to have a few examples. The easiest is the total cross section, for which

Sn(pµ
1 , . . . , p

µ
n) = 1. (32)

A less trivial example is the thrust distribution. One defines the thrust Tn of an

n particle event as

Tn(pµ
1 , . . . , p

µ
n) = max

~u

∑n
i=1 |~pi · ~u|
∑n

i=1 |~pi|
. (33)

Here ~u is a unit vector, which we vary to maximize the sum of the absolute values

of the projections of ~pi on ~u. Then the thrust distribution (1/σtot) dσ/dT is defined

by taking

Sn(pµ
1 , . . . , p

µ
n) = (1/σtot) δ(T − Tn(pµ

1 , . . . , p
µ
n)) . (34)

It is a simple exercise to show that the thrust of an event is not affected by collinear

parton splitting or by zero momentum partons. Therefore the thrust distribution

is infrared safe.

Another infrared safe quantity is the cross sections to make n jets. Here

one has to define what one means by a jet. The definitions used in electron-

positron annihilation typically involve successively combining particles that are



nearly collinear to make the jets. A description can be found in Ref. 11. I discuss

jet cross sections for hadron collisions in Sec. 5.4.

A final example is the energy-energy correlation function,12 which measures

the average of the product of the energy in one calorimeter cell times the energy

in another calorimeter cell. One looks at this average as a function of the angular

separation of the calorimeter cells.

Before leaving this subject, I should mention another way to eliminate sensi-

tivity to long-time physics. Consider the cross section

dσ(e+e− → π +X)

dEπ
. (35)

This cross section can be written as a convolution of two factors, as illustrated

in Fig. 10. The first factor is a calculated “hard scattering cross section” for

e+e− → quark +X or e+e− → gluon+X. The second factor is a “parton decay

function” for quark → π + X or gluon → π + X. These functions contain the

long-time sensitivity and are to be measured, since they cannot be calculated

perturbatively. However, once they are measured in one process, they can be used

for another process. This final state factorization is similar to the initial state

factorization involving parton distribution functions, which we will discuss later.

(See Refs. 1,2,13 for more information.)

Figure 10: The cross section for e+e− → π+X can be written as a convolution of

a short distance cross section (inside the dotted line) and a parton decay function.

3 The smallest time scales

In this section, I explore the physics of time scales smaller than 1/
√
s. One

way of looking at this physics is to say that it is plagued by infinities and we

can manage to hide the infinities. A better view is that the short-time physics



contains wonderful truths that we would like to discover – truths about grand

unified theories, quantum gravity and the like. However, quantum field theory

is arranged so as to effectively hide the truth from our experimental apparatus,

which can probe with a time resolution of only an inverse half TeV.

I first outline what renormalization does to hide the ugly infinities or the beau-

tiful truth. Then I describe how renormalization leads to the running coupling.

Because of renormalization, calculated quantities depend on a renormalization

scale. I look at how this dependence works and how the scale can be chosen.

Finally, I discuss how one can use experiment to look for the hidden physics be-

yond the Standard Model, taking high ET jet production in hadron collisions as

an example.

3.1 What renormalization does

In any Feynman graph, one can insert perturbative corrections to the vertices and

the propagation of particles, as illustrated in Fig. 11. The loop integrals in these

graphs will get big contributions from momenta much larger than
√
s. That is,

there are big contributions from interactions that happen on time scales much

smaller than 1/
√
s. I have tried to illustrate this in the figure. The virtual vector

boson propagates for a time 1/
√
s, while the virtual fluctuations that correct the

electroweak vertex and the quark propagator occur over a time ∆t that can be

much smaller than 1/
√
s.

Let us pick an ultraviolet cutoff M that is much larger than
√
s, so that we

calculate the effect of fluctuations with 1/M < ∆t exactly, up to some order of

perturbation theory. What, then, is the effect of virtual fluctuations on smaller

time scales, ∆t with ∆t < 1/M but, say, ∆t still larger than tPlank, where gravity

takes over? Let us suppose that we are willing to neglect contributions to the

cross section that are of order
√
s/M or smaller compared to the cross section

itself. Then there is a remarkable theorem14: the effects of the fluctuations are

not particularly small, but they can be absorbed into changes in the couplings of

the theory. (There are also changes in the masses of the theory and adjustments

to the normalizations of the field operators, but we can concentrate on the effect

on the couplings.)

The program of absorbing very short-time physics into a few parameters goes

under the name of renormalization. There are several schemes available for renor-



Figure 11: Renormalization. The effect of the very small time interactions pictured

are absorbed into the running coupling.

malizing. Each of them involves the introduction of some scale parameter that is

not intrinsic to the theory but tells how we did the renormalization. Let us agree

to use MS renormalization (see Ref. 14 for details). Then we introduce an MS

renormalization scale µ. A good (but approximate) way of thinking of µ is that

the physics of time scales ∆t≪ 1/µ is removed from the perturbative calculation.

The effect of the small time physics is accounted for by adjusting the value of the

strong coupling, so that its value depends on the scale that we used: αs = αs(µ).

(The value of the electromagnetic coupling also depends on µ.)

3.2 The running coupling

Figure 12: Short-time fluctuations in the propagation of the gluon field absorbed

into the running strong coupling.

We account for time scales much smaller than 1/µ by using the running cou-

pling αs(µ). That is, a fluctuation such as that illustrated in Fig. 12 can be

dropped from a calculation and absorbed into the running coupling that describes

the probability for the quark in the figure to emit the gluon. The µ dependence of

αs(µ) is given by a certain differential equation, called the renormalization group



equation (see Ref. 14):

d

d ln(µ2)

αs(µ)

π
= β(αs(µ)) = −β0

(

αs(µ)

π

)2

− β1

(

αs(µ)

π

)3

+ · · · . (36)

One calculates the beta function β(αs) perturbatively in QCD. The first coeffi-

cient, with the conventions used here, is

β0 = (33 − 2Nf)/12 , (37)

where Nf is the number of quark flavors.

Of course, at time scales smaller than a very small cutoff 1/M (at the “GUT

scale,” say) there is completely different physics operating. Therefore, if we use

just QCD to adjust the strong coupling, we can say that we are accounting for

the physics between times 1/M and 1/µ. The value of αs at µ0 ≈ M is then the

boundary condition for the differential equation.

Figure 13: Distance scales accounted for by explicit fixed order perturbative cal-

culation and by use of the renormalization group.

The renormalization group equation sums the effects of short-time fluctuations

of the fields. To see what one means by “sums” here, consider the result of solving

the renormalization group equation with all of the βi beyond β0 set to zero:

αs(µ) ≈ αs(M) − (β0/π) ln(µ2/M2) α2
s(M)

+(β0/π)2 ln2(µ2/M2) α3
s(M) + · · ·

=
αs(M)

1 + (β0/π)αs(M) ln(µ2/M2)
. (38)

A series in powers of αs(M) – that is the strong coupling at the GUT scale – is

summed into a simple function of µ. Here αs(M) appears as a parameter in the

solution.

Note a crucial and wonderful fact. The value of αs(µ) decreases as µ increases.

This is called “asymptotic freedom.” Asymptotic freedom implies that QCD acts

like a weakly interacting theory on short time scales. It is true that quarks and



gluons are strongly bound inside nucleons, but this strong binding is the result of

weak forces acting collectively over a long time.

In Eq. (38), we are invited to think of the graph of αs(µ) versus µ. The

differential equation that determines this graph is characteristic of QCD. There

could, however, be different versions of QCD with the same differential equation

but different curves, corresponding to different boundary values αs(M). Thus

the parameter αs(M) tells us which version of QCD we have. To determine this

parameter, we consult experiment. Actually, Eq. (38) is not the most convenient

way to write the solution for the running coupling. A better expression is

αs(µ) ≈ π

β0 ln(µ2/Λ2)
. (39)

Here we have replaced αs(M) by a different (but completely equivalent) parameter

Λ. A third form of the running coupling is

αs(µ) ≈ αs(MZ)

1 + (β0/π)αs(MZ) ln(µ2/M2
Z)
. (40)

Here the value of αs(µ) at µ = MZ labels the version of QCD that obtains in our

world.

