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Abstract

We apply the ADHM instanton construction to SU(2) gauge theory on Tn ×R 4−n for n = 1, 2, 3, 4. To do this we regard instantons on Tn × R 4−n as periodic
(modulo gauge transformations) instantons on R 4. Since the R 4 topological charge of
such instantons is infinite the ADHM algebra takes place on an infinite dimensional
linear space. The ADHM matrix M is related to a Weyl operator (with a self-dual

background) on the dual torus T̃n. We construct the Weyl operator corresponding
to the one-instantons on Tn × R 4−n. In order to derive the self-dual potential onTn × R 4−n it is necessary to solve a specific Weyl equation. This is a variant of
the Nahm transformation. In the case n = 2 (i.e. T2 × R 2) we essentially have an

Aharonov Bohm problem on T̃2
. In the one-instanton sector we find that the scale

parameter, λ, is bounded above, λ2Ṽ < 4π, Ṽ being the volume of the dual torus T̃2
.
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1 Introduction

Instantons are self-dual solutions of the pure Yang-Mills equations [1]. For the classical

groups the complete set of instanton solutions on R 4 (and via stereographic projection S4)

have been known for over twenty years. Although even now some important details remain

obscure. For example, what is the metric on the k-instanton moduli space [2, 3, 4] forR 4 instantons? This is an important ingredient in the instanton-theoretic checks [5, 6, 7]

of the Seiberg-Witten results [8] in N = 2 supersymmetric Yang Mills theory. For other

four manifolds even less is known. A particularly important manifold is the four torus T4.

Firstly, it is compact, thereby removing from the outset, any infrared divergences. Unlike

other compact four manifolds (e.g. S4 orK3) the four torus retains translational invariance,

and is flat. However, while T4 has all these attractive features the only known explicit T4

instanton solutions are some reducible constant curvature solutions due to ’t Hooft [9].

These exist only for special values of the periods and can only represent singular points in

the moduli space of a given instanton sector. The possibility that these constant curvature

solutions are the only instantons on T4 was ruled out a long time ago by Taubes [10].

However, using the Nahm transformation, it can be shown that there exist no untwisted

instantons with unit topological charge on T4 [11, 12]. The work of Taubes established

the existence of instantons in all higher topological charge sectors. A similar pattern is

followed by the O(3) sigma model instantons on T2 [13]. Here the one instanton sector is

empty, and this corresponds to the statement that there are no elliptic functions with a

single simple pole in the fundamental torus.

How should one start to look for instanton solutions on T4? An obvious approach would

be to adapt to the torus the techniques developed in the late 1970’s for the R 4 problem.

Loosely speaking, we seek periodic versions of these ansätze, since instantons on T4 can be

viewed as periodic solutions1 on R 4. The general solution to the instanton problem on R 4

was provided by Atiyah, Drinfeld, Hitchin and Manin (ADHM) [14]. This work reduces

the problem of constructing instantons on R 4 or S4 to an exercise in algebra. To construct

an instanton with topological charge k one must find a quaternionic (k+1)×k matrix, M ,

obeying certain non-linear reality conditions. However, while this construction is purely

algebraic, its structure is very much tied to the manifold R 4 or S4, and it appears difficult

1 They can only be periodic in a singular gauge.
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to ‘make it periodic’ in a simple way. An important subclass of solutions is provided by the

’t Hooft ansatz [15, 16, 17, 18]. This converts a (singular) positive solution of the Laplace

equation into an SU(2) instanton. Since this is a linear equation, it seems that we simply

have to find a periodic solution of the Laplace equation to construct an instanton on the

torus. However, it is not too difficult to show that it is impossible to construct a positive

solution of the Laplace equation on T4 with acceptable singularities (i.e. singularities which

do not show up in the Yang-Mills action density).

In this paper we render the ADHM construction periodic by ‘brute force’, in that we

regard instantons on the torus as a periodic lattice of instantons on R 4. We start with

ADHM data corresponding to an infinite array of instantons embedded in R 4. While our

initial objective was to extract the T4 instantons, we will see that the less ambitious target

to have periodicity in fewer than four directions offers considerable technical simplification.

To that end we consider the application of the ADHM method to SU(2) Yang-Mills onTn × R 4−n for n = 1, 2, 3, 4. Although T4 has no one instanton solution, S1 × R 3, T2 × R 2

and T3 × R should have [12]. Again the O(3)-sigma model provides a useful hint, since

while there are no one-instantons on T2, one-instanton solutions have been constructed on

S1 × R [19]. As the R 4 topological charge of a Tn × R 4−n instanton is infinite we have to

deal with an infinite dimensional M matrix. For the k-instanton problem on Tn × R 4−n,

M can be related to a U(k) Weyl operator on T̃n, T̃n being the torus dual to Tn. This is

a manifestation of the Nahm transformation [20, 21].

Recently this programme has been implemented by Kraan and van Baal in the one-

instanton sector of SU(N) gauge theory on S1×R 3 [22, 23]. Equivalent results were derived

independently by Lee and Lu [24]. These works revealed a vivid ‘monopole constituent’

picture of calorons (see also [25, 26, 27, 28]). There is however an important pitfall in this

whole approach; even if one has constructed a Weyl operator on T̃n via the ADHM method

one must check that it actually leads to a well defined gauge potential on Tn×R 4−n.2 Here

we solve the ADHM constraints for the one instanton problem on Tn × R 4−n and give

particular solutions for the two instanton case. However, we are only able to explicitly

check that these sometimes lead to a well defined gauge potential for n = 2. This is

because the technical task of solving the Weyl equation on T̃n becomes more involved for

2 For n = 1 the procedure always leads to a well defined instanton.
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higher n. We will see that the n = 2 case (i.e. T2 × R 2) boils down to a specific Aharonov

Bohm problem 3 on T̃2
. A stringy interpretation of T2 × R 2 instantons can be found in

[32]. Our gauge potential on T2 × R 2 is well defined only if we apply certain constraints

on the ADHM parameters. In the one instanton sector there is an upper limit on the

scale parameter. For our subclass of two instantons further constraints emerge. The two

‘component’ instantons must share a common scale parameter which itself is bounded from

above. Furthermore, the relative group orientation of the two instantons is constrained.

The outline of this paper is as follows. In chapter 2 we briefly recall the standard ADHM

construction on R 4 and then explain in a general way how it can be ‘made periodic’ in

one or more directions. In chapter 3 we solve the ADHM constraints for the one-instanton

problem on Tn× R 4−n. The associated Weyl operator on T̃n is given explicitly in terms of

a specific Green’s function for the Laplace operator on T̃n. Then we specialise to T2 × R 2,

where the Weyl equations seem to be more manageable than in the general case. Finally

in chapter 4 we discuss the two instanton problem. Some technical results are given in the

appendices.

During the writing up of this paper we became aware of some related work by Jardim.

In a series of papers [33, 34, 35] a mathematically sophisticated analysis of the Nahm

transformation on T2 × R 2 has been given. A somewhat more physical account can be

found in [36] where the Jardim formalism is applied to periodic monopoles, i.e. instantons

on S1 × R 2 so that the dual torus is S̃1 × R instead of T̃2
.

2 ADHM construction

In this chapter we review the standard ADHM construction on R4. We then explain how

the formalism can be extended to Tn × R 4−n. This is a straightforward extension of the

S1 × R 3 formalism.

2.1 ADHM on R4

Closely following the presentation of Christ Weinberg and Stanton [37] (see also [38]) we

briefly recall the ADHM construction. For simplicity we specialise to the gauge group

3 To our knowledge the extensive literature on the AB problem (see for example [29, 30, 31]) does not
explicitly tackle this specific case.
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SU(2). We wish to construct a self-dual SU(2) Yang-Mills field Aµ(x) on R 4 with topo-

logical charge or instanton number

k = − 1

16π2

∫R 4
d4x tr (FµνFµν) . (2.1)

Here the Yang-Mills field strength is

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (2.2)

and the gauge field Aµ can be viewed as a 2× 2 anti-Hermitian traceless matrix. However,

one can equally regard Aµ as being a purely imaginary quaternion. Recall that the space

of quaternions H has four generators iµ = (1, î, ĵ, k̂) where the î, ĵ, k̂ anticommute and

satisfy

î2 = ĵ2 = k̂2 = −1, îĵk̂ = −1. (2.3)

The transition back to the standard Pauli matrix language can be made via the identifi-

cations î↔ −iσ1, ĵ ↔ −iσ2, k̂ ↔ −iσ3. We will use ∗ to denote quaternionic conjugation

(i.e. 1∗ = 1, î∗ = −î, ĵ∗ = −ĵ, k̂∗ = −k̂). In the following † should be understood as the

transpose of the quaternionic conjugate.

