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Q-balls: some analytical results
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Abstract. Motivated by the renewed interest in the role of Q-balls in cosmological evolution, we present a
discussion of the main properties of Q-balls, including some new results.

1 Introduction

The existence of the Baryon asymmetry in nature is still
an unsolved puzzle. As there is a general agreement that
it can’t be explained within the framework of the Stan-
dard Model (SM), it has become a common practice to
investigate supersymmetric extensions of the SM. How-
ever, in addition to electroweak baryogenesis, these models
allow for other possible mechanisms for generating the B-
asymmetry. One of these is the Affleck-Dine (AD) mecha-
nism [1,2], where the baryon number surplus is produced
in the late stages of inflation, being stored in a condensate
of supersymmetric scalars (e.g. a mixture of squarks). But,
as Kusenko and Shaposhnikov pointed out [3], this homo-
geneous condensate is not allways the best way of packing
the baryon number: there are non-homogeneous states,
lumps of baryonic matter, with the same B-number but
less energy, which are known as Q-balls (or B-balls). The
condensate is therefore expected to colapse, producing a
large number of Q-balls. The B-number, stored in the Q-
balls in this way, survives the sphaleron processes if they
decay at temperatures below the weak scale. As shown
in [4], in the context of models with gravity-mediated su-
persymmetry breaking this happens only for Q-balls with
B& 1016−17, as it is actually realized in such models. Since
their decay is due to baryon and neutralino evaporation
from the surface this could explain the similarity between
the present baryon density and dark matter density, as
the neutralinos are candidates to the lightest SUSY par-
ticles and therefore to dark matter. It is also possible to
explain this similarity, in a gauge mediated SUSY break-
ing scenario, though with a different mechanism[3]. In this
case, Q-balls are so large that they should survive to the
present, constituting therefore dark matter. Their partial
evaporation at high temperatures should be responsible
for baryogenesis.

Our intention here is not, however, to investigate the
role of Q-balls in baryogenesis, but to discuss their general
properties. As was shown by Coleman, the existence of Q-
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balls is a general feature of theories with scalars carrying
a conserved U(1)-charge [5,6,7](e.g. B-number). They can
be regarded as bound states of the scalar particles and ap-
pear as stable classical solutions of the equations of mo-
tion, i.e. they are non-topological solitons which arise due
to the non-linear self-interactions of the scalar field.

The present paper (see also ref.[8]) is a study of the
main general properties of Q-balls. We will start in sec.2
by explaining why one should search for solutions of the
eq. of motion of the Q-ball type (i.e. φ = σ(r)eiωt), and
when they exist. In the case that such solutions exist, the
next rational move is to investigate their stability. This is
what we do in sec.3: We prove a statement which relates
the classical stability of a Q-ball with the dependence of
its charge on the internal frequency ω. In sec.4 we discuss
the limits of small and high internal frequency using the
thin-wall and the thick-wall approximation, respectively.
These results are then applied to the case of a model with
broken symmetry. Finally we regard in sec.5 the issue of
the meaning of Q-balls in the quantum theory. We close
with a recapitulation and discussion of our results.

2 Non-topological solitons in scalar theories

To make our investigation as simple as possible we will
neglect the interactions of the scalar sector with the rest of
the world (the other sectors of the theory), and investigate
U(1)-invariant scalar theories, defined in a general way by
the lagrangian density

L = |∂µφ|2 − Ū(|φ|). (1)

In this case, classical dynamics is described by the equa-
tion of motion

∂2
t φ−∇2φ+ Ū ′(|φ|) φ

2|φ| = 0, (2)

for which the charge
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Q[φ] =
1

i

∫

d3x(φ∗∂tφ− c.c.) (3)

is conserved. We require the potential to have a minimum
at the origin φ = 0, with Ū(0) = 0, which is the same as
stating that there is a sector of scalar particles (which we
call mesons), that carry the U(1) charge, and have masses
m2 = 1

2 Ū
′′(0).