In any of the three forms of the running coupling, one should revise the equa-

tions to account for the second term in the beta function in order to be numerically

precise.

3.3 The choice of scale

In this section, we consider the choice of the renormalization scale µ in a calculated

cross section. Consider, as an example, the cross section for e+e− → hadrons via

virtual photon decay. Let us write this cross section in the form

σtot =
4πα2

s





∑

f

Q2
f



 [1 + ∆] . (41)

Here s is the square of the c.m. energy, α is e2/(4π), and Qf is the electric charge

in units of e carried by the quark of flavor f , with f = u, d, s, c, b. The nontrivial

part of the calculated cross section is the quantity ∆, which contains the effects of

the strong interactions. Using MS renormalization with scale µ, one finds (after



a lot of work) that ∆ is given by15

∆ =
αs(µ)

π
+
[

1.4092 + 1.9167 ln
(

µ2/s
)]

(

αs(µ)

π

)2

+
[

−12.805 + 7.8186 ln
(

µ2/s
)

+ 3.674 ln2
(

µ2/s
)]

(

αs(µ)

π

)3

+ · · · . (42)

Here, of course, one should use for αs(µ) the solution of the renormalization group

equation (36) with at least two terms included.

As discussed in the preceding subsection, when we renormalize with scale µ, we

are defining what we mean by the strong coupling. Thus αs in Eq. (42) depends

on µ. The perturbative coefficients in Eq. (42) also depend on µ. On the other

hand, the physical cross section does not depend on µ:

d

d lnµ2
∆ = 0. (43)

That is because µ is just an artifact of how we organize perturbation theory, not

a parameter of the underlying theory.

Let us consider Eq. (43) in more detail. Write ∆ in the form

∆ ∼
∞
∑

n=1

cn(µ) αs(µ)n. (44)

If we differentiate not the complete infinite sum but just the first N terms, we get

minus the derivative of the sum from N +1 to infinity. This remainder is of order

αN+1
s as αs → 0. Thus

d

d lnµ2

N
∑

n=1

cn(µ) αs(µ)n ∼ O(αs(µ)N+1). (45)

That is, the harder we work calculating more terms, the less the calculated cross

section depends on µ.

Since we have not worked infinitely hard, the calculated cross section depends

on µ. What choice shall we make for µ? Clearly, ln (µ2/s) should not be big.

Otherwise the coefficients cn(µ) are large and the “convergence” of perturbation

theory will be spoiled. There are some who will argue that one scheme or the

other for choosing µ is the “best.” You are welcome to follow whichever advisor

you want. I will show you below that for a well behaved quantity like ∆ the precise

choice makes little difference, as long as you obey the common sense prescription

that ln (µ2/s) not be big.



3.4 An example
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Figure 14: Dependence of ∆(µ) on the MS renormalization scale µ. The falling

curve is ∆1. The flatter curve is ∆2. The horizontal lines indicates the amount of

variation of ∆2 when µ varies by a factor 2.

Let us consider a quantitative example of how ∆(µ) depends on µ. This will

also give us a chance to think about the theoretical error caused by replacing ∆

by the sum ∆n of the first n terms in its perturbative expansion. Of course, we do

not know what this error is. All we can do is provide an estimate. (Our discussion

will be rather primitive. For a more detailed error estimate for the case of the

hadronic width of the Z boson, see Ref. 16.)

Let us think of the error estimate in the spirit of a “1 σ” theoretical error: we

would be surprised if |∆n − ∆| were much less than the error estimate and we

would also be surprised if this quantity were much more than the error estimate.

Here, one should exercise a little caution. We have no reason to expect that theory

errors are gaussian distributed. Thus a 4 σ difference between ∆n and ∆ is not

out of the question, while a 4 σ fluctuation in a measured quantity with purely

statistical, gaussian errors is out of the question.

Take αs(MZ) = 0.117,
√
s = 34 GeV, 5 flavors. In Fig. 14, I plot ∆(µ) versus

p defined by

µ = 2p
√
s. (46)

The steeply falling curve is the order α1
s approximation to ∆(µ), ∆1(µ) = αs(µ)/π.

Notice that if we change µ by a factor 2, ∆1(µ) changes by about 0.006. If we

had no other information than this, we might pick ∆1(
√
s) ≈ 0.044 as the “best”



value and assign a ±0.006 error to this value. (There is no special magic to the

use of a factor of 2 here. The reader can pick any factor that seems reasonable.)

Another error estimate can be based on the simple expectation that the coeffi-

cients of αn
s are of order 1 for the first few terms. (Eventually, they will grow like

n!. Ref. 16 takes this into account, but we ignore it here.) Then the first omitted

term should be of order ±1 × α2
s ≈ ±0.020 using αs(34 GeV) ≈ 0.14. Since this

is bigger than the previous ±0.006 error estimate, we keep this larger estimate:

∆ ≈ 0.044 ± 0.020.

Returning now to Fig. 14, the second curve is the order α2
s approximation,

∆2(µ). Note that ∆2(µ) is less dependent on µ than ∆1(µ).

What value would we now take as our best estimate of ∆? One idea is to

choose the value of µ at which ∆2(µ) is least sensitive to µ. This idea is called

the principle of minimal sensitivity17:

∆PMS = ∆(µPMS) ,

[

d∆(µ)

d lnµ

]

µ=µPMS

= 0. (47)

This prescription gives ∆ ≈ 0.0470. Note that this is about 0.003 away from our

previous estimate, ∆ ≈ 0.0440. Thus our previous error estimate of 0.020 was too

big, and we should be surprised that the result changed so little. We can make a

new error estimate by noting that ∆2(µ) varies by about 0.0012 when µ changes

by a factor 2 from µPMS. Thus we might estimate that ∆ ≈ 0.0470 with an error

of ±0.0012. This estimate is represented by the two horizontal lines in Fig. 14.

An alternative error estimate can be based on the next term being of order

±1 × α3
s(34 GeV ) ≈ 0.003. Since this is bigger than the previous ±0.0012 error

estimate, we keep this larger estimate: ∆ ≈ 0.0470 ± 0.003.

I should emphasize that there are other ways to pick the “best” value for ∆.

For instance, one can use the BLM method,18 which is based on choosing the µ

that sets to zero the coefficient of the number of quark flavors in ∆2(µ). Since the

graph of ∆2(µ) is quite flat, it makes very little difference which method one uses.

Now let us look at ∆(µ) evaluated at order α3
s, ∆3(µ). Here we make use of

the full formula in Eq. (42). In Fig. 15, I plot ∆3(µ) along with ∆2(µ) and ∆1(µ).

The variation of ∆3(µ) with µ is smaller than that of ∆2(µ). The improvement is

not overwhelming, but is apparent particularly at small µ.

It is a little difficult to see what is happening in Fig. 15, so I show the same

thing with an expanded scale in Fig. 16. (Here the error band based on the µ
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Figure 15: Dependence of ∆(µ) on the MS renormalization scale µ. The falling

curve is ∆1. The flatter curve is ∆2. The still flatter curve is ∆3.

dependence of ∆2 is also indicated. Recall that we decided that this error band

was an underestimate.) The curve for ∆3(µ) has zero derivative at two places.

The corresponding values are ∆ ≈ 0.0436 and ∆ ≈ 0.0456. If I take the best value

of ∆ to be the average of these two values and the error to be half the difference,

I get ∆ ≈ 0.0446 ± 0.0010.

The alternative error estimate is ±1 × α4
s(34 GeV) ≈ 0.0004. We keep the

larger error estimate of ±0.0010.