The recipe for constructing a self-dual Aµ with instanton number k is as follows. One

simply has to construct a k + 1 × k quaternionic matrix M with the following properties:

i) the k × k matrix M †M is real.

ii) M is linear in the quaternion x ≡ x0+x1î+x2ĵ+x3k̂ formed from the four Euclidean

coordinates.

The corresponding anti-hermitian self-dual gauge potential is given by

Aµ(x) = N †(x)∂µN(x), (2.4)

where N(x) is a k + 1 component column vector satisfying

M †N = 0, and N †N = 1. (2.5)

Without loss of generality one may assume M has the following form [37, 38]

M =

(

v

M̂

)

, (2.6)
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where v is a k-component row vector v made up of k constant quaternions

v = (q1 q2 ... qk). (2.7)

These quaternions encode the scales and SU(2) group orientation of the k ‘component’

instantons. M̂ is a k × k matrix with the following ‘canonical’ form

M̂ij(x) = δij(yi − x) + bij . (2.8)

bij is independent of x, symmetric and has no diagonal entries (bij = 0 for i = j). The

reality of M †M translates into the following non-linear requirement on bij

1

2
(q∗i qj − q∗j qi) + (yi − yj)

∗bij +
1

2

k
∑

l=1

(

b∗liblj − b∗ljbli
)

= rij, (2.9)

for some real k × k matrix r. The yi can be interpreted as the quaternionic positions of

the instantons. One can immediately write down a column vector N satisfying (2.5)

N =







u√
ρ

− 1√
ρ

(

M̂ †
)−1

v† u






, (2.10)

and

ρ = 1 + vM̂−1
(

M̂ †
)−1

v†. (2.11)

Here u is an arbitrary, possibly x-dependent unit quaternion; different choices for u yield

gauge equivalent Yang-Mills fields. Observe that it is necessary to invert the canonical

form M̂ to extract the final gauge potential. In the singular gauge u(x) = 1, the potential

can be written,

Aµ = − 1

2ρ
v
(

M̂−1∂µM̂
†−1 − ∂µ(M̂

−1)M̂ †−1
)

v†. (2.12)

The corresponding field strength reads

Fµν =
1

ρ
vM̂−1iµ f i∗ν(M̂

†)−1v† − [µ↔ ν], (2.13)

where f is the real k × k matrix

f = (M †M)−1 = M̂−1(M̂ †)−1 − 1

ρ
M̂−1(M̂ †)−1v†vM̂−1(M̂ †)−1. (2.14)
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The reality of f ensures that Fµν is self-dual.

One immediately sees that Aµ(x) is unaffected by the following transformation on the

ADHM data

M̂ → O−1M̂O, v → vO, (2.15)

where O is a k×k real orthogonal matrix. Invoking this freedom one may argue that rij can

be set to zero [37]. With this choice bij is fully determined by the 8k parameters encoded

in the qi and yi. Three of these parameters correspond to the global gauge symmetry. This

freedom can be fixed by taking q1 to be real, leaving 8k− 3 genuine moduli parameters. A

trivial but useful consequence of the ‘symmetry’ (2.15) is that the qi are determined only

up to a sign. If we flip the sign of one of the qi, say q3 → −q3, then this corresponds to

the orthogonal transformation O = diag(1, 1,−1, 1, 1, ....).

2.2 ADHM on Tn × R4−n

We view Tn as Rn modulo a n dimensional lattice Λ generated by n quaternions e0, e1,

... ,en−1 corresponding to n orthogonal vectors. The periods or equivalently the Euclidean

lengths of the ei are denoted by Li, i = 0, 1, ..., n−1. First we will show how (in principle)

one can produce instantons which in the singular gauge (i.e. u(x) = 1 as in eqn. (2.12))

are periodic with respect to shifts by the lattice generators,

Aµ(x+ ei) = Aµ(x), i = 0, 1, .., n− 1. (2.16)

Later we will consider a more general periodicity property which proved crucial in obtaining

new 1-instanton solutions on S1 × R 3. To construct a k-instanton on Tn × R 4−n ≡ R 4/Λ

consider the following set up. For every α ∈ Λ we have instantons at the positions yi+α with

respective scale/orientation quaternions qi where i = 1, 2, ..., k enumerates the instantons

in the fundamental cell. The quaternions yi give the instanton positions in the fundamental

cell. Thus, our M̂ and v now have the following structure

vαi = qi, M̂αβ
ij = δijδ

αβ(yi + α− x) + bαβij , i, j = 1, 2, ..., k, α, β ∈ Λ. (2.17)

The matrix bαβij has the properties

bαβij = bβαji , bααii = 0 (no sum), (2.18)
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and

1

2
(vαi

∗vβj − vβj
∗vαi ) + (yi − yj + α− β)∗bαβij +

1

2

k
∑

l=1

∑

γ∈Λ

(

bγαli
∗bγβlj − bγβlj

∗bγαli

)

= 0. (2.19)

Now that M̂ is an infinite dimensional matrix the non-linear constraint appears much more

formidable than its R 4 counterpart (2.9). Moreover, even if we can solve the constraint

we still face the problem of inverting M̂ . We see that the constraint implies bαβij has the

following property

b̂αβij = bα−β 0
ij , α, β ∈ Λ. (2.20)

At this point it is useful to perform a Fourier transform [22];

vi(z) =
∑

α∈Λ

vαi e
−iα·z, M̂ij(z)δ

n(z − z′) =
∑

α,β∈Λ

M̂αβ
ij e

iα·z−iβ·z′, (2.21)

where δn(z − z′) is a n-dimensional delta function which is periodic with respect to the

dual lattice

Λ̃ = {z ∈ Rn|(2π)−1z · α ∈ Z for all α ∈ Λ}. (2.22)

Here α · z denotes the usual scalar product in Rn, i.e. α · z =
∑n−1

j=0 αjzj . The delta

function has the Fourier representation

δn(z) =
1

Ṽ
∑

α∈Λ

eiα·z, (2.23)

where

Ṽ = (2π)n/L0L1...Ln−1, (2.24)

is the volume of the dual torus T̃n := Rn/Λ̃. Using (2.17) M̂ij can be written as follows

Ṽ−1M̂ij(z) = δij

(

−idz − x+
1

k

k
∑

l=1

yl

)

− iÂij(z), dz =

n−1
∑

i=0

ii∂zi
, (2.25)

and

−iÂij(z) = δij

(

yi −
1

k

k
∑

l=1

yl

)

+
∑

α∈Λ

bα0
ij e

iα·z, (2.26)
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can be regarded as a SU(k) (U(1) for k = 1) potential on the dual torus T̃n. From now on

we will assume (without loss of generality) that

k
∑

l=1

yl = 0, (2.27)

so that Ṽ−1M̂ij(z) = δij(−idz−x)− iÂij(z). The z-space analogue of M can be written as

M =

(

vi(z
′)

M̂ij(z)δ
n(z − z′)

)

. (2.28)

We also require M †

M † =
(

(v†)i(z) (M̂ †)ij(z)δ
n(z − z′)

)

, (2.29)

where

(v†)i(z) =
∑

α∈Λ

(vαi )∗ eiα·z, (M̂ †)ij(z)δ
n(z − z′) =

∑

α,β∈Λ

(

Mβα
ji

)∗

eiα·z−iβ·z
′

, (2.30)

so that Ṽ−1M̂ †
ij(z) = δij(−id∗z − x∗) − iÂ∗

ij(z). We now consider the product M †M

(M †M)ij(z, z
′) = (v†)i(z)vj(z

′) + Ṽ−1

∫

˜Tn
dnw(M̂ †)ik(z)δ

n(z − w)M̂kj(w)δn(w − z′)

= (v†)i(z)vj(z
′)

+Ṽ−2
(

δik(−id∗z − x∗) − iÂ∗
ik(z)

)(

δkj(−idz − x) − iÂkj(z)
)

δ(z − z′).

(2.31)

In z-space the constraint that M †M is real reduces to the self-duality equation for the

SU(k) ( or U(1) ) potential Âij(z), but with delta function sources. These sources come

from the (v†)i(z)vj(z
′) term; with the choice (2.17) we have vi(z) = Ṽqiδn(z).