The purpose of this section is to show that for certain
potentials there are solutions of the eq. of motion, called
Q-balls[5], of the form

φ(x, t) =
σ(r)√

2
eiωt, (4)

with σ(r) being a decreasing function of r = |x| ≥ 0 (a
ball). The point of this ansatz is, that it has the simplest
form, which allows the Q-ball to carry finite charge. The
energy and charge of the Q-ball are

E =

∫

d3x

[

1

2
ω2σ2(r) +

1

2
(∇σ(r))2 + U(σ(r))

]

, (5)

Q = ω

∫

d3xσ2(r), (6)

(U(σ) ≡ Ū(|φ|)) and the equation of motion is now

∇2σ = U ′(σ) − ω2σ. (7)

Since we want to find minima of the energy in sectors
of fixed charge, it will be usefull to rewrite the energy
functional as follows

EQ[σ] =
1

2

Q2

I[σ]
+

∫

d3x

[

1

2
(∇σ)2 + U(σ)

]

, (8)

with

I[σ] =

∫

d3xσ2. (9)

With EQ recast in this form, we can investigate the sta-
bility of any Q-ball solution with respect to perturbations
inside the subspace of fixed charge and configurations of
the form φ(x, t) = σ(x)eiωt/

√
2. The handling of general

variations around the Q-ball solution will be postponed,
because, as we will see in section 3, the only relevant con-
figurations with regard to the stability of the Q-balls are
those with the above form.

By Taylor expanding I−1[σ + δσ], we can write the
energy’s variation at fixed charge in the form

∆EQ =

∫

d3x δσ(−∇2σ + U ′ − ω2σ)

+

∫

d3x
1

2
δσ(−∇2 + U ′′ − ω2)δσ

+ 2
ω2

I

(
∫

d3xσδσ

)2

+O(δσ3).

(10)

Note that we traded Q for ω using Q = ωI only after per-
forming the variation. It is helpfull to define the following
functionals,

Uω(σ) ≡ U(σ) − 1

2
ω2σ2, (11)

Sω[σ] ≡
∫

d3x (
1

2
(∇σ)2 + Uω), (12)

to recast the energy’s variation in a simpler way:

∆EQ = ∆Sω + 2
ω2

I

(
∫

d3xσδσ

)2

+O(δσ3), (13)

where ∆Sω is a variation made while keeping ω fixed.
We are now in position to make some remarks:

(i) Extrema of the functional Sω at fixed ω are extrema
of the energy EQ at fixed charge Q [7], as we can see
from eqs.(10) and (13). They satisfy automaticaly the
equation of motion eq.(7). Now, if {σω(r)} is a set of
solutions of this equation, parameterized by ω, E(Q) ≡
EQ[σω] can be seen as a function of only Q and S(ω) ≡
Sω[σω ] as a function of ω. These two functions are
related through a Legendre transformation. To see this
note that from eq.(5) it follows that

E(Q) = S(ω) + ωQ, (14)

which defines a Legendre transformation because

dS(ω)

dω
=

∫

d3r
δSω

δσω

dσω

dω
+
∂S(ω)

∂ω

= 0 −
∫

d3r σ2
ω

∂

∂ω

1

2
ω2 = −Q(ω),

(15)

where Q(ω) ≡ Q[σω]. (These expressions will prove to
be usefull in sec.4.)

(ii) Fortunately the problem of finding the solutions of
δSω

δσ = 0 is a well investigated one. In fact, it is known

that for values of ω2 within a certain range, the ex-
tremum of Sω with the smallest value of Sω is a de-
creasing function of r = |x|, the so-called bounce, which
satisfies the boundary conditions dσ

dr (0) = 0, σ(+∞) =

0 [9,10,11]1.

(iii) Minima of EQ don’t need to be minima of Sω (see
eq.(13)):

δ2EQ ≥ 0 ⇒ δ2Sω ≥ −2
ω2

I

(
∫

d3xσδσ

)2

.

(16)

This is an important feature, because it is a well
known fact in the theory of bounces that these solu-
tions are not minima of Sω, but rather saddle points.

They have one mode δσ−1 with δ2Sω

δσ2

−1

< 0 [12].

1 These configurations describe quantum tunneling in a real
scalar field theory in (2+1)-dimensions with potential Uω(σ).
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σ0

U(σ)

1

2
ω2

0σ2

Fig. 1. The potential U(σ) supports Q-ball solutions, with
squared internal frequency ω2 in the range ]ω2

0 , m2[, where ω2

0

is given by eq.(20).