Was the previous error estimate valid? We guessed ∆ ≈ 0.0470 ± 0.003. Our

new best estimate is 0.0446. The difference is 0.0024, which is in line with our

previous error estimate. Had we used the error estimate ±0.0012 based on the

µ dependence, we would have underestimated the difference, although we would

not have been too far off.

3.5 Beyond the Standard Model

We have seen how the renormalization group enables us to account for QCD

physics at time scales much smaller than
√
s, as indicated in Fig. 17. However, at

some scale ∆t ∼ 1/M , we run into the unknown!

How can we see the unknown in current experiments? First, the unknown

physics affects αs, αem, sin2(θW ). Second, the unknown physics affects masses

of u, d, . . . , e, µ, . . .. That is, the unknown physics (presumably) determines the

parameters of the Standard Model. These parameters have been well measured.
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Figure 16: Dependence of ∆(µ) on the MS renormalization scale µ with an ex-

panded scale. The falling curve is ∆1. The flatter curve is ∆2. The still flatter

curve is ∆3. The horizontal lines represent the variation of ∆2 when µ varies by

a factor 2.

Thus, a Nobel prize awaits the physicist who figures out how to use a model for

the unknown physics to predict these parameters.

Figure 17: Time scales accounted for by fixed order perturbative calculations and

by use of the renormalization group.

There is another way that as yet unknown physics can affect current exper-

iments. Suppose that quarks can scatter by the exchange of some new particle

with a heavy mass M , as illustrated in Fig. 18, and suppose that this mass is not

too enormous, only a few TeV. Perhaps the new particle isn’t a particle at all,

but is a pair of constituents that live inside of quarks. As mentioned above, this

physics affects the parameters of the Standard Model. However, unless we can

predict the parameters of the Standard Model, this effect does not help us. There

is, however, another possible clue. The physics at the TeV scale can introduce

new terms into the lagrangian that we can investigate in current experiments.

In the second diagram in Fig. 18, the two vertices are never at a separation in

time greater than 1/M , so that our low energy probes cannot resolve the details

of the structure. As long as we stick to low energy probes,
√
s ≪ M , the effect



Figure 18: New physics at a TeV scale. In the first diagram, quarks scatter by

gluon exchange. In the second diagram, the quarks exchange a new object with a

TeV mass, or perhaps exchange some of the constituents out of which quarks are

made.

of the new physics can be summarized by adding new terms to the lagrangian of

QCD. A typical term might be

∆L =
g̃2

M2
ψ̄γµψ ψ̄γµψ. (48)

There is a factor g̃2 that represents how well the new physics couples to quarks.

The most important factor is the factor 1/M2. This factor must be there: the

product of field operators has dimension 6 and the lagrangian has dimension 4,

so there must be a factor with dimension −2. Taking this argument one step

further, the product of field operators in ∆L must have a dimension greater than

4 because any product of field operators having dimension equal to or less than

4 that respects the symmetries of the Standard Model is already included in the

lagrangian of the Standard Model.

3.6 Looking for new terms in the effective lagrangian

How can one detect the presence in the lagrangian of a term like that in Eq. (48)?

These terms are small. Therefore we need either a high precision experiment, or

an experiment that looks for some effect that is forbidden in the Standard Model,

or an experiment that has moderate precision and operates at energies that are

as high as possible.

Let us consider an example of the last of these possibilities, p + p̄ → jet+X

as a function of the transverse energy (∼ PT ) of the jet. The new term in the

lagrangian should add a little bit to the observed cross section that is not included

in the standard QCD theory. When the transverse energy ET of the jet is small



compared to M , we expect

Data − Theory

Theory
∝ g̃2 E

2
T

M2
. (49)

Here the factor g̃2/M2 follows because ∆L contains this factor. The factor E2
T

follows because the left hand side is dimensionless and ET is the only factor with

dimension of mass that is available.
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Figure 19: Jet cross sections from CDF and D0 compared to QCD theory. (Data

− Theory)/Theory is plotted versus the transverse energy ET of the jet. The

theory here is next-to-leading order QCD using the CTEQ3M parton distribution.

Source: Ref. 19

In Fig. 19, I show a plot comparing experimental jet cross sections from CDF20

and D021 compared to next-to-leading order QCD theory. The theory works fine

for ET < 200 GeV, but for 200 GeV < ET , there appears to be a systematic

deviation of just the form anticipated in Eq. (49).

This example illustrates the idea of how small distance physics beyond the

Standard Model can leave a trace in the form of small additional terms in the

effective lagrangian that controls physics at currently available energies. However,

in this case, there is some indication that the observed effect might be explained

by some combination of the experimental systematic error and the uncertainties

inherent in the theoretical prediction.22 In particular, the prediction is sensitive

to the distributions of quarks and gluons contained in the colliding protons, and

the gluon distribution in the kinematic range of interest here is rather poorly

known. In the next section, we turn to the definition, use, and measurement of

the distributions of quarks and gluons in hadrons.



4 Deeply inelastic scattering

Until now, I have concentrated on hard scattering processes with leptons in the

initial state. For such processes, we have seen that the hard part of the process can

be described using perturbation theory because αs(µ) gets small as µ gets large.

Furthermore, we have seen how to isolate the hard part of the interaction by choos-

ing an infrared safe observable. But what about hard processes in which there

are hadrons in the initial state? Since the fundamental hard interactions involve

quarks and gluons, the theoretical description necessarily involves a description

of how the quarks and gluons are distributed in a hadron. Unfortunately, the

distribution of quarks and gluons in a hadron is controlled by long-time physics.

We cannot calculate the relevant distribution functions perturbatively (although

a calculation in lattice QCD might give them, in principle). Thus we must find

how to separate the short-time physics from the parton distribution functions and

we must learn how the parton distribution functions can be determined from the

experimental measurements.

In this section, I discuss parton distribution functions and their role in deeply

inelastic lepton scattering (DIS). This includes e + p → e + X and ν + p →
e + X where the momentum transfer from the lepton is large. I first outline the

kinematics of deeply inelastic scattering and define the structure functions F1, F2

and F3 used to describe the process. By examining the space-time structure of DIS,

we will see how the cross section can be written as a convolution of two factors,

one of which is the parton distribution functions and the other of which is a cross

section for the lepton to scatter from a quark or gluon. This factorization involves

a scale µF that, roughly speaking, divides the soft from the hard regime; I discuss

the dependence of the calculated cross section on µF . With this groundwork laid,

I give the MS definition of parton distribution functions in terms of field operators

and discuss the evolution equation for the parton distributions. I close the section

with some comments on how the parton distributions are, in practice, determined

from experiment.

4.1 Kinematics of deeply inelastic lepton scattering

In deeply inelastic scattering, a lepton with momentum kµ scatters on a hadron

with momentum pµ. In the final state, one observes the scattered lepton with



Figure 20: Kinematics of deeply inelastic scattering

momentum k′µ as illustrated in Fig. 20. The momentum transfer

qµ = kµ − k′µ (50)

is carried on a photon, or a W or Z boson.

The interaction between the vector boson and the hadron depends on the

variables qµ and pµ. From these two vectors we can build two scalars (not counting

m2 = p2). The first variable is

Q2 = −q2, (51)

where the minus sign is included so that Q2 is positive. The second scalar is the

dimensionless Bjorken variable,

xbj =
Q2

2p · q . (52)

(In the case of scattering from a nucleus containing A nucleons, one replaces pµ

by pµ/A and defines xbj = AQ2/(2p · q).)
One calls the scattering deeply inelastic if Q2 is large compared to 1 GeV2.

Traditionally, one speaks of the scaling limit, Q2 → ∞ with xbj fixed. Actually,

the asymptotic theory to be described below works pretty well if Q2 is bigger than,

say, 4 GeV2 and xbj is anywhere in the experimentally accessible range, roughly

10−4 < xbj < 0.5.