It is also possible to arrange so that in the singular gauge u(x) = 1, Aµ(x) is periodic

modulo global gauge transformations. This is achieved by replacing vαi = qi with

vαi = e(α·ω)l̂qi, (2.32)

where ω is an element of the dual torus and l̂ is a purely imaginary unit quaternion. In

the u(x) = 1 gauge, the instanton potential has the following periodicity properties

Aµ(x+ ei) = e(ei·ω)l̂Aµ(x)e
−(ei·ω)l̂. (2.33)
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This choice of vαi still entails delta function sources on the dual torus

vi(z) = 1
2
Ṽ
[(

1 − il̂
)

δn(z − ω) +
(

1 + il̂
)

δn(z + ω)
]

qi. (2.34)

(

1 + il̂
)

and
(

1 − il̂
)

are projectors in the sense that

(

1 ± il̂
)2

= 2
(

1 ± il̂
)

,
(

1 + il̂
)(

1 − il̂
)

= 0. (2.35)

Looking at the expression (2.12) for the R 4 gauge potential we see that it suffices to

compute the k-component row vector n := vM̂−1. The Tn × R 4−n analogue of this object

is the z-dependent k-component row vector, n(z), with components

nj(z) = Ṽ−1
∑

i

∫

˜Tn
dnz′ vi(z

′)M̂−1
ij (z′, z), (2.36)

and similarly the k-component column vector n†(z) has components

(n†)i(z) = Ṽ−1
∑

j

∫

˜Tn dnz′(M̂ †)−1
ij (z, z′)(v†)j(z

′). Here

M̂−1
ij (z, z′) =

∑

α,β

(

M̂−1
)αβ

ij
eiα·z−iβ·z

′

, so that

M̂(z)M̂−1(z, z′) = Ṽ2δn(z − z′). (2.37)

Using (2.34) we have

nj(z) = 1
2

(

1 − il̂
)

qiM̂
−1
ij (ω, z) + 1

2

(

1 + il̂
)

qiM̂
−1
ij (−ω, z), (2.38)

which reduces to nj(z) = qiM̂
−1
ij (0, z) in the periodic case (ω = 0). The Tn × R 4−n gauge

potential can be written

Aµ = −Ṽ−1

2ρ

∫

˜Tn
dnz

[

n(z)∂µn
†(z) − ∂µ(n(z))n†(z)

]

, (2.39)

where ρ is now

ρ = 1 + Ṽ−1

∫

˜Tn
dnz n(z)n†(z). (2.40)

Note that the integrand, n(z)n†(z) in (2.40) is not necessarily real, although the integral

itself,
∫

dnz n(z)n†(z), is real and positive (see section 3.2).

The corresponding field strength is

Fµν =
V−2

ρ

∫

˜Tn
dnz

∫

˜Tn
dnz′n(z)iµf(z, z′) i∗νn

†(z′) − [µ↔ ν], (2.41)

9



where the Green’s function f(z, z′) is

f(z, z′) = (M †M)−1(z, z′) (2.42)

= Ṽ−1

∫

˜Tn
dnyM̂−1(z, y)(M̂ †)−1(y, z′)

−Ṽ−2

ρ

∫

˜Tn
dnyM̂−1(z, y)n†(y)

∫

˜Tn
dny′n(y′)(M̂ †)−1(y′, z′).

As we shall see, all the formulae in this section require particularly careful handling for

n > 1.

3 One-instantons

In this chapter we consider in some detail the one instanton problem on Tn × R 4−n. In

particular we explicitly determine the ADHM matrix M . Under the Fourier transform this

becomes a Weyl operator associated with an Abelian self-dual potential Â(z) on the dual

torus T̃n. Unfortunately we do not have a general approach to the solution of such Weyl

equations. In section 3.2 we concentrate our attention on the T̃2
Weyl equation (corre-

sponding to one instantons on T2 × R 2) where Â(z) is an Aharonov Bohm potential onT̃2
. The ADHM construction of the instanton potential Aµ(x) and Fµν(x) is considered.

For values of x restricted to a two dimensional subspace of T2 ×R 2 closed forms for Aµ(x)

and Fµν are given. From a mathematical standpoint the calculation is not completely sat-

isfactory; a formal limiting procedure is employed to obtain the gauge potential. However,

we are able to check that the field strength is self-dual and that tr(Fµν)
2 is non-zero and

smooth. Moreover, in section 3.3 we see that our potential can be interpreted as the Nahm

transform of the AB potential Â(z). More specifically, we identify the two Nahm zero

modes associated with Â(z).

3.1 ADHM constraints for Tn × R4−n

Let us start by considering 1-instanton solutions on Tn×R 4−n. If we seek instantons which

are strictly periodic in the u(x) = 1 gauge we are immediately restricted to S1 × R 3. This

is because all the instantons in our lattice will, by construction, have the same scale/group

orientation q1 and hence be of the ’t Hooft type. Since the ’t Hooft instantons on S1 × R 3

are well known [39] we will examine the more general instanton array (2.32).

10



Without loss of generality we can assume that q1 is a real quaternion which we identify

as the ‘scale’ λ, so that

vα = e(α·ω)l̂λ, (3.1)

where we have dropped the redundant 1 subscript on vα. The M̂ matrix has the form

M̂αβ = δαβ(α− x) + bαβ . (3.2)

We now have to determine the b matrix via (2.19). Under the Fourier transformation this

is a self-duality equation on the dual torus T̃n. However, it is instructive to examine the

constraint equation in the original (matrix) variables. In Appendix A we will argue that

for k = 1 the quadratic term in (2.19) is zero, i.e. the b matrix is simply

bαβ = − 1

2(α− β)∗

(

vα∗vβ − vβ
∗
vα
)

=
λ2

(α− β)∗
l̂ sin [(α− β) · ω] , α 6= β. (3.3)

In order to construct the potential we must now invert the M̂ matrix. To facilitate this

we perform the Fourier transform elaborated in section 2.2,

Ṽ−1M̂(z) = −idz − x− iÂ(z), (3.4)

where Â(z) is the U(1) potential

Â(z) = iλ2dzφ(z)l̂, (3.5)

and φ is the real function

φ(z) = −1

2

∑

α∈Λ\0

exp[iα · (z + ω)] − exp[iα · (z − ω)]

|α|2 , (3.6)

which is a Green’s function for the Laplace operator on T̃n
dzd

∗
zφ(z) =

Ṽ
2

[δn(z + ω) − δn(z − ω)] . (3.7)

Clearly φ(z) is an odd function

φ(−z) = −φ(z). (3.8)

Writing Â(z) =
∑n−1

l=0 ilÂl(z), one can check that the Abelian field strength F̂ij(z) =

∂iÂj − ∂jÂi is self-dual, except at the singularities z = ±ω.
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3.2 One-instantons on T2 × R2

Since our lattice is two dimensional we may take e0 to be real and e1 to be proportional

to the purely imaginary unit quaternion l̂ 4. Now rewrite the quaternion z as follows

z = z0 + l̂z1 = 1
2

(

1 − il̂
)

z + 1
2

(

1 + il̂
)

z̄, (3.9)

where z = z0 + iz1, z̄ = z0 − iz1 denote standard complex coordinates. We can write the

Fourier transformed M̂ as follows

Ṽ−1M̂(z) = −idz − x− iÂ0(z) − il̂Â1(z), (3.10)

where

Â0 = −iλ2∂z1φ, Â1 = iλ2∂z0φ, (3.11)

and φ is the Green’s function defined by (3.6). Since we are on T̃2
we can write φ directly

in terms of Jacobi theta functions5

φ(z) =
Ṽ
8π

log

∣

∣

∣
θ
(

L0

2π
(z + w) + 1

2
+ iL0

2L1

, iL0

L1

)∣

∣

∣

2

∣

∣

∣
θ
(

L0

2π
(z − w) + 1

2
+ iL0

2L1
, iL0

L1

)∣

∣

∣

2 +
(z − z̄)(w − w̄)

4
− i

w − w̄

4L1
, (3.12)

where w = ω0 + iω1, w̄ = ω0 − iω1. The associated field strength is given by F̂01 = iλ2
�φ,

which is zero except at z = ±ω. At the points ω + α̃, α̃ ∈ Λ̃ we have a ‘flux tube’ of

strength 1
2
λ2Ṽ , and at the points −ω + α̃, α̃ ∈ Λ̃ we have flux tubes of strength −1

2
λ2Ṽ.

What about the x term in (3.10)? It will prove convenient to decompose x into two

pieces

x = x|| + x⊥, (3.13)

where x|| and x⊥ respectively commute and anticommute with l̂. Therefore the x|| con-

tribution just amounts to shifting Â0 and Â1 by constants, while x⊥ is akin to a mass

term.

4 We can always perform an O(4) Lorentz transformation to arrange this.
5 We follow the notation of Mumford [40]; θ(z, τ) =

∑∞
n=−∞ eπin

2τ+2πinz. In the fundamental torus

θ(z, τ) has a single zero at z = 1
2 + 1

2τ , and has the periodicity properties θ(z+1, τ) = θ(z, τ), θ(z+τ, τ) =
e−πiτ−2πizθ(z, τ).
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Figure 1: Flux tubes threading the dual torus at the points ω+ α̃ and −ω+ α̃ with equal

and opposite strengths.