We want now to find the range of ω2, for which there
are configurations of the form discussed in (ii) which sat-
isfy eq.(7). For radial-dependent solutions this equation
turns to be

d2σ

dr2
= −2

r

dσ

dr
+ U ′

ω(σ). (17)

It is easy to recognize this as the equation of motion for
a particle of unit mass, with position σ and time r, under
the action of the potential −Uω(σ) and of a viscous term
proportional to the velocity and the inverse of the time.
In this mechanical analogon, the boundary conditions are
that the particle starts at rest somewhere at the positive
axe, and moves towards the origin, which is attained at
infinite time. This is only possible if [5]

1) ω2 ≤ m2: When the particle approaches the origin the
potential behaves like

−Uω(σ) ≃ −Uω(0) − 1

2

d2Uω(0)

dσ2
σ2 = −1

2
(m2 − ω2)σ2.

(18)

If ω2 > m2, the particle will ultimately start oscillating
around the origin as

σ(r) ∼ sin (
√
ω2 −m2r)

r
, (19)

causing EQ[σ] to be infinite.

2) ω2 > ω2
0 , where ω2

0 is defined as

ω2
0 ≡ min

(

2U(σ)

σ2

)

≡ 2U(σ0)

σ2
0

. (20)

If ω2
0 < 0 this is automaticaly satisfied. To understand

this condition for ω2
0 ≥ 0 note first that as the particle

attains the origin its energy, Epart ≡ 1
2 (dσ

dr )2 − Uω(σ),
is equal to zero. From the equation of motion we know

that the particle’s energy is a decreasing function of
the time r, in virtue of the action of the viscous force.
The potential energy must therefore be positive at time
r = 0, when the particle starts at rest with position
σ(0) 6= 0. But if ω2 < ω2

0 the potential energy −Uω is
never positive. This is easy to see in fig.1, but can also
be shown mathematically: If for some σ̃ the potential
is positive and ω2 < ω2

0 we would have

− Uω(σ̃) > 0 ⇒ U(σ̃) <
1

2
ω2σ̃

⇒ 2U(σ̃)

σ̃2
< ω2 < min

(

2U(σ)

σ2

)

.
(21)

In this section we have seen that as long as ω2
0 6= m2,

the theory contains classical solutions of the equations
of motion, which are energy extrema in a sector of fixed
charge. These solutions rotate in internal U(1)-space with
frequency ω (ω2

0 < ω2 < m2) and their modules σ(r) have
a bounce-like shape, i.e. they have a maximum at r = 0
and decrease monotonically towards zero at infinity.

3 Stability of Q-balls

In the following paragraphs we will argue that the stability
of Q-ball solutions depends on the way the charge changes
with the internal frequency ω. If at least some deviations
from the solution grow with time, we say that the solution
is unstable. If any perturbation remains oscillating around
the solution, this is a stable one. It’s clear that, due to
charge conservation, minima of the energy for fixed charge
are stable under small perturbations.

The question if a Q-ball solution is an absolute mini-
mum of the energy at fixed charge was answered by Cole-
man [5]. He proved that as long as

EQball < mQ, and ω2
0 > 0 (22)

the Q-ball is the absolute minimum configuration with
charge Q.

There is however another more useful theorem regard-
ing the local stability of Q-balls, that also works for ω2

0 ≤
0, that is, in the case that the symmetry is broken. It states
that2

– if ω
Q

dQ
dω < 0, the Q-ball is a local minimum, and there-

fore stable;

– if ω
Q

dQ
dω > 0, the Q-ball is a saddle point of the energy,

with one instability mode.

To prove this we must investigate general perturba-
tions of the solutions around the form φ = σ̄(r) eiωt/

√
2

which satisfy the eq. of motion (7). Since the general con-

figurations σ(x, t) eiϑ(x,t)/
√

2 depend on both space and
time it seems dificult to fix the charge in an explicit way
when performing variations of the energy. That is, we

2 This theorem was stated for a similar kind of non-
topological solitons in ref.[13].
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would like to find an expression, like eq.(8), where the
charge dependence is explicit, but which is valid for gen-
eral configurations. We can solve this problem by intro-
ducing the following function,

ω(t) ≡
∫

d3xσ2(x, t) ϑ̇(x, t)
∫

d3xσ2(x, t)
=
Q[σ, ϑ]

I[σ]
, (23)

and spliting ϑ(x, t) as

ϑ(x, t) = θ0(t) + θ(x, t), (24)

where θ0(t) is an indefinite integral of ω(t), which depends
only on time3. With these definitions the energy functional
reads:

E[σ, ϑ] =

∫

d3x

[

1

2
(σ̇)2 +

1

2
σ2(θ̇)2 +

1

2
σ2(∇θ)2

]

+
1

2

Q2

I[σ]
+

∫

d3x

[

1

2
(∇σ)2 + U(σ)

]

≡ K[σ, θ] + EQ[σ],

(25)

where EQ is the functional defined by eq.(8). For a config-
uration of the Q-ball type, ϑ(x, t) = ωt and σ(x, t) = σ̄(r).
We have thus θ(x, t) = const. and therefore it follows read-
ily that KQball = 0. Since in general K[σ, θ] ≥ 0, Q-balls
(or configurations of the Q-ball type) are minima of this
functional. This means that the stability depends only on
the behaviour of the functional EQ[σ] under variations
σ(x, t) = σ̄(r) + δσ(x, t). Note that for this variational
problem only the spatial dependence of σ is relevant, the
time t playing the role of a fixed parameter. This proves
the assertion of Section 2 that the stability of Q-balls de-
pends only on the behaviour of the energy in the subspace
of configurations of the type σ(x) eiωt, for which the energy
reduces to EQ[σ].

The remaining task is, therefore, to prove that the
above theorem is true in this restricted subspace. To do
this we will first show that in addition to the 3 trans-
lational zero-modes ∂iσ̄ of EQ[σ̄] there is only one other

zero-mode if and only if ω
Q

dQ
dω = 0: From eq.(10) we see

that any null mode ψ must satisfy

Hψ ≡ 1

2
hψ +

2ω2

I
σ̄

∫

d3x σ̄ψ = 0, (26)

where h ≡ −∇2 +U ′′
ω(σ̄). With A ≡ − 4ω2

I

∫

d3x σ̄ψ we get

hψ = Aσ̄. (27)

Differentiating the equation of motion with respect to ω
one sees that the last equation is satisfied by ψ = dσ̄

dω with
A = 2ω. For any other solution ψ we have thus

h

(

ψ − A

2ω

dσ̄

dω

)

= 0, (28)

3 θ(x, t) is constrained by
∫

d3x σ2θ̇ = 0 (see eq.(23)), but
this is irrelevant for the discussion which follows.

and since the ∂iσ̄ are the only functions for which hf = 0
we see that ψ is allways a linear combination of the ∂iσ̄
and of dσ̄

dω . Now, if dσ̄
dω is a solution of eq.(26) we get

1 +
2ω

I

∫

d3x σ̄
dσ̄

dω
= 0, (29)

and therefore

ω

Q

dQ

dω
=
ω

Q

[

Q

ω
+ 2ω

∫

d3x σ̄
dσ̄

dω

]

= 0, (30)

as we intended to prove.
We will now show that the appearence of the extra

null mode when ω
Q

dQ
dω = 0 really signals the change of sign

of an eigenvalue of H and with it the transition between
stability and instability. The first step is to prove that
since h has only one negative eigenvalue H can have at
most one negative eigenvalue: If φi is a negative mode of
H it must satisfy

∫

d3xφiδσ−1 6= 0, (31)

where δσ−1 is the negative mode of h, or else
∫

φiHφi ≡ λi

would be positive. If there are more than one negative
mode of H we can build a suitable linear combination
Φ =

∑

aiφi for which
∫

d3xΦ δσ−1 = 0. But this would
mean that

0 >
∑

a2
iλi =

∫

d3xΦHΦ =

=
1

2

∫

d3xΦhΦ+
2ω2

I

(
∫

d3x σ̄Φ

)2

> 0,

(32)

what is impossible. There can be therefore at most one
negative eigenvalue.

It remains to show that if λ(ω) is the extra eigenvalue

of H which is zero when dQ
dω = 0, we have λ(ω) > 0 when

dQ
dω < 0 and vice-versa. If ψ(ω) is the eigenvector corre-
sponding to λ(ω), and ω̄ is defined by λ(ω̄) = 0, we have
(up to a multiplicative constant) ψ(ω̄) = dσ̄

dω̄ . Differentiat-
ing Hψ = λψ at ω = ω̄ we get thus

dH
dω̄

dσ̄

dω̄
+ H(ω̄)

dψ

dω̄
=
dλ

dω̄

dσ̄

dω̄
. (33)