The invariant mass squared of the hadronic final state is W 2 = (p + q)2. In

the scaling regime of large Q2 one has

W 2 = m2 +
1 − xbj

xbj
Q2 ≫ m2. (53)

This justifies saying that the scattering is not only inelastic but deeply inelastic.



We have spoken of the scalar variables that one can form from pµ and qµ.

Using the lepton momentum kµ, one can also form the dimensionless variable

y =
p · q
p · k . (54)

4.2 Structure functions for DIS

One can make quite a lot of progress in understanding the theory of deeply in-

elastic scattering without knowing anything about QCD except its symmetries.

One expresses the cross section in terms of three structure functions, which are

functions of xbj and Q2 only.

Suppose that the initial lepton is a neutrino, νµ, and the final lepton is a

muon. Then in Fig. 20 the exchanged vector boson, call it V , is a W boson,

with mass MV = MW . Alternatively, suppose that both the initial and final

leptons are electrons and let the exchanged vector boson be a photon, with mass

MV = 0. This was the situation in the original DIS experiments at SLAC in the

late 1960’s. In experiments with sufficiently large Q2, Z boson exchange should

be considered along with photon exchange, and the formalism described below

must be augmented.

Given only the electroweak theory to tell us how the vector boson couples to

the lepton, one can write the cross section in the form

dσ =
4α2

s

d3k′

2|k′|
CV

(q2 −M2
V )2

Lµν(k, q)Wµν(p, q), (55)

where CV is 1 in the case that V is a photon and 1/(64 sin4 θW ) in the case that

V is a W boson. The tensor Lµν describes the lepton coupling to the vector boson

and has the form

Lµν =
1

2
Tr (k · γ γµk′ · γ γν) . (56)

in the case that V is a photon. For a W boson, one has

Lµν = Tr (k · γ Γµk′ · γ Γν) . (57)

where Γµ is γµ(1− γ5) for a W+ boson (ν →W+ℓ) or γµ(1 + γ5) for a W− boson

(ν̄ →W−ℓ̄). See Ref. 1.

The tensor W µν describes the coupling of the vector boson to the hadronic

system. It depends on pµ and qµ. We know that it is Lorentz invariant and that

W νµ = W µν∗. We also know that the current to which the vector boson couples



is conserved (or in the case of the axial current, conserved in the absence of quark

masses, which we here neglect) so that qµW
µν = 0. Using these properties, one

finds three possible tensor structures for W µν . Each of the three tensors multiplies

a structure function, F1, F2 or F3, which, since it is a Lorentz scalar, can depend

only on the invariants xbj and Q2. Thus

Wµν = −
(

gµν −
qµqν
q2

)

F1(xbj, Q
2)

+

(

pµ − qµ
p · q
q2

)(

pν − qν
p · q
q2

)

1

p · q F2(xbj, Q
2)

−iǫµνλσp
λqσ 1

p · q F3(xbj, Q
2). (58)

If we combine Eqs. (55,56,57,58), we can write the cross section for deeply in-

elastic scattering in terms of the three structure functions. Neglecting the hadron

mass compared to Q2, the result is

dσ

dxbj dy
= Ñ(Q2)

[

yF1 +
1 − y

xbjy
F2 + δV (1 − y

2
)F3

]

. (59)

Here the normalization factor Ñ and the factor δV multiplying F3 are

Ñ =
4πα2

Q2
, δV = 0, e−+ h→ e− +X,

Ñ =
πα2Q2

4 sin4(θW ) (Q2 +MW )2
, δV = 1, ν + h→ µ− +X,

Ñ =
πα2Q2

4 sin4(θW ) (Q2 +MW )2
, δV = −1, ν̄ + h→ µ+ +X. (60)

In principle, one can use the y dependence to determine all three of F1, F2, F3 in

a deeply inelastic scattering experiment.

4.3 Space-time structure of DIS

So far, we have used the symmetries of QCD in order to write the cross section for

deeply inelastic scattering in terms of three structure functions, but we have not

used any other dynamical properties of the theory. Now we turn to the question

of how the scattering develops in space and time.

For this purpose, we define a convenient reference frame, which is illustrated

in Fig. 21. Denoting components of vectors vµ by (v+, v−,vT ), we chose the frame



Figure 21: Reference frame for the analysis of deeply inelastic scattering.

in which

(q+, q−,q) =
1√
2

(−Q,Q,0). (61)

We also demand that the transverse components of the hadron momentum be

zero in our frame. Then

(p+, p−,p) ≈ 1√
2

(
Q

xbj
,
xbjm

2
h

Q
, 0). (62)

Notice that in the chosen reference frame the hadron momentum is big and the

momentum transfer is big.

Figure 22: Interactions within a fast moving hadron. The lines represent world

lines of quarks and gluons. The interaction points are spread out in x+ and pushed

together in x−.

Consider the interactions among the quarks and gluons inside a hadron, using

x+ in the role of “time” as in Section 2.3. For a hadron at rest, these interactions



happen in a typical time scale ∆x+ ∼ 1/m, where m ∼ 300 MeV. A hadron

that will participate in a deeply inelastic scattering event has a large momentum,

p+ ∼ Q, in the reference frame that we are using. The Lorentz transformation

from the rest frame spreads out interactions by a factor Q/m, so that

∆x+ ∼ 1

m
× Q

m
=

Q

m2
. (63)

This is illustrated in Fig. 22.

I offer two caveats here. First, I am treating xbj as being of order 1. To treat

small xbj physics, one needs to put back the factors of xbj, and the picture changes

rather dramatically. Second, the interactions among the quarks and gluons in a

hadron at rest can take place on time scales ∆x+ that are much smaller than 1/m,

as we discussed in Section 3. We will discuss this later on, but for now we start

with the simplest picture.

Figure 23: The virtual photon meets the fast moving hadron. One of the par-

tons is annihilated and recreated as a parton with a large minus component of

momentum. This parton develops into a jet of particles.

What happens when the fast moving hadron meets the virtual photon? The

interaction with the photon carrying momentum q− ∼ Q is localized to within

∆x+ ∼ 1/Q. (64)

During this short time interval, the quarks and gluons in the proton are effectively

free, since their typical interaction times are comparatively much longer.

We thus have the following picture. At the moment x+ of the interaction, the

hadron effectively consists of a collection of quarks and gluons (partons) that have



momenta (p+
i ,pi). We can treat the partons as being free. The p+

i are large, and

it is convenient to describe them using momentum fractions ξi:

ξi = p+
i /p

+, 0 < ξi < 1. (65)

(This is convenient because the ξi are invariant under boosts along the z axis.)

The transverse momenta of the partons, pi, are small compared to Q and can

be neglected in the kinematics of the γ-parton interaction. The “on-shell” or

“kinetic” minus momenta of the partons, p−i = p2
i /(2p

+
i ), are also very small

compared to Q and can be neglected in the kinematics of the γ-parton interaction.

We can think of the partonic state as being described by a wave function

ψ(p+
1 ,p1; p

+
2 ,p2; · · ·), (66)

where indices specifying spin and flavor quantum numbers have been suppressed.

Figure 24: Feynman diagram for deeply inelastic scattering.

This approximate picture is represented in Feynman diagram language in

Fig. 24. The larger filled circle represents the hadron wave function ψ. The

smaller filled circle represents a sum of subdiagrams in which the particles have

virtualities of order Q2. All of these interactions are effectively instantaneous on

the time scale of the intra-hadron interactions that form the wave function. The

approximate picture also leads to an intuitive formula that relates the observed

cross section to the cross section for γ-parton scattering:

dσ

dE ′ dω′
∼
∫ 1

0
dξ
∑

a

fa/h(ξ, µ)
dσ̂a(µ)

dE ′ dω′
+ O(m/Q). (67)



In Eq. (67), the function f is a parton distribution function: fa/h(ξ, µ) dξ gives

probability to find a parton with flavor a = g, u, ū, d, . . ., in hadron h, carrying

momentum fraction within dξ of ξ = p+
i /p

+. If we knew the wave functions ψ, we

would form f by summing over the number n of unobserved partons, integrating

|ψn|2 over the momenta of the unobserved partons, and also integrating over the

transverse momentum of the observed parton.