We can write M̂(z) as follows

Ṽ−1M̂(z) = e−il̂λ
2φ(z)

(

−idz − x||
)

eil̂λ
2φ(z) − x⊥. (3.14)

This is not a pure gauge decomposition since the argument of the exponential is not a pure

phase. If x⊥ = 0, one can immediately write down a formal inverse for M̂

M̂−1(z, z′) = Ṽe−il̂λ2φ(z)G(z − z′)eil̂λ
2φ(z′), (3.15)

where G(z − z′) is the periodic free Green’s function defined by6

(

−idz − x||
)

G(z − z′) = δ2(z − z′), (3.16)

and has the Fourier series representation

G(z − z′) = Ṽ−1
∑

α∈Λ

eiα·(z−z
′)

α− x||
. (3.17)

The inverse (3.15) obviously satisfies M̂(z)M̂−1(z, z′) = Ṽ2δ2(z−z′) for z 6= ±ω. However,

due to the singularities at z = ±ω some caution is called for when interpreting (3.15) as

the inverse of M̂ . We will return to this point in the next section. For now we will stick

with (3.15). G(z) can be decomposed as follows

G(z) = 1
2

(

1 − il̂
)

G−(z) + 1
2

(

1 + il̂
)

G+(z), (3.18)

6 This Green’s function exists for x|| /∈ Λ.
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where G±(z) are the following standard (i.e. complex rather than quaternionic) free Green’s

functions

(

−i∂z − 1
2
x̄||

)

G+(z) = 1
2
δ2(z),

(

−i∂z̄ − 1
2
x||

)

G−(z) = 1
2
δ2(z). (3.19)

Here ∂z = 1
2
(∂z0 − i∂z1), x|| = (x||)0 + i(x||)1 and the bar denotes complex conjugation.

Evidently

G+(z) = G−(−z). (3.20)

Now that we have the inverse of M̂ (at least for x⊥ = 0) let us start the computation

of the gauge potential Aµ(x). As was emphasized in the introduction it is not guaranteed

that Aµ(x) actually exists. We begin by considering ρ(x) for our putative one-instanton.

Inserting (3.15) into (2.38) yields

n(z) =
λṼ
2

[(

1 − il̂
)

eλ
2(φ(ω)−φ(z))G−(ω − z) (3.21)

+
(

1 + il̂
)

e−λ
2(φ(−ω)−φ(z))G+(−ω − z)

]

.

We now appear to be in trouble; φ(z) → ±∞ as z → ±ω, and so n(z) is proportional to

the ‘infinite’ constant eλ
2φ(ω). Thus it appears that our use of the inverse (3.15) was indeed

unwarranted. Note that this problem is absent on S1 × R 3; while the derivative of φ(z)

is discontinuous at z = ±ω, φ(±ω) is well defined. For now we will proceed formally and

treat φ(ω) = −φ(−ω) as if it were a finite constant. The integrand in (2.40) is

n(z)n†(z) =
λ2Ṽ2e2λ

2φ(ω)

2

[(

1 − il̂
)

e−2λ2φ(z)|G−(ω − z)|2 (3.22)

+
(

1 + il̂
)

e2λ
2φ(z)|G+(−ω − z)|2

]

.

Here n†(z) = n∗(−z). Clearly the integrand (3.22) has singularities over and above the

questionable e2λ
2φ(ω) factor. We also note that n(z)n†(z) is not real. Now we will argue

that these singularities are integrable provided

0 < λ2Ṽ < 4π. (3.23)

In the neighbourhood of z = ω we have the following singularity profile

|G−(ω − z)|2 ∝ 1

|z − w|2 , |G+(−ω − z)|2 non-singular. (3.24)

14



|G−(ω − z)|2 has a non-integrable singularity at z = ω. However, we must also consider

the behaviour of φ(z) at z = ω

φ(z) ∼ − Ṽ
4π

log |z − w|. (3.25)

Near z = ω we have

|G−(ω − z)|2e−2λ2φ(z) ∝ |z − w|−2+λ2Ṽ/(2π). (3.26)

This singularity is integrable for λ2 > 0. In fact if we take λ2Ṽ ≥ 4π the singularity disap-

pears. However, then |G−(ω− z)|2e−2λ2φ(z) will not be integrable at z = −ω. Accordingly,

for integrability at both z = ω and z = −ω we must impose (3.23).

The bound (3.23) is nothing but the statement that λ2, the square of the ADHM size

parameter, should not exceed the volume of the two-torus T2. Looking at the Abelian U(1)

potential Â(z) the bound is quite natural. Given that its associated field strength is zero

away from the fluxes one can formally write it as a pure gauge, i.e. Âi(z) = ∂zi
χ(z). χ(z)

is of course singular at the fluxes, but for 0 < λ2Ṽ < 4π has a branch cut joining the two

fluxes. At the critical value λ2Ṽ = 4π the branch cut disappears, i.e. χ is single-valued

on T̃2
. Then Â(z) is truly a pure gauge and hence physically indistinguishable from the

λ2Ṽ = 0 case.

Let us now return to the problem of the infinite constant eλ
2φ(ω) which seems to render

our instanton meaningless. Define a ‘finite’ n as follows

λṼnf(z) := e−λ
2φ(ω)n(z). (3.27)

For x⊥ = 0 we have nf(z) = 1
2

(

1 − il̂
)

e−λ
2φ(z)G−(ω − z) + 1

2

(

1 + il̂
)

eλ
2φ(z)G+(−ω − z),

which is finite except at the fluxes z = ±ω. The gauge potential can be written

Aµ(x) = −
∫

˜T2 d2z
[

nf (z)∂µn
†
f(z) − ∂µ (nf (z))n

†
f (z)

]

2
(

e−2λ2φ(ω)λ−2Ṽ−1 +
∫

˜T2 d2z nf(z)n
†
f (z)

) , (3.28)

where the ∂µ derivative is with respect to xµ. The only remnant of the infinite constant

is the e−2λ2φ(ω) term in the denominator of (3.28); this exponential can be interpreted as

‘zero’, i.e. for our final potential we should take

Aµ(x) = −
∫

˜T2 d2z
[

nf (z)∂µn
†
f (z) − ∂µ(nf (z))n

†
f(z)

]

2ρf(x)
, (3.29)
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where

ρf(x) =

∫

˜T2
d2z nf(z)n

†
f (z). (3.30)

Although nf (z)n
†
f (z) is not real a short calculation suffices to express ρf in a manifestly

real and positive form (here we use that φ(z) is an odd function, i.e. equation (3.8))

ρf (x||) =

∫

˜T2
d2z e−2λ2φ(z)|G−(ω − z)|2. (3.31)

So finally, the role of the infinite constant is simply to expunge the 1 from the definition of

ρ. Without the 1 the infinite constant simply drops out of the final potential Aµ(x). This

is in sharp contrast to the situation on S1 ×R 3, where the 1 term must be kept since φ(ω)

is a finite constant.

While (3.29) represents the final gauge potential we have only given nf(z) and ρf

explicitly for the special case x⊥ = 0. To construct nf (z) for x⊥ 6= 0 is non-trivial. If we

try to bring the x⊥ inside the bracket of equation (3.14) we get

Ṽ−1M̂(z) = e−il̂λ
2φ(z)

(

−idz − x|| − x⊥e
−2il̂λ2φ(z)

)

eil̂λ
2φ(z). (3.32)

Proceeding as in the x⊥ = 0 case we can write the inverse as follows

M̂−1(z, z′) = Ṽe−il̂λ2φ(z)G̃(z, z′)eil̂λ
2φ(z′), (3.33)

where G̃(z, z′) is no longer a free Green’s function

(

−idz − x|| − x⊥e
−2il̂λ2φ(z)

)

G̃(z, z′) = δ2(z − z′). (3.34)

Inserting (3.33) into (3.27) yields

nf(z) =
1

2

[(

1 − il̂
)

G̃(ω, z) +
(

1 + il̂
)

G̃(−ω, z)
]

eil̂λ
2φ(z). (3.35)

A more detailed discussion of the properties of nf for x⊥ 6= 0 will be given elsewhere.

The field strength derived from (3.29) is

Fµν =
Ṽ−1

ρf (x)

∫

˜T2
d2z

∫

˜T2
d2z′ nf (z) iµ f(z, z′) i∗ν n

†
f (z

′) − [µ↔ ν], (3.36)
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where f(z, z′) is

f(z, z′) = Ṽ−1

∫

˜T2
d2yM̂−1(z, y)(M̂ †)−1(y, z′) (3.37)

− Ṽ−1

ρf (x)

∫

˜T2
d2yM̂−1(z, y)n†

f(y)

∫

˜T2
d2y′nf(y

′)(M̂ †)−1(y′, z′).