We multiply this equation with dσ̄
dω̄ and integrate to obtain

∫

d3x
dσ̄

dω̄

dH
dω̄

dσ̄

dω̄
=
dλ

dω̄
·
∫

d3x

(

dσ̄

dω̄

)2

. (34)

However we can rewrite the l.h.s. of this equation as

d

dω̄

∫

d3x
dσ̄

dω
Hdσ̄

dω
− 2

∫

d3x
d2σ̄

dω̄2
H(ω̄)

dσ̄

dω̄
≡ dF

dω̄
, (35)

where F (ω) =
∫

d3x dσ̄
dωH dσ̄

dω is given by (see eq.(10))

F (ω) = ω

∫

d3x σ̄
dσ̄

dω

[

1 +
2ω

I

∫

d3x σ̄
dσ̄

dω

]

=
1

2

[

dQ

dω
− Q

ω

]

ω

Q

dQ

dω
.

(36)
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Since dQ
dω (ω̄) = 0 we see that in a small neighbourhood

of ω̄ we have sign(F (ω)) = sign(λ(ω)) = −sign(dQ
dω ). But

this is enough to prove that sign(λ(ω)) = −sign(dQ
dω ) for

any values of ω.

4 Thin-wall and thick-wall regime

As we have seen, if we want to know whether a Q-ball
solution is stable or not, instead of solving two second
order partial differencial equations in 3 + 1 dimensons,
we need only to know whether dQ

dω is positive or negative.
There are two limiting cases where we can apply these
results without making use of a computer: when ω2 →
ω2

0 ≥ 0, and when ω2 → m2. The first limit is known as
the thin-wall regime while the second one as the thick-wall
regime.

4.1 Thin-wall approximation.

In the mechanical analogon which was described in sec.2
the initial position must be chosen in such a way that for
r → ∞ it won’t undershoot or overshoot the top of the
hill at σ = 0.

When ω2
0 ≥ 0 4 and ω2 → ω2

0 , the absolute maxi-
mum of −Uω becomes virtually degenerate with the one
at σ = 0. In this limit the particle must spend a very long
time close to σ0 (defined by eq.(20)) otherwise it would
undershoot the origin σ = 0. To see this note first that if
σ1 is the zero of Uω and σ(0) < σ1, the particle doesn’t
have enough energy to reach the origin, for the energy is
a decreasing function of time. Now, if σ(0) > σ1, σ(0) is
so close to σ0 that we can linearize the eq. of motion:

[

d2

dr2
+

2

r

d

dr
− µ2

]

(σ(r) − σ0) = 0, (37)

with µ2 ≡ U
′′

ω (σ0) > 0. This equation is a good approx-
imation as long as s(r) ≡ σ0 − σ(r) is not too large. To
find the solution with dσ

dr (0) = 0 is quite a simple task:

s(r) = s0
sinh (µr)

µr
. (38)

We still have the freedom of choosing σ(0) but since we
know that σ(0) > σ1 we see that as ω2 → ω2

0 , s0 = (σ0 −
σ(0)) → 0. When this happens eq.(38) implies that the
particle spends more and more time close to σ0. We can
define the time R that the particle spends close to σ0 to
satisfy

s(R) = σ0 − σ(R) = sR, (39)

where sR is just small enough to allow for the linear ap-
proximation. Now, since sinh(x)/x is a growing function
of x it’s clear that as s0 → 0 (i.e. ω2 → ω2

0) we must

4 ω2

0 ≥ 0 is the condition that the classical potencial U(σ) is
not negative. The case with ω2

0 < 0 will be analyzed in sec.4.3.

expect Rµ → ∞. On the other hand µ2 = −ω2 + const.
is bounded in [ω2

0 ,m
2], which proves that in the thin-wall

limit, as s0 = σ0 − σ(0) gets smaller, R becomes larger
and larger and grows to infinity. Note that the asymptotic
behaviour of R is independent of the definition point sR.

We can also easily show that for r = R the damp-
ing term is already unimportant when compared with the
potential term5:

∣

∣

∣

∣

1

R

dσ

dr
(R)

∣

∣

∣

∣

≃ s0
R
µ
eµR

2µR
≃ 1

µR
µ2sR ≪

∣

∣

∣
U

′

ω(σ(R))
∣

∣

∣
. (40)

That means that we can describe the Q-ball for ω2 → ω2
0

as

σ(r) =

{

σ0 − s(r) if r < R
σ̄(r −R) if r > R

(41)

where σ̄(x) is the solution of the eq. of motion without
damping term, which fits to σ̄(0) = σ0−sR and σ̄(∞) = 0.
Back to the field-theoretical language we can describe this
Q-ball as formed by a very large core with radius R sur-
rounded by a comparably thin surface. The free parameter
σ(0) (or s0 or R) must now be adjusted as to minimize the
energy at fixed Q or Sω at fixed ω. This is not a difficult
thing to do.