The second factor in Eq. (67), dσ̂a/dE
′ dω′, is the cross section for scattering

the lepton from the parton of flavor a and momentum fraction ξ.

I have indicated a dependence on a factorization scale µ in both factors of

Eq. (67). This dependence arises from the existence of virtual processes among

the partons that take place on a time scale much shorter than the nominal ∆x+ ∼
Q/m2. I will discuss this dependence in some detail shortly.

4.4 The hard scattering cross section

The parton distribution functions in Eq. (67) are derived from experiment. The

hard scattering cross sections dσ̂a(µ)/dE′ dω′ are calculated in perturbation theory,

using diagrams like those shown in Fig. 25. The diagram on the left is the lowest

order diagram. The diagram on the right is one of several that contributes to dσ̂

at order αs; in this diagram the parton a is a gluon.

Lowest order. Higher order.

Figure 25: Some Feynman diagrams for the hard scattering part of deeply inelastic

scattering.

One can understand a lot about deeply inelastic scattering from Fig. 26, which

illustrates the kinematics of the lowest order diagram. Recall that in the reference

frame that we are using, the virtual vector boson has zero transverse momentum.

The incoming parton has momentum along the plus axis. After the scattering,

the parton momentum must be on the cone kµk
µ = 0, so the only possibility is



Figure 26: Kinematics of lowest order diagram.

that its minus momentum is non-zero and its plus momentum vanishes. That is

ξp+ + q+ = 0. (68)

Since p+ = Q/(xbj

√
2) while q+ = −Q/

√
2, this implies

ξ = xbj. (69)

The consequence of this is that the lowest order contribution to dσ̂ in Eq. (67)

contains a delta function that sets ξ to xbj. Thus deeply inelastic scattering at a

given value of xbj provides a determination of the parton distribution functions

at momentum fraction ξ equal to xbj, as long as one works only to leading order.

In fact, because of this close relationship, there is some tendency to confuse the

structure functions Fn(xbj, Q
2) with the parton distribution functions fa,h(ξ, µ). I

will try to keep these concepts separate: the structure functions Fn are something

that one measures directly in deeply inelastic scattering; the parton distribution

functions are determined rather indirectly from experiments like deeply inelastic

scattering, using formulas that are correct only up to some finite order in αs.

4.5 Factorization for the structure functions

We will look at DIS in a little detail since it is so important. Our object is to

derive a formula relating the measured structure functions to structure functions

calculated at the parton level. Then we will look at the parton level calculation

at lowest order.



Start with Eq. (67), representing Fig. 24. We change variables in this equation

from (E ′, ω′) to (xbj, y). We relate xbj to the momentum fraction ξ and a new

variable x̂ that is just xbj with the proton momentum pµ replaced by the parton

momentum ξpµ:

xbj =
Q2

2p · q = ξ
Q2

2ξp · q = ξx̂. (70)

That is, x̂ is the parton level version of xbj. The variable y is identical to the parton

level version of y because pµ appears in both the numerator and denominator:

y =
p · q
p · k =

ξp · q
ξp · k . (71)

Thus Eq. (67) becomes

dσ

dxbj dy
∼
∫ 1

0
dξ
∑

a

fa/h(ξ)
1

ξ

[

dσ̂a
dx̂ dy

]

x̂=xbj/ξ

+ O(m/Q). (72)

Now recall that, for γ exchange, dσ/(dxbjdy) is related to the structure func-

tions by Eq. (59):

dσ

dxbj dy
= Ñ(Q2)

[

y F1(xbj, Q
2) +

1 − y

xbj y
F2(xbj, Q

2)

]

+ O(m/Q). (73)

We define structure functions F̂n for partons in the same way:

dσ̂a
dx̂ dy

= Ñ(Q2)

[

y F̂ a
1 (xbj/ξ,Q

2) +
1 − y

(xbj/ξ)y
F̂ a

2 (xbj/ξ,Q
2)

]

. (74)

We insert Eq. (74) into Eq. (72) and compare to Eq. (73). We deduce that the

structure functions can be factored as

F1(xbj, Q
2) ∼

∫ 1

0
dξ
∑

a

fa/h(ξ)
1

ξ
F̂ a

1 (xbj/ξ,Q
2) + O(m/Q), (75)

F2(xbj, Q
2) ∼

∫ 1

0
dξ
∑

a

fa/h(ξ) F̂
a
2 (xbj/ξ,Q

2) + O(m/Q). (76)

A simple calculation gives F̂1 and F̂2 at lowest order:

F̂ a
1 (xbj/ξ,Q

2) =
1

2
Q2

a δ(xbj/ξ − 1) + O(αs), (77)

F̂ a
2 (xbj/ξ,Q

2) = Q2
a δ(xbj/ξ − 1) + O(αs). (78)



Inserting these results into Eqs. (75) and (76), we obtain the lowest order relation

between the structure functions and the parton distribution functions:

F1(xbj, Q
2) ∼ 1

2

∑

a

Q2
a fa/h(xbj) + O(αs) + O(m/Q), (79)

F2(xbj, Q
2) ∼

∑

a

Q2
a xbj fa/h(xbj) + O(αs) + O(m/Q). (80)

The factor 1/2 between xbjF1 and F2 follows from the Feynman diagrams for spin

1/2 quarks.

4.6 µF dependence

Figure 27: Deeply inelastic scattering with a gluon emission.

I have so far presented a rather simplified picture of deeply inelastic scattering

in which the hard scattering takes place on a time scale ∆x+ ∼ 1/Q, while the

internal dynamics of the proton take place on a much longer time scale ∆x+ ∼
Q/m2. What happens when one actually computes Feynman diagrams and looks

at what time scales contribute? Consider the graph shown in Fig. 27. One finds

that the transverse momenta k range from order m to order Q, corresponding to

energy scales k− = k2/2k+ between k− ∼ m2/Q and k− = Q2/Q ∼ Q, or time

scales Q/m2 <∼ ∆x+ <∼ 1/Q.

The property of factorization for the cross section of deeply inelastic scattering,

embodied in Eq. (67), is established by showing that the perturbative expansion

can be rearranged so that the contributions from long time scales appear in the

parton distribution functions, while the contributions from short time scales ap-

pear in the hard scattering functions. (See Ref. 23 for more information.) Thus,

in Fig. 27, a gluon emission with k2 ∼ m2 is part of f(ξ), while a gluon emission

with k2 ∼ Q2 is part of dσ̂.



Breaking up the cross section into factors associated with short and long time

scales requires the introduction of a factorization scale, µF . When calculating

the diagram in Fig. 27, one integrates over k. Roughly speaking, one counts

the contribution from k2 < µ2
F as part of the higher order contribution to φ(ξ),

convoluted with the lowest order hard scattering function dσ̂ for deeply inelastic

scattering from a quark. The contribution from µ2
F < k2 then counts as part

of the higher order contribution to dσ̂ convoluted with an uncorrected parton

distribution. This is illustrated in Fig. 28. (In real calculations, the split is

accomplished with the aid of dimensional regularization, and is a little more subtle

than a simple division of the integral into two parts.)

Figure 28: Distance scales in factorization.

A consequence of this is that both dσ̂a(µF )/dE′ dω′ and fa/h(ξ, µF ) depend on

µF . Thus we have two scales, the factorization scale µF in ff/h(ξ, µF ) and the

renormalization scale µ in αs(µ). As with µ, the cross section does not depend on

µF . Thus there is an equation d(cross section)/dµF = 0 that is satisfied to the

accuracy of the perturbative calculation used. If you work harder and calculate

to higher order, then the dependence on µF is less.