Equations (3.36) and (3.37) are ‘finite’ forms of (2.41) and (2.42), respectively; as with the

gauge potential the n(z) vector is replaced with its finite form, nf (z), and the 1 in ρ is

removed.

Since on the plane x⊥ = 0 the explicit form of nf(z) and M̂−1(z, z′) are at hand we can

also give a closed form for f(z, z′):

f(z, z′) = 1
2

(

1 − il̂
)

f−(z, z′) + 1
2

(

1 + il̂
)

f+(z, z′), (3.38)

where

f±(z, z′) = Ṽe∓λ2φ(z)g±(z, z′)e∓λ
2φ(z′), (3.39)

and

g±(z, z′) =

∫

˜T2
d2yG±(z − y)e±2λ2φ(y)G∓(y − z′) (3.40)

− 1

ρf

∫

˜T2
d2yG±(z − y)e±2λ2φ(y)G∓(±ω + y)

×
∫

˜T2
d2y′G±(∓ω − y′)e±2λ2φ(y′)G∓(y′ − z′).

A sufficient condition for the self-duality of Fµν(x) is that f(z, z′) commutes with the

quaternions. This condition is equivalent to

g+(z, z′) = e2λ
2φ(z)g−(z, z′)e2λ

2φ(z′). (3.41)

A (somewhat roundabout) proof of (3.41) is given in Appendix B.

To sum up, the gauge potential, Aµ(x), and hence the field strength, Fµν(x), can be

written in terms of the ‘renormalised’ nf (z). We have explicitly determined nf (z) on the

plane x⊥ = 0. At the point x = 0 (i.e. x|| = x⊥ = 0) nf and hence Aµ is ill defined. This

is no surprise since we are working in the singular gauge u(x) = 1. The singularity has its

origins in the zero mode structure of the G±(z); we can write

G+(z) = − 1

Ṽ x̄||

+G′
+(z), G−(z) = − 1

Ṽx||

+G′
−(z), (3.42)
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where the G′
±(z) have no zero modes and are thus well defined for x|| = 0. Although

Aµ diverges at x = 0, local gauge invariants such as tr(Fµν)
2 (no sum) should be smooth

(presumably C∞). As for the field strength itself, Fµν(x), this is not smooth at x = 0, but

its components must be bounded. Let us consider Fµν at x⊥ = 0 with x|| ≈ 0. For x|| ≈ 0

the zero modes in (3.42) dominate and so we have7

nf (z) ≈ −e
−λ2φ(z)

2x||Ṽ
(

1 − il̂
)

− eλ
2φ(z)

2x̄||Ṽ
(

1 + il̂
)

, (3.43)

thus

ρf ≈
c

|x|||2Ṽ2
, (3.44)

where

c =

∫

˜T2
d2z e2λ

2φ(z). (3.45)

Plugging (3.43) and (3.44) into the field strength formula (3.36) we see that in order to

have a bounded Fµν in the vicinity of x = 0, f(z, z′) must be well behaved for x|| ≈ 0. To

see this consider, F01 = F23, which for x⊥ = 0 and x|| ≈ 0 has the form

F01 ≈ −2i1Ṽ−1

c

∫

˜T2
d2z

∫

˜T2
d2z′ eλ

2φ(z)eλ
2φ(z′)f(z, z′). (3.46)

F02 and F03 are a bit more complicated; here one finds phases of the form x̄||/x|| which

do not have definite values at x|| = 0. These phases are an artifact of the singular gauge;

tr(F02)
2 and tr(F03)

2 are well behaved at x|| = 0. We now show that f(z, z′) is smooth in

the vicinity of x|| ≈ 0. Since the exponentials in (3.39) are x||-independent it suffices to

show that g+(z, z′) has a well defined x|| → 0 limit. Glancing at (3.40) one sees that the

first term in g+(z, z′) has double and single poles in x|| and x̄||. These poles are cancelled

by the second term. After some algebra one finds that

g+(z, z′) =

∫

˜T2
d2y

(

G′
+(z − y) −G′

+(−ω − y)
)

e2λ
2φ(y)

(

G′
−(y − z′) −G′

−(y + ω)
)

−1

c

∫

˜T2
d2y e2λ

2φ(y)
(

G′
+(z − y) −G′

+(−ω − y)
)

×
∫

˜T2
d2y′ e2λ

2φ(y′)
(

G′
−(y′ − z′) −G′

−(y′ + ω)
)

+O(x||), (3.47)

7 Strictly speaking (3.43) is only good away from z = ±ω. But as we are always dealing with integrable
singularities we may safely employ (3.43) under the integral sign.
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which is well defined at x|| = 0. A similar expression can be obtained for g−(z, z′). From

(3.39) the integrand in (3.46) is simply g+(z, z′) and so all we have to do is to integrate

the right hand side of (3.47) over z and z′. Since the G′
±(z) integrate to zero this is trivial.

Putting all this together yields

F01 = −2i1Ṽ2

c

[
∫

˜T2
d2y e2λ

2φ(y)|G′
+(−ω − y)|2 (3.48)

−1

c

∣

∣

∣

∣

∫

˜T2
d2y e2λ

2φ(y)G′
+(−ω − y)

∣

∣

∣

∣

2
]

+ O(x||).

The content of the brackets is strictly positive, i.e. we have not simply determined the field

strength at a point where it is zero.

3.3 Nahm transform interpretation

In the previous section we implemented the ADHM construction in the one-instanton sector

for T2 × R 2. However, in contrast to the caloron problem n(z) appears not to exist. This

was circumvented by formally extracting an infinite factor to obtain the ‘finite’ nf(z). Here

we will explain precisely how the gauge potential (3.29) can be interpreted as the Nahm

transform of the AB potential (3.11). We would like to stress that this does not entail the

kind of formal manipulations we used to derive (3.29) in the first place via the ADHM

construction.

The Weyl operator on T̃2
associated with Â(z) has two square integrable zero modes

8. These modes can be identified with the columns of n†
f(z) when the quaternionic object

nf (z) is recast as a 2× 2 matrix with complex entries. To set the scene let us briefly recall

how the Nahm transformation is formulated on T4. Consider a self-dual SU(N) potential

Aµ(x) on T4 with instanton number k. Then one studies the Weyl operator associated

with the U(N) potential obtained by adding a constant abelian potential −izµ to Aµ

Dz(A) = iµD
µ
z (A), Dµ

z = ∂µ + Aµ(x) − izµ. (3.49)

Provided certain mathematical technicalities are met D† = −i∗µDµ
z (A) has k square inte-

grable zero modes ψiz(x) with i = 1, 2, ..., k. For convenience we take them to be normalised

8In ref [36] where the dual torus was take to be S̃1 ×R a limiting case of T̃2
, dim(kerD̂†) = 2 was also

obtained.
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to unity. The U(k) potential

Âijµ (z) =

∫T4
d4xψiz

†
(x)

∂

∂zµ
ψjz(x), (3.50)

is a self-dual potential on the dual torus T̃4
with instanton number N . On T4 this procedure

is involutive and (in a suitable gauge) free of singularities.

Let us write the Weyl operator associated with the AB potential (3.11) as a 2 × 2

matrix:

− i

2
D†
x(Â) = S

(

i∂z̄ + 1
2
x|| − i∂z̄φ

1
2
x⊥

−1
2
x̄⊥ i∂z + 1

2
x̄|| + i∂zφ

)

S−1, (3.51)

where 9 S = (1l − iσ2)/
√

2 and x⊥ = x2 + ix3. For x⊥ = 0 one can write down two

square-integrable zero modes for D†
x(Â)

ψ1
x(z) =

1
√
ρf
S

(

eλ
2φ(z)G−(z + ω)

0

)

, ψ2
x(z) =

1
√
ρf
S

(

0

e−λ
2φ(z)G+(z − ω)

)

. (3.52)

Both zero modes are singular at z = ±ω. Inserting these (normalised) zero modes into

(3.50) yields exactly the same potential (discarding the U(1) part of the U(2) connection) as

constructed in the previous section. If one writes n†
f as a 2×2 matrix the columns are (upto

a normalisation factor) the Nahm zero modes. As should be clear from the considerations

of the previous section it is non-trivial to obtain the zero modes for x⊥ 6= 0. The crucial

feature of these zero modes is that although they are singular at the fluxes z = ±ω the Weyl

equation does not have sources, i.e. D†
x(Â)ψix(z) is exactly zero. Basically, the damping

exponentials soften the singularities of the Green’s functions G−(z + ω) and G+(z − ω) so

that no delta function sources occur on the right hand side of the Weyl equation.

It is also instructive to compare the situation on T2×R 2 with the caloron case (S1×R 3).

It is easy to write down the corresponding zero modes on S̃1 for the caloron problem.

One simply replaces the T̃2
Green’s functions φ, G+ and G− with their S̃1 counterparts.