We must first note the following: (i) for r < R we have
Uω(σ) = 1

2µ
2s2 − ǫ, where ǫ = −Uω(σ0) = 1

2σ
2
0(ω2 − ω2

0)
is the energy difference between the tops of the two hills ;
(ii) when r > R the eq. of motion has no damping term
and therefore 1

2 (dσ̄
dr )2 = Uω(σ̄) (i.e. the particle’s energy is

conserved). A straightforward calculation gives

Sω = S<
ω + S>

ω , (42)

where the core’s contribution is

S<
ω = −4π

3
R3ǫ+ 2πR2s2Rµ− 2πRs2R, (43)

and

S>
ω = 4πR2T + 2RA1 +A2, T ≡

∫ σR

0

dσ
√

2Uω(σ)

(44)

is the surface’s contribution. The quantities T and An ≡
8π
∫∞

0 dxxnUω(σ̄) depend weakly on ω when compared
with any positive power of R, which as we know become
infinite as ω2 → ω2

0. In this limit we can drop powers of
R of order lower than 2, obtaining therefore

Sω = −4π

3
R3ǫ+ 2π(2T + s2Rµ)R2. (45)

The condition that we can neglect the term linear in R is
R≫ A1/2πT . A quick look at the definitions of T and A1

shows that δ ≡ A1/2πT is the thickness of the Q-ball’s
wall. This is the reason for calling this the thin-wall limit.

5 We use here and in eq.(43) sinh(µR) ≃ cosh(µR) ≃ 1

2
eµR.
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The quantity 1
2τ ≡ T + 1

2s
2
Rµ has also a simple in-

terpretation: If we note that s2Rµ = 2
∫ sR

0 ds
√

s2µ2 =

2
∫ σ0

σR
dσ
√

2Uω0
it becomes clear that

1

2
τ =

∫ σR

0

dσ
√

2Uω +

∫ σ0

σR

dσ
√

2Uω0
≃
∫ σ0

0

dσ
√

2Uω0

(46)

is the surface tension of the thin-walled Q-ball.
The function of eq.(45) has a maximum at R̄ = τ/ǫ.

Putting this back in (45) and using eq.(14),(15) we get

S(ω) =
2π

3

τ3

ǫ2
=

8π

3

τ3

σ4
0

1

(ω2 − ω2
0)

2
, (47)

Q(ω) = −dS
dω

=
32π

3

τ3

σ4
0

ω

(ω2 − ω2
0)

3
=

4π

3
R̄3σ2

0ω, (48)

and

E(ω) = S(ω) + ωQ(ω) = ωQ(ω)

[

5

4
− ω2

0

4ω2

]

. (49)

Assuming a weak ω-dependence for τ , it follows from eq.(48)
the stability of thin-walled Q-balls:

ω

Q

dQ

dω
= 1 − 6

ω2

ω2 − ω2
0

< 0. (50)

These equations are valid for both ω2
0 > 0 and ω2

0 = 0 and
show a difference in the properties of thin-walled Q-balls
between models with unbroken symmetry (ω2

0 > 0) and
broken symmetry (ω2

0 = 0):

(i) For ω2
0 > 0 and ω2 ≃ ω2

0 we get the Q-balls as they
were first conceived by Coleman [5]. They have the
property that E = ω0Q, i.e. they behave like a ball of
Q-matter : the energy being proportional to the charge
which is proportional to the volume (of the core).

(ii) For ω2
0 = 0 and in the thin-wall limit, we get from

eq.(48) Q ∼ ω−5 and

E =
5

4

(

32π

3

τ3

σ4
0

)1/5

Q4/5. (51)

This shows that such Q-balls can’t be seen as Q-matter
[14]. The charge doesn’t grow with the volume but as
Q ∼ R̄5/2 and the energy as E ∼ R̄2. The reason
for this behaviour is simple: The core of the Q-ball is
nearly in the asymetric vacuum and it’s energy density
decreases exponentially with its radius R̄. The energy
of the core becomes thus less important than the sur-
face’s tension.