Often one sets µF = µ in applied calculations. In fact, it is rather common in

applications to deeply inelastic scattering to set µF = µ = Q.

4.7 Contour graphs of scale dependence

As an example, look at the one jet inclusive cross section in proton-antiproton

collisions. Specifically, consider the cross section dσ/dETdη to make a collimated

spray of particles, a jet, with transverse energy ET and rapidity η. (Here ET is

essentially the transverse momentum carried by the particles in the jet and η is

related to the angle between the jet and the beam direction by η ≡ ln(tan(θ/2)).

We will investigate this process and discuss the definitions in the next section.

For now, all we need to know is that the theoretical formula for the cross sec-

tion at next-to-leading order involves the strong coupling αs(µ) and two factors

fa/h(x, µF ) representing the distribution of partons in the two incoming hadrons.



There is a parton level hard scattering cross section that also depends on µ and

µF .
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Figure 29: Contour plots of the one jet inclusive cross section versus the renor-

malization scale µ and the factorization scale µF . The cross section is dσ/dETdη

at η = 0 with ET = 100 GeV in the first graph and ET = 500 GeV in the second.

The horizontal axis in each graph represents NUV ≡ log2(2µ/ET ) and the vertical

axis represents NCO ≡ log2(2µF/ET ). The contour lines show 5% changes in the

cross section relative to the cross section at the center of the figures. The c.m

energy is
√
s = 1800 GeV.

How does the cross section depend on µ in αs(µ) and µF in fa/h(x, µF )? In

Fig. 29, I show contour plots of the jet cross section versus µ and µF at two

different values of ET . The center of the plots corresponds to a standard choice of

scales, µ = µF = ET/2. The axes are logarithmic, representing log2(2µ/ET ) and

log2(2µF/ET ). Thus µ and µF vary from ET/8 to 2ET in the plots.

Notice that the dependence on the two scales is rather mild for the next-to-

leading order cross section. The cross section calculated at leading order is quite

sensitive to these scales, but most of the scale dependence found at order α2
s

has been canceled by the α3
s contributions to the cross section. One reads from

the figure that the cross section varies by roughly ±15% in the central region of

the graphs, both for medium and large ET . Following the argument of Sec. 3.4,

this leads to a rough estimate of 15% for the theoretical error associated with



truncating perturbation theory at next-to-leading order.

4.8 MS definition of parton distribution functions

The factorization property, Eq. (67), of the deeply inelastic scattering cross sec-

tion states that the cross section can be approximated as a convolution of a hard

scattering cross section that can be calculated perturbatively and parton distri-

bution functions fa/A(x, µ). But what are the parton distribution functions? This

question has some practical importance. The hard scattering cross section is es-

sentially the physical cross section divided by the parton distribution function, so

the precise definition of the parton distribution functions leads to the rules for

calculating the hard scattering functions.

The definition of the parton distribution functions is to some extent a matter

of convention. The most commonly used convention is the MS definition, which

arose from the theory of deeply inelastic scattering in the language of the “operator

product expansion.”24 Here I will follow the (equivalent) formulation of Ref. 13.

For a more detailed pedagogical review, the reader may consult Ref. 25.

Using the MS definition, the distribution of quarks in a hadron is given as the

hadron matrix element of certain quark field operators:

fi/h(ξ, µF ) =
1

2

∫ dy−

2π
e−iξp+y−〈p|ψ̄i(0, y

−, 0)γ+Fψi(0)|p〉. (81)

Here |p〉 represents the state of a hadron with momentum pµ aligned so that

pT = 0. For simplicity, I take the hadron to have spin zero. The operator ψ(0),

evaluated at xµ = 0, annihilates a quark in the hadron. The operator ψ̄i(0, y
−, 0)

recreates the quark at x+ = xT = 0 and x− = y−, where we take the appropriate

Fourier transform in y− so that the quark that was annihilated and recreated has

momentum k+ = ξp+. The motivation for the definition is that this is the hadron

matrix element of the appropriate number operator for finding a quark.

There is one subtle point. The number operator idea corresponds to a par-

ticular gauge choice, A+ = 0. If we are using any other gauge, we insert the

operator

F = P exp

(

−ig
∫ y−

0
dz−A+

a (0, z−, 0) ta

)

. (82)

The P indicates a path ordering of the operators and color matrices along the

path from (0, 0, 0) to (0, y−, 0). This operator is the identity operator in A+ = 0

gauge and it makes the definition gauge invariant.



DIS Parton distribution

Figure 30: Deeply inelastic scattering and the parton distribution functions.

The physics of this definition is illustrated in Fig. 30. The first picture (from

Fig. 23) illustrates the amplitude for deeply inelastic scattering. The fast proton

moves in the plus direction. A virtual photon knocks out a quark, which emerges

moving in the minus direction and develops into a jet of particles. The second

picture illustrates the amplitude associated with the quark distribution function.

We express F as F2F1 where

F2 = P̄ exp
(

+ig
∫

∞

y−

dz−A+
a (0, z−, 0) ta

)

,

F1 = P exp
(

−ig
∫

∞

0
dz−A+

a (0, z−, 0) ta

)

. (83)

and write the quark distribution function including a sum over intermediate states

|N〉:

fi/h(ξ, µF ) =
1

2

∫ dy−

2π
e−iξp+y−

∑

N

〈p|ψ̄i(0, y
−, 0)γ+F2|N〉〈N |F1ψi(0)|p〉. (84)

Then the amplitude depicted in the second picture in Fig. 30 is 〈N |F1ψi(0)|p〉.
The operator ψ annihilates a quark in the proton. The operator F1 stands in for

the quark moving in the minus direction. The gluon field A evaluated along a

lightlike line in the minus direction absorbs longitudinally polarized gluons from

the color field of the proton, just as the real quark in deeply inelastic scattering

can do. Thus the physics of deeply inelastic scattering is built into the definition

of the quark distribution function, albeit in an idealized way. The idealization is

not a problem because the hard scattering function dσ̂ systematically corrects for

the difference between real deeply inelastic scattering and the idealization.



There is one small hitch. If you calculate any Feynman diagrams for fi/h(ξ, µF ),

you are likely to wind up with an ultraviolet-divergent integral. The operator

product that is part of the definition needs renormalization. This hitch is only a

small one. We simply agree to do all of the renormalization using the MS scheme

for renormalization. It is this renormalization that introduces the scale µF into

fi/h(ξ, µF ). This role of µF is in accord with Fig. 28: roughly speaking µF is

the upper cutoff for what momenta belong with the parton distribution function;

at the same time it is the lower cutoff for what momenta belong with the hard

scattering function.

What about gluons? The definition of the gluon distribution function is similar

to the definition for quarks. We simply replace the quark field ψ by suitable

combinations of the gluon field Aµ, as described in Refs. 13 and 25.

4.9 Evolution of the parton distributions

Since we introduced a scale µF in the definition of the parton distributions in

order to define their renormalization, there is a renormalization group equation

that gives the µF dependence

d

d lnµF
fa/h(x, µF ) =

∑

b

∫ 1

x

dξ

ξ
Pab(x/ξ, αs(µF )) fb/h(ξ, µF ). (85)

This is variously known as the evolution equation, the Altarelli-Parisi equation,

and the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. Note the

sum over parton flavor indices. The evolution of, say, an up quark (a = u) can

involve a gluon (b = g) through the element Pug of the kernel that describes gluon

splitting into ūu.

The equation is illustrated in Fig. 31. When we change the renormalization

scale µF , the change in the probability to find a parton with momentum fraction

x and flavor a is proportional to the probability to find such a parton with large

transverse momentum. The way to get this parton with large transverse momen-

tum is for a parton carrying momentum fraction ξ and much smaller transverse

momentum to split into partons carrying large transverse momenta, including the

parton that we are looking for. This splitting probability, integrated over the

appropriate transverse momentum ranges, is the kernel Pab.