However, in this case the Weyl equations do have sources. The e±λ
2φ(z), being finite at

z = ±ω, have no damping effect on the G±. Because of these sources, direct insertion of

the S̃1 ‘zero modes’ into (3.50) does not yield a self-dual potential on S1 × R 3. Rather,

one has to change the normalisation of the zero modes to compensate for the sources. This

amounts to including 1 in the definition of ρ.

9 S is a unitary transformation with the property S−1σ1S = σ3, S
−1σ2S = σ2 and S−1σ3S = −σ1.
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Given that the T̃2
Weyl operator has perfect zero modes what exactly is the status of

the inverse of M̂ introduced in the previous section? What is clear is that our M̂−1(z, z′)

is not the inverse of M̂ on the space of square integrable spinors; no such inverse exists.

Our M̂−1(z, z′) can be viewed as the inverse of M̂ on a space of functions on T̃2
having

softer singularities at the fluxes than the zero modes. In any case M̂−1(z, z′) only enters

at intermediate stages of the calculation. What is important is nf (z), which, as we have

shown here, encodes two perfect zero modes of our Weyl operator.

Thus it seems there are three types of Nahm transformation. First and foremost is

the T4 transformation where all potentials and attendant zero modes are smooth. ForTn × R 4−n, n < 4 the self-duality equations on T̃n have source terms. The Weyl zero

modes on T̃n are also singular but for n = 2 (and presumably n = 3) there are no source

terms in the Weyl equation and so (3.50) can be applied without modification. For n = 1

(and n = 0 for that matter) the Weyl equation has source terms which are finessed by

altering the normalisation of the zero modes.

4 Two-instantons

The two-instanton problem on the torus presents new challenges. In particular, the Nahm

potential, Â(z), on T̃n is non-Abelian; for k = 2 instantons Â(z) is an SU(2) potential. In

contrast to the one-instanton case the determination of Â(z) is itself a non-trivial exercise.

For T2 × R 2 and S1 × R 3 the field strength associated with the Nahm potentials is zero,

except at the singularities. But even here we do not have closed forms for Â(z). In section

4.1 we give some particular solutions to the k = 2 ADHM constraints. The associated Weyl

equations for the T2 × R 2 problem are investigated in section 4.2. This analysis is very

similar to that of section 3.2 for the one instantons. Indeed, the resulting two-instantons

can be viewed as twisted one instantons when the torus is cut in half.

4.1 ADHM constraints on Tn × R4−n

In the previous chapter we considered the general one-instanton which (apart for S1 ×R 3)

is non-periodic. For k = 2 the ADHM constraint (2.19) is obviously more complicated.

In particular, the quadratic term in (2.19) is, in general, non-zero. There is however one

simplification at the two-instanton level; there exist non trivial solutions of the ADHM
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constraints which correspond to periodic gauge potentials on Tn × R 4−n. This is because

we can choose the two ‘component’ instantons to have a different orientation in group

space.

For simplicity, let us restrict ourselves to the periodic case. Then for k = 2 we can

write v and M̂ as follows

v = (vα1 vα2 ), M̂ =

(

M̂αβ
11 M̂αβ

12

M̂αβ
21 M̂αβ

22

)

, (4.1)

where vα1 = q1, v
α
2 = q2, and

M̂αβ
11 = δαβ(α+ y1 − x) + bαβ11 , M̂αβ

12 = M̂βα
21 = bαβ12

M̂αβ
22 = δαβ(α+ y2 − x) + bαβ22 .

(4.2)

We now have to determine the b matrices via (2.19). In the one instanton calculation we

relied on the vanishing of the quadratic term in (2.19). While this will not hold, in general,

for the two instanton case there may be particular solutions where the quadratic term is

zero. Indeed on R 4, the k = 2 problem is expedited by the vanishing of the quadratic term

in (2.9) [37]. If the quadratic term in (2.19) is zero, the b matrices read

bαβ11 = bαβ22 = 0, bαβ12 = − 1

2(α− β + y1 − y2)∗
Q, (4.3)

where

Q = q∗1q2 − q∗2q1. (4.4)

In Appendix A we will prove that if 2(y1 − y2) ∈ Λ and y1 − y2 /∈ Λ then the quadratic

term does indeed vanish. For example this happens for y1 − y2 = 1
2
(e0 + e1 + ... + en−1).

This means that the lattice points of the second ‘species’ of instanton lie exactly at the

midpoints (see figure 2) of the lattice points of the first.

In the special case n = 1 (i.e. the caloron problem) one only needs y1−y2 to be parallel

to e0 for the quadratic term to vanish. This is a consequence of the fact that for S1 × R 3

one may take e0 and hence the elements of Λ to be real. For n > 1, 2(y1 − y2) ∈ Λ is a

necessary condition for the vanishing of the quadratic term. Thus for 2(y1 − y2) /∈ Λ (4.3)

is an approximation; (4.3) is then the first term of a power series expansion in the scale

parameters.
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Figure 2: One ‘species’ of instantons lying at the midpoints of the lattice points of the

other species of instantons.

Let us concentrate on the cases where the quadratic terms does vanish. Fourier trans-

formation yields Ṽ−1M̂ = −idz − x+ Â(z), where Â(z) is the SU(2) potential

− iÂ(z) =

(

1
2
(y1 − y2)

1
2
ie−i(y1−y2)·zdzψ(z)Q

−1
2
iei(y1−y2)·zdzψ(−z)Q 1

2
(y2 − y1)

)

, (4.5)

and

ψ(z) =
∑

α∈Λ

ei(α+y1−y2)·z

|α + y1 − y2|2
. (4.6)

ψ(z) is a Green’s function for the Laplace operator on T̃n
dzd

∗
zψ(z) = −Ṽei(y1−y2)·zδn(z). (4.7)

Observe that ψ is non-periodic

ψ(z + ẽi) = ei(y1−y2)·ẽiψ(z), (4.8)

where ẽi refers to the dual basis; ẽi · ej = 2πδij . Now if 2(y1 − y2) ∈ Λ and (y1 − y2) /∈ Λ,

ψ(z) will be antiperiodic in at least one direction, and periodic in the remaining directions.

One can also see that for these special values of y1 − y2, ψ(z) is real. The reality of ψ is a

sufficient condition for the potential (4.5) to be self-dual.

We now appear to have to deal with a non-Abelian Weyl operator. In what follows the

inversion problem is reduced to an Abelian problem much like that for the one instanton
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case. Of course, in the light of the previous chapter due care regarding the meaning of the

inverse is in order. M̂ can be rewritten as follows

Ṽ−1M̂ = e−
i

2
(y1−y2)·zσ3P−1

(

D+ 0
0 D−

)

Pe
i

2
(y1−y2)·zσ3 , (4.9)

where D± are the (Abelian) Weyl operators

D± = −idz − x± 1
2
dzψQ, P =

1√
2
(1l + iσ1). (4.10)

The inverse of M̂ is simply

M̂−1(z, z′) = Ṽe− i

2
(y1−y2)·z σ3P−1∆(z, z′)Pe

i

2
(y1−y2)·z′σ3 , (4.11)

where ∆(z, z′) is a Green’s function for the diagonal operator diag(D+, D−). Note that

the exponentials in the decomposition of M̂−1(z, z′) are not periodic. To ensure a periodic

M̂−1(z, z′) we must impose certain non-periodic boundary conditions on ∆(z, z′). Since we

require M̂(z)M̂−1(z, z′) = Ṽ2δn(z − z′), then it follows that

(

D+ 0
0 D−

)

∆(z, z′) = Pe
i

2
(z−z′)·(y1−y2)σ3P−1δn(z − z′). (4.12)

It is convenient to absorb the exponential factor into the delta function. That is, consider

the following (non-periodic) delta functions

δn1 (z) = e
i

2
z·(y1−y2)δn(z), δn2 (z) = e−

i

2
z·(y1−y2)δn(z). (4.13)

Using the following four (Abelian) Green’s functions, ∆±
i (z, z′), i = 1, 2, where

D±
z ∆±

i (z, z′) = δni (z − z′). (4.14)

∆ can be written as

∆(z, z′) = 1
2

(

∆+
1 + ∆+

2 i
(

∆+
1 − ∆+

2

)

−i
(

∆−
1 − ∆−

2

)

∆−
1 + ∆−

2

)

(z, z′). (4.15)

Accordingly

M̂−1(z, z′) =
Ṽ
2
e−

i

2
z·(y1−y2)σ3

(

∆+
1 + ∆−

1 −i
(

∆−
2 − ∆+

2

)

i
(

∆−
1 − ∆+

1

)

∆+
2 + ∆−

2

)

(z, z′)e
i

2
z′·(y1−y2)σ3 .(4.16)
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4.2 Two-instanton on T2 × R2

Much as in section 3.2 we may take e0 to be real and e1 to be proportional to Q. Thus

Q̂ = Q/|Q| plays the same role as l̂ did in the previous section. Indeed, the analogue of

(3.9) is just z = 1
2

(

1 − iQ̂
)

z + 1
2

(

1 + iQ̂
)

z̄. We can write the Abelian Dirac operators

D± defined in (4.10) as follows

D± = e∓
1
2
iQψ(z)

(

−idz − x||
)

e±
1
2
iQψ(z) − x⊥. (4.17)

For the case y2 − y1 = 1
2
(e0 + e1), we have

ψ(z) =
Ṽ
4π

log

∣

∣

∣
θ
(

L0

4π
z + iL0

4L1
, iL0

2L1

)∣

∣

∣

2

∣

∣

∣
θ
(

L0

4π
z + 1

2
, iL0

2L1

)∣

∣

∣

2 , (4.18)

which is antiperiodic in both directions.