Figure 31: The renormalization for the parton distribution functions.

The kernel P in Eq. (85) has a perturbative expansion

Pab(x/ξ, αs(µF )) = P
(1)
ab (x/ξ)

αs(µF )

π
+ P

(2)
ab (x/ξ)

(

αs(µF )

π

)2

+ · · · . (86)

The first two terms are known and are typically used in numerical solutions of

the equation. To learn more about the DGLAP equation, the reader may consult

Refs. 1 and 25.

4.10 Determination and use of the parton distributions

The MS definition giving the parton distribution in terms of operators is process

independent – it does not refer to any particular physical process. These parton

distributions then appear in the QCD formula for any process with one or two

hadrons in the initial state. In principle, the parton distribution functions could

be calculated by using the method of lattice QCD (see Ref. 25). Currently, they

are determined from experiment.

Currently the most comprehensive analyses are being done by the CTEQ19

and MRS26 groups. These groups perform a “global fit” to data from experiments

of several different types. To perform such a fit one chooses a parameterization

for the parton distributions at some standard factorization scale µ0. Certain sum

rules that follow from the definition of the parton distribution functions are built

into the parameterization. An example is the momentum sum rule:

∑

a

∫ 1

0
dξ ξ fa/h(ξ, µ) = 1. (87)

Given some set of values for the parameters describing the fa/h(x, µ0), one can

determine fa/h(x, µ) for all higher values of µ by using the evolution equation.



Then the QCD cross section formulas give predictions for all of the experiments

that are being used. One systematically varies the parameters in fa/h(x, µ0) to

obtain the best fit to all of the experiments. One source of information about these

fits is the World Wide Web pages of Ref. 27.

If the freedom available for the parton distributions is used to fit all of the

world’s data, is there any physical content to QCD? The answer is yes: there are

lots of experiments, so this program won’t work unless QCD is right. In fact, there

are roughly 1400 data in the CTEQ fit and only about 25 parameters available to

fit these data.

5 QCD in hadron-hadron collisions

When there is a hadron in the initial state of a scattering process, there are

inevitably long time scales associated with the binding of the hadron, even if part

of the process is a short-time scattering. We have seen, in the case of deeply

inelastic scattering of a lepton from a single hadron, that the dependence on these

long time scales can be factored into a parton distribution function. But what

happens when two high energy hadrons collide? The reader will not be surprised

to learn that we then need two parton distribution functions.

I explore hadron-hadron collisions in this section. I begin with the definition

of a convenient kinematical variable, rapidity. Then I discuss, in turn, production

of vector bosons (γ∗, W , and Z), heavy quark production, and jet production.

5.1 Kinematics: rapidity

In describing hadron-hadron collisions, it is useful to employ a kinematic variable

y that is called rapidity. Consider, for example, the production of a Z boson

plus anything, p + p̄ → Z + X. Choose the hadron-hadron c.m. frame with the

z axis along the beam direction. In Fig. 32, I show a drawing of the collision.

The arrows represent the momenta of the two hadrons; in the c.m. frame these

momenta have equal magnitudes. We will want to describe the process at the

parton level, a + b → Z + X. The two partons a and b each carry some share

of the parent hadron’s momentum, but generally these will not be equal shares.

Thus the magnitudes of the momenta of the colliding partons will not be equal.

We will have to boost along the z axis in order to get to the parton-parton c.m.



frame. For this reason, it is useful to use a variable that transforms simply under

boosts. This is the motivation for using rapidity.

Figure 32: Collision of two hadrons containing partons producing a Z boson. The

c.m. frame of the two hadrons is normally not the c.m. frame of the two partons

that create the Z boson.

Let qµ = (q+, q−,q) be the momentum of the Z boson. Then the rapidity of

the Z is defined as

y =
1

2
ln

(

q+

q−

)

. (88)

The four components (q+, q−,q) of the Z boson momentum can be written in terms

of four variables, the two components of the Z boson’s transverse momentum q,

its mass M , and its rapidity:

qµ = (ey
√

(q2 +M2)/2, e−y
√

(q2 +M2)/2, q). (89)

The utility of using rapidity as one of the variables stems from the transfor-

mation property of rapidity under a boost along the z axis:

q+ → eωq+, q− → e−ωq−, q → q. (90)

Under this transformation,

y → y + ω. (91)

This is as simple a transformation law as we could hope for. In fact, it is just

the same as the transformation law for velocities in non-relativistic physics in one

dimension.

Consider now the rapidity of a massless particle. Let the massless particle

emerge from the collision with polar angle θ, as indicated in Fig. 33. A simple

calculation relates the particle’s rapidity y to θ:

y = − ln (tan(θ/2)) , (m = 0). (92)



Figure 33: Definition of the polar angle θ used in calculating the rapidity of a

massless particle.

Another way of writing this is

tan θ = 1/ sinh y , (m = 0). (93)

One also defines the pseudorapidity η of a particle, massless or not, by

η = − ln (tan(θ/2)) or tan θ = 1/ sinh η. (94)

The relation between rapidity and pseudorapidity is

sinh η =
√

1 +m2/q2
T sinh y. (95)

Thus, if the particle isn’t quite massless, η may still be a good approximation to

y.

5.2 γ∗, W , Z production in hadron-hadron collisions

Consider the process

A+B → Z +X, (96)

where A and B are high energy hadrons. Two features of this reaction are im-

portant for our discussion. First, the mass of the Z boson is large compared to 1

GeV, so that a process with a small time scale ∆t ∼ 1/MZ must be involved in

the production of the Z. At lowest order in the strong interactions, the process

is q + q̄ → Z. Here the quark and antiquark are constituents of the high energy

hadrons. The second significant feature is that the Z boson does not participate

in the strong interactions, so that our description of the observed final state can

be very simple.

We could equally well talk about A+B → W +X or A+B → γ∗ +X where

the virtual photon decays into a muon pair or an electron pair that is observed

and where the mass of the γ∗ is large compared to 1 GeV. This last process,28

A+B → γ∗+X → ℓ++ℓ−+X, is historically important because it helped establish



the parton picture as being correct. The W and Z processes were observed later.

In fact, these are the processes by which the W and Z bosons were first directly

observed.29

In process (96), we allow the Z boson to have any transverse momentum q.

(Typically, then, q will be much smaller than MZ .) Since we integrate over q and

the mass of the Z boson is fixed, there is only one variable needed to describe

the momentum of the Z boson. We choose to use its rapidity y, so that we are

interested in the cross section dσ/dy.

Figure 34: A Feynman diagram for Z boson production in a hadron-hadron col-

lision. Two partons, carrying momentum fractions ξA and ξB, participate in the

hard interaction. This particular Feynman diagram illustrates an order αs contri-

bution to the hard scattering cross section: a gluon is emitted in the process of

making the Z boson. The diagram also shows the decay of the Z boson into an

electron and a neutrino.

The cross section takes a factored form similar to that found for deeply inelastic

scattering. Here, however, there are two parton distribution functions:

dσ

dy
≈
∑

a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa/A(ξA, µF ) fb/B(ξB, µF )
dσ̂ab(µ, µF )

dy
. (97)

The meaning of this formula is intuitive: fa/A(ξA, µF ) dξA gives the probability to

find a parton in hadron A; fb/B(ξB, µf) dξB gives the probability to find a parton

in hadron B; dσ̂ab/dy gives the cross section for these partons to produce the

observed Z boson. The formula is illustrated in Fig. 34. The hard scattering cross

section can be calculated perturbatively. Fig. 34 illustrates one particular order

αs contribution to dσ̂ab/dy. The integrations over parton momentum fractions

have limits xA and xB, which are given by

xA = ey
√

M2/s, xB = e−y
√

M2/s. (98)



Eq. (97) has corrections of order m/MZ , where m is a mass characteristic of

hadronic systems, say 1 GeV. In addition, when dσ̂ab/dy is calculated to order

αN
s , then there are corrections of order αN+1

s .