When x⊥ = 0, the four Green’s functions ∆±
i read10

∆±
1 (z, z′) = e∓

1
2
iQψ(z)

[

G1(z − z′) cosh
(

1
2
|Q|ψ(z′)

)

±G2(z − z′)iQ̂ sinh
(

1
2
|Q|ψ(z′)

)

]

∆±
2 (z, z′) = e∓

1
2
iQψ(z)

[

G2(z − z′) cosh
(

1
2
|Q|ψ(z′)

)

±G1(z − z′)iQ̂ sinh
(

1
2
|Q|ψ(z′)

)

]

,

(4.19)

where the Gi(z − z′) are (non-periodic) free Green’s functions defined as

(

−idz − x||
)

Gi(z − z′) = δ2
i (z − z′), i = 1, 2. (4.20)

Inserting (4.19) into (4.16) yields

M̂−1(z, z′) = ṼΨ(z)

(

G1(z − z′) 0
0 G2(z − z′)

)

Ψ−1(z′), (4.21)

where Ψ(z) is the 2 × 2 matrix

Ψ(z) =

(

e−
1
2
i(y1−y2)·z cosh

(

1
2
|Q|ψ(z)

)

Q̂e−
1
2
i(y1−y2)·z sinh

(

1
2
|Q|ψ(z)

)

−Q̂e
1
2
i(y1−y2)·z sinh

(

1
2
|Q|ψ(z)

)

e
1
2
i(y1−y2)·z cosh

(

1
2
|Q|ψ(z)

)

)

. (4.22)

The two component row vector n(z) is

n(z) = Ṽ(q1 , q2)Ψ(0)

(

G1(−z) 0
0 G2(−z)

)

Ψ−1(z). (4.23)

10Note that ∆±
i (z, z′) = e∓iQψ(z)Gi(z − z′)e±iQψ(z′) is not correct, since one has to take into account

the non-periodicity of the exponentials e±iQψ = cosh (|Q|ψ) ± iQ̂ sinh (|Q|ψ).
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Again we encounter infinite constants; ψ(z) → ∞ as z → 0 and so all entries of the matrix

Ψ(0) are ‘infinite’. As in section 3.2 we will temporarily treat Ψ(0) as a finite object. In

the light of our one instanton calculation we expect some constraints on q1 and q2. We can

choose q1 to be real. In appendix B we show that for n(z)n†(z) to be integrable requires

that

(q1, q2) = λ(1, Q̂), (4.24)

where λ is a common scale parameter since |q1| = |q2| = λ. Observe that the relative

group orientation of the two instantons is fixed. If the orientation of the first instanton

lies at the ‘North pole’ of S3 ≡ SU(2), then the orientation of the second instanton sits on

the equator. Much as in the one instanton case the absence of non-integrable singularities

leads to an upper bound on the scale parameter

0 < λ2Ṽ < 2π. (4.25)

Another consequence of (4.24) is that (q1, q2) is an eigenvector of the infinite matrix Ψ(0),

i.e. (q1, q2)Ψ(0) = e
1
2
|Q|ψ(0)(q1, q2). As in the one instanton calculation we define a ‘finite’

row vector λṼnf (z) = e−
1
2
|Q|ψ(0)n(z). The final gauge potential is obtained by replacing

n(z) with nf(z) in (2.39) and replacing (2.40) with ρ = Ṽ−1ρf = Ṽ−1
∫

˜T2 nf (z)n
†
f (z).

In the course of the construction a number of constraints have been put on the ADHM

data. It is helpful to divide these constraints into two. The first constraints are simply

those imposed by hand to achieve technical simplification, i.e. we imposed periodicity and

the midpoint condition in order that we could exactly determine the Weyl operator. In

addition to these constraints we were forced to impose the additional constraints (4.24)

and (4.25). By virtue of the midpoint prescription and (4.24) our two instantons begin to

resemble one instantons if we cut T2 in half. In fact if we had chosen y1 − y2 = 1
2
e0 or

y1 − y2 = 1
2
e1 instead of y1 − y2 = 1

2
(e0 + e1) then our ‘two instanton’ would be nothing

more than a ‘doubled’ one instanton. That is one can always produce a two-instanton

on Tn × R 4−n by taking a one instanton and doubling one of the periods. To show this

equivalence one simply compares the ‘two instanton’ with y1−y2 = 1
2
e0 or y1−y2 = 1

2
e1 with

the one instanton with ω = 1
4
ẽ0 or ω = 1

4
ẽ1. Then using the qi → −qi symmetry mentioned

at the end of section 2.2 one can show that the two sets of ADHM data correspond to the

same instanton. The two instanton corresponding to y1 − y2 = 1
2
(e0 + e1) appears to be
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‘genuine’ in the sense it is not equivalent to some one-instanton solution. However it seems

plausible that the y1 − y2 = 1
2
(e0 + e1) case corresponds to a twisted one instanton (the

twisted Nahm transformation is discussed in [41]).

5 Discussion

In this paper we have described in a general way how to implement the ADHM construc-

tion of SU(2) instantons on Tn × R 4−n. The first step (which corresponds to solving the

quadratic ADHM constraint) is to construct a self-dual SU(k) (U(1) for k = 1) potential,

Â(z), on the dual torus T̃n (here k is the topological charge). Â(z) has singularities which

are determined by the ADHM data (i.e. the scales, positions and group orientation of

the ‘component’ instantons). We have constructed the Weyl operators corresponding to

the general one-instanton and some two instantons on Tn × R 4−n. However, the problem

of solving the Weyl equations poses a considerable technical challenge. One is therefore

motivated to start with lower values of n. We have considered the n = 2 problem in some

detail.

The solutions here are not deformations of ’t Hooft instantons; the ’t Hooft ansatz fails

to provide solutions on T2×R 2. Unlike for S1×R 3 we are forced to impose constraints on the

ADHM parameters in order to guarantee a well defined potential on T2×R 2. In particular,

we find an upper bound on the scale parameters; for the one-instanton, λ2Ṽ < 4π and for

our restricted two-instanton we found that λ2Ṽ < 2π (here we were forced to give the two

component instantons a common scale parameter).

For n > 2, i.e. T3 × R and T4, the Weyl equations seem more problematic. While

the T2 × R 2 Weyl operator corresponds to an Aharonov-Bohm problem on T̃2
, on T3 × R

we have to solve the Weyl equation on T̃3
in the (self-dual) background of an electric and

magnetic dipole field [42]. For T4 the one instanton calculation should fail. Presumably

there is no way to avoid non-integrable singularities. For our restricted two instantons the

prospects seem a little brighter. This is because these seemingly correspond to twisted one

instantons (or even 1
2

instantons in the presence of non-orthogonal twists). There is no

known obstacle to the existence of such objects on T4.

Although the T3 × R and T4 problems certainly merit more attention the T2 × R 2 case

requires further development. Even in the 1-instanton sector we were only able to provide
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closed forms for Aµ(x) and Fµν(x) in a 2-dimensional subspace (x⊥ = 0) of T2 × R 2. To

obtain analytic results for x⊥ 6= 0 requires progress in dealing with massive Aharonov-

Bohm type Dirac equations on T̃2
. Furthermore, we have said nothing about the geometry

of the moduli space or the constituent monopoles of our instantons. One could numerically

plot the action density of the one instantons in the plane x⊥ = 0 to see if there are two

peaks associated with the two expected monopole constituents.
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A The quadratic term in (2.19)

In this appendix we show that the quadratic term in (2.19) vanishes for the one instanton

and particular two instanton described in chapter 4.