There can be soft interactions between the partons in hadron A and the partons

in hadron B, and these soft interactions can occur before the hard interaction that

creates the Z boson. It would seem that these soft interactions do not fit into

the intuitive picture that comes along with Eq. (97). It is a significant part of

the factorization property that these soft interactions do not modify the formula.

These introductory lectures are not the place to go into how this can be. For more

information, the reader is invited to consult Ref. 23.

5.3 Heavy quark production

We now turn to the production of a heavy quark and its corresponding antiquark

in a high energy hadron-hadron collision:

A+B → Q+ Q̄+X. (99)

The most notable example of this is top quark production. A Feynman diagram

for this process is illustrated in Fig. 35.

Figure 35: Feynman graph for heavy quark production. The lowest order hard

process is g + g → Q + Q̄, which occurs at order α2
s. This particular Feynman

diagram illustrates an order α3
s process in which a gluon is emitted.

The total heavy quark production cross section takes a factored form similar

to that for Z boson production,

σT ≈
∑

a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa/A(ξA, µF ) fb/B(ξB, µF ) σ̂ab
T (µF , µ). (100)



As in the case of Z production, QQ̄ production is a hard process, with a time scale

determined by the mass of the quark: ∆t ∼ 1/MQ. It is this hard process that is

represented by the calculated cross section σ̂ab
T . Of course, the heavy quark and

antiquark have strong interactions, and can radiate soft gluons or exchange them

with their environment. These effects do not, however, affect the cross section:

once the QQ̄ pair is made, it is made. The probabilities for it to interact in various

ways must add to one. For an argument that Eq. (100) is correct, see Ref. 30.

5.4 Jet production

In our study of high energy electron-positron annihilation, we discovered three

things. First, QCD makes the qualitative prediction that particles in the final

state should tend to be grouped in collimated sprays of hadrons called jets. The

jets carry the momenta of the first quarks and gluons produced in the hard process.

Second, certain kinds of experimental measurements probe the short-time physics

of the hard interaction, while being insensitive to the long-time physics of parton

splitting, soft gluon exchange, and the binding of partons into hadrons. Such

measurements are called infrared safe. Third, among the infrared safe observables

are cross sections to make jets.

Figure 36: Sketch of a two-jet event at a hadron collider. The cylinder represents

the detector, with the beam pipe along its axis. Typical hadron-hadron collisions

produce beam remnants, the debris from soft interactions among the partons. The

particles in the beam remnants have small transverse momenta, as shown in the

sketch. In rare events, there is a hard parton-parton collision, which produces jets

with high transverse momenta. In the event shown, there are two high PT jets.

These ideas work for hadron-hadron collisions too. In such collisions, there

is sometimes a hard parton-parton collision, which produces two or more jets, as



depicted in Fig. 36. Consider the cross section to make one jet plus anything else,

A+B → jet+X. (101)

Let ET be the transverse energy of the jet, defined as the sum of the absolute values

of the transverse momenta of the particles in the jet. Let y be the rapidity of the

jet. Given a definition of exactly what it means to have a jet with transverse

energy ET and rapidity y, the jet production cross section takes the familiar

factored form

dσ

dETdη
≈

∑

a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa/A(ξA, µF ) fb/B(ξB, µF )
dσ̂ab(µ, µF )

dETdη
. (102)

Figure 37: A Feynman diagram for jet production in hadron-hadron collisions.

The leading order diagrams for A+B → jet+X occur at order α2
s . This particular

diagram is for an interaction of order α3
s. When the emitted gluon is not soft or

nearly collinear to one of the outgoing quarks, this diagram corresponds to a final

state like that shown in the small sketch, with three jets emerging in addition to

the beam remnants. Any of these jets can be the jet that is measured in the one

jet inclusive cross section.

What shall we choose for the definition of a jet? At a crude level, high ET

jets are quite obvious and the precise definition hardly matters. However, if we

want to make a quantitative measurement of a jet cross section to compare to

next-to-leading order theory, then the definition does matter. There are several

possibilities for a definition that is infrared safe. The one most used in hadron-

hadron collisions is based on cones.

In the standard Snowmass Accord definition,31 one imagines that the exper-

imental calorimeter is divided into small angular cells labeled i in η-φ space, as

depicted in Fig. 38. We can say that a jet consists of all the particles that fall



into certain of the calorimeter cells, or we can measure the ET in each cell and

build the jet parameters from the cell variables (ET i, ηi, φi). We then say that a

jet consists of the cells inside a certain circle in η-φ space. The circle has a radius

R, usually chosen as 0.7 radians, and is centered on a direction (ηJ , φJ). Thus the

calorimeter cells i included in the jet obey

(ηi − ηJ )2 + (φi − φJ)2 < R2. (103)

The transverse energy of the jet is defined to be

ET,J =
∑

i∈cone

ET,i. (104)

The direction of the jet is defined to be the direction (ηJ , φJ) of the jet axis, which

is chosen to obey

φJ =
1

ET,J

∑

i∈cone

ET,i φi, (105)

ηJ =
1

ET,J

∑

i∈cone

ET,i ηi (106)

Of course, if one picks a trial jet direction (ηJ , φJ) to define the meaning of

“i ∈ cone” and then computes (ηJ , φJ) from these equations, the output jet di-

rection will not necessarily match the input cone axis. Thus one has to treat the

equations iteratively until a consistent solution is found.

Figure 38: Jet definition according to the Snowmass algorithm. The shading of

the squares represents the density of transverse energy as a function of azimuthal

angle φ and pseudorapidity η. The cells inside the circle constitute the jet.

Note that the Snowmass algorithm for computing ET,J , φJ , ηJ is infrared safe.

Infinitely soft particles do not affect the jet parameters because they enter the



equations with zero weight. If two particles have the same angles η, φ, then it

does not matter if we join them together into one particle before applying the

algorithm. For example

ET,1φ+ ET,2φ = (ET,1 + ET,2)φ. (107)

Note, however, that the Snowmass definition given above is not complete. It

is perfectly possible for two or more cones that are solutions to Eqs. (104,105,106)

to overlap. One must then have an algorithm to assign calorimeter cells to one

of the competing jets, thus splitting the jets, or else to merge the jets. When

supplemented by an appropriate split/merge algorithm, the Snowmass definition

is not as simple as it seemed at first.

In an order α3
s perturbative calculation, one simply applies this algorithm at

the parton level. At this order of perturbation theory, there are two or three

partons in the final state. In the case of three partons in the final state, two of

them are joined into a jet if they are within R of the jet axis computed from

the partonic momenta. The split/merge question does not apply at this order of

perturbation theory.

I showed a comparison of the theory and experiment for the one jet inclusive

cross section in Fig. 19.

I should record here that the actual jet definitions used in current experiment

are close to the Snowmass definition given above but are not exactly the same.

Furthermore, there are other definitions available that may come into use in the

future. There is not time here to explore the issues of jet definitions in detail.

What I hope to have done is to give the outline of one definition and to explore

what the issues are.

6 Epilogue

QCD is a rich subject. The theory and the experimental evidence indicate that

quarks and gluons interact weakly on short time and distance scales. But the net

effect of these interactions extending over long time and distance scales is that

the chromodynamic force is strong. Quarks are bound into hadrons. Outgoing

partons emerge as jets of hadrons, with each jet composed of subjets. Thus QCD

theory can be viewed as starting with simple perturbation theory, but it does not



end there. The challenge for both theorists and experimentalists is to extend the

range of phenomena that we can relate to the fundamental theory.

I thank F. Hautmann for reading the manuscript and helping to eliminate

some of the mistakes.
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