Let us start with the one instanton. The quadratic term in question is

Rαβ =
∑

γ∈Λ

(

bγα∗bγβ − bγβ∗bγα
)

. (A.1)

Assuming Rαβ = 0 leads to (3.3). Inserting this into (A.1) gives

Rαβ = −λ4
∑

γ∈Λ\{α,β}

l̂

(

1

(γ − α)∗
1

γ − β
− 1

(γ − β)∗
1

γ − α

)

l̂

× sin [(α− γ) · ω] sin [(β − γ) · ω] .

(A.2)

It is clear that each summand in (A.2) does not separately vanish. Rather there is a pairwise

cancellation; for each γ ∈ Λ \ {α, β} there is exactly one other lattice point γ′ ∈ Λ \ {α, β}
so that the two summands add up to zero. It is apparent that the appropriate choice for

γ′ is γ′ = −γ + α + β. If 2γ = α+ β, i.e. γ′ = γ, then the summand itself vanishes.
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The argument is similar for the two instanton of section 4. Here the quadratic term is

Rαβ
ij =

∑

γ∈Λ

(

bγα1i
∗bγβ1j − bγβ1j

∗bγα1i + bγα2i
∗bγβ2j − bγβ2j

∗bγα2i

)

. (A.3)

Inserting (4.3) gives Rαβ
12 = Rαβ

21 = 0, and

Rαβ
22 =

∑

γ∈Λ

(

bγα12
∗bγβ12 − bγβ12

∗bγα12

)

(A.4)

= −1

4

∑

γ∈Λ

(

Q
1

γ − α + y1 − y2

1

(γ − β + y1 − y2)∗
Q

−Q
1

γ − β + y1 − y2

1

(γ − α + y1 − y2)∗
Q

)

.

Now we will show that R22 is zero for 2(y1 − y2) ∈ Λ. As in the one instanton case each

summand in (A.4) does not separately vanish. For each γ ∈ Λ there is one other lattice

point γ′ ∈ Λ so that the two summands add up to zero

γ′ = −γ + α + β − 2(y1 − y2). (A.5)

Since γ′ ∈ Λ we require 2(y1 − y2) ∈ Λ. If 2γ = β + α− 2(y1 − y2) then γ′ = γ so that we

do not have two counterbalancing summands. However, in this case the summand itself

vanishes.

B Equation (3.41)

In this appendix we outline a proof of (3.41) which, for x⊥ = 0, is equivalent to the

statement that f(z, z′) commutes with the quaternions. In the caloron problem one simply

notes that f is the inverse of M †M which by construction commutes with the quaternions.

We could also explicitly check that our f is the inverse of M †M . However, we would face

the thorny problem of coincident fluxes and sources [43, 44, 45]. Therefore, we will adopt

a more pedestrian approach. Before we embark on this we note that for z+ z′ = 0 a trivial

change of variables in the integrals defining g−(z, z′) suffices to verify (3.41). For z+z′ 6= 0

we have a more indirect argument. When z 6= ω it is easy to check that

(

−i∂z̄ − 1
2
x||

)

e−2λ2φ(z)
(

−i∂z − 1
2
x̄||

)

(

g+(z, z′) − e2λ
2φ(z)g−(z, z′)e2λ

2φ(z′)
)

= 0. (B.1)
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This shows that the left and right hand sides of (3.41) satisfy the same differential equa-

tions. To complete the argument we must show that they obey the same boundary con-

ditions. Clearly both are periodic on T̃2
, but we also need to show that g+(z, z′) and

e2λ
2φ(z)g−(z, z′)e2λ

2φ(z′) have the same asymptotics at the fluxes. Let us examine g±(z, z′)

in the neighbourhood of z = ω. One can see that g+(ω, z′) is well defined for λ2Ṽ < 2π,

while g−(ω, z′) = 0. This does not contradict (3.41) since the exponential e2λ
2φ(z) di-

verges as κ|z − w|−λ2Ṽ/(2π) for z ∼ ω where κ is a constant. Consistency requires that

g−(z, z′) ∼ κ−1|z − w|λ2Ṽ/(2π)g+(ω, z′)e−2λ2φ(z′) for z ∼ ω. One can show that g−(z, z′)

decays as it should in the limit z → ω by considering the derivative of g−(z, z′):

(

−i∂z̄ − 1
2
x||

)

g−(z, z′) = 1
2
e−2λ2φ(z)G+(z − z′) (B.2)

−e
−2λ2φ(z)

2ρf
G+(−ω + z)

∫

˜T2
d2y′G−(ω − y′)e−2λ2φ(y′)G+(y′ − z′).

In the neighbourhood of z = ω, 2πG+(−ω + z) ∼ i/(z̄ − w̄), and so the second term in

(B.2) dominates (provided z′ 6= ±ω). Integrating yields

g−(z, z′) ∼ 1

λ2Ṽκρf
|z − w|λ2Ṽ/(2π)

∫

˜T2
d2y′G−(ω − y′)e−2λ2φ(y′)G+(y′ − z′), (B.3)

which indeed decays correctly. Full agreement with (3.41) requires

g+(ω, z′) =
e2λ

2φ(z′)

λ2Ṽρf

∫

˜T2
d2y′G−(ω − y′)e−2λ2φ(y′)G+(y′ − z′). (B.4)

To check this one simply notes that away from z′ = ±ω the left and right hand sides are

annihilated by the same differential operator,
(

i∂z′ − 1
2
x̄|| − 2iλ2∂z′φ(z′)

) (

i∂z̄′ − 1
2
x||

)

. It

is simple to also check that they agree in the neighbourhoods of z′ = ±ω which completes

the proof.

C Two instanton singularities

Consider the 2-component row vectors v± = (1, ±Q̂) which are (formally) eigenvectors of

Ψ(0) in that v±Ψ(0) = e±
1
2
|Q|ψ(0)v±. We now make the decomposition (q1, q2) = α+v+ +

α−v− where the quaternions α± are not completely free since q∗1q2 − q∗2q1 = Q. The

integrand in the definition of ρ is

Ṽ−1n(z)n†(z) = |α+|2e|Q|ψ(0)
[

G+(−z)G∗
+(z)e−|Q|ψ(z) + G−(−z)G∗

−(z)e|Q|ψ(z)
]

(C.1)
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+|α−|2e−|Q|ψ(0)
[

G+(−z)G∗
+(z)e|Q|ψ(z) + G−(−z)G∗

−(z)e−|Q|ψ(z)
]

+terms linear in α+α
∗
− and α−α

∗
+,

where we have employed the notation

G±(z) = G1(z) ±G2(z), (C.2)

not to be confused with the G±(z) introduced in section 3.2! First, let us consider the

singularity structure of the free Green’s functions G±(z) which satisfy (−idz − x)G±(z) =

δ1(z) ± δ2(z). Now δ2
1(z) and δ2

2(z) are zero except for all dual lattice points (z ∈ Λ̃).

However δ2
1(z) + δ2

2(z) is only singular at half of the lattice points, while δ2
1(z) − δ2

2(z) is

singular at the remaining dual lattice points. This can be seen from the following identities

δ2
1(z) + δ2

2(z) = 2 cos
(

1
2
(y1 − y2) · z

)

δ2(z), δ2
1(z) − δ2

2(z) = 2i sin
(

1
2
(y1 − y2) · z

)

δ2(z).

(C.3)

Now since 2(y1 − y2) ∈ Λ it follows that 1
2
(y1 − y2) · z = 1

2
πn, n ∈ Z for z ∈ Λ̃ which

means that either the sine or the cosine must be zero for z ∈ Λ̃. In particular, we see that

unlike δ2
1(z)+δ2

2(z), δ
2
1(z)−δ2

2(z) has no singularity at z = 0. Thus we conclude that G−(z)

has no singularity at z = 0. In the neighbourhood of z = 0 we have

G+(−z)G∗
+(z) ∝ 1

|z|2 , G−(−z)G∗
−(z) non-singular. (C.4)

We also require the behaviour of ψ(z) at z = 0, ψ(z) ∼ −(Ṽ/2π) log |z|. Near z = 0 we

have

G+(−z)G∗
+(z)e−|Q|ψ(z) ∝ |z|−2+|Q|Ṽ/(2π), G+(−z)G∗

+(z)e|Q|ψ(z) ∝ |z|−2−|Q|Ṽ/(2π). (C.5)

The second part of (C.5), i.e. G+(−z)G∗
+(z)e|Q|ψ(z) is non-integrable. However, this term is

absent in the |α+|2 contribution to (C.1) and so if we make the choice α− = 0 we do not

encounter this singularity. The first part of (C.5) is an integrable singularity for |Q| > 0.

In fact if we take |Q|Ṽ > 4π the singularity disappears. However, then G−(−z)G∗
−(z)e|Q|ψ(z)

will become non integrable. Accordingly, for the singularities in (2.40) to be integrable we

require α− = 0, and 0 < |Q|Ṽ < 4π which implies (4.24) and (4.25).
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