(iii) Finally, if ω2
0 > 0 but m2 ≫ ω2

0 the approximations we
made are still valid if m2 ≫ ω2 ≫ ω2

0 . In this regime,
although we have ω2

0 6= 0, we can use the results of (ii)
since ω2

0/ω
2 ≃ 0. The results of (i) naturally still apply

as ω2 → ω2
0 .

4.2 Thick-wall approximation.

We want now to look at theories which can be put in the
form

U(σ) =
1

2
m2σ2 −Aσn +

∑

p>0

Bpσ
n+p, (52)

with A a positive quantity. In the limit ω2 → m2, the Q-
ball cannot in general be approximated by a step function
as before. This limit is called, therefore, the thick-wall
limit. Some authors (see ref.[7,6,15]) proposed that since
σ(0) → 0 we may neglect the terms with powers higher
than n in eq.(52), when calculating the properties of the
Q-ball. In this way the energy and the charge of the Q-
balls get a simple dependence on the relevant parameters
of the theory, and the Q-balls stability can be analyzed.
This is what we are going to investigate in the following
lines.

Define

εω ≡ m2 − ω2. (53)

and rescale the field as

σ′ ≡ σ

(ε/A)
1

n−2

. (54)

Changing the variable r as r → rε
1

2 we obtain (eq.(12))

Sω[σ] = A− 2

n−2 ε
2

n−2
− 1

2S′
ε[σ

′], (55)

where

S′
ε[σ

′] ≡
∫

d3r

[

1

2

(

dσ′

dr

)2

+
1

2
(σ′)2 − (σ′)n

]

+

∫

d3r
∑

p

Bp

A

( ε

A

)

p
n−2

(σ′)n+p.

(56)

Suppose we know that the Q-ball solution σ̄ is an
extremum of Sω[σ]. To this solution corresponds an ex-
tremum of S′

ε[σ
′], which is obtained by using eq.(54). We

now hope that σ̄′(0) as a function of εω falls quickly enough
as εω → 0 so that the terms of order higher than n become
irrelevant to the calculation of σ̄′. In that case S′

ε[σ̄
′] ≡ Sn

doesn’t depend on ε, and we get the following simple ex-
pression for S(ω) ≡ Sω[σ̄]

S(ω) = A− 2

n−2 (m2 − ω2)
2

n−2
− 1

2Sn. (57)

We can now calculate the charge and the energy from this
expression. We have thus (for n > 2):

Q(ω) = −dS(ω)

dω
=

= A− 2

n−2Sn

(

2

n− 2
− 1

2

)

2ω(m2 − ω2)
2

n−2
− 3

2 ,

(58)
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and

E(ω) = A− 2

n−2Sn(m2 − ω2)
2

n−2
− 3

2

·
[

(m2 − ω2) + 2ω2

(

2

n− 2
− 1

2

)]

.
(59)

Something must be wrong for n ≥ 6: If n > 6 and ω > 0,
one sees that Q,E → −∞. That’s obviously impossible as
both the energy and the charge should be positive. Also

for n = 6 these equations give E(ω) = A− 1

2S6 6= 0 and
Q(ω) = 0, but this last expression implies that σ(r) = 0
with the consequence that E(ω) = 0!

We must conclude that, at least for n ≥ 6, this so-
called thick-wall approximation is a bad approximation.
The reason is simple: The approximation we made leads
us to a functional with no extrema for n ≥ 6, so that, in
this case, Sn does not exist. To prove this we start with
the (false) assumption that, for n ≥ 6 the functional

S[σ(x)] =

∫

d3x

(

1

2
(∇σ)2 +

1

2
σ2 − σn

)

, (60)

has an extremum σ̄(x). As a consequence, the functions
X(α) ≡ S[σ(x/α)] and Y (λ) ≡ S[λσ(x)] should have an
extremum at α = 1 and λ = 1 respectively. But this means
that

X ′(1) =

∫

d3x
1

2
(∇σ)2 + 3

∫

d3x

(

1

2
σ̄2 − σ̄n

)

= 0,

(61)

and

Y ′(1) =

∫

d3x

(

1

2
(∇σ)2 +

1

2
σ̄2

)

− n

2

∫

d3x σ̄n = 0.

(62)

Subtracting the first expression from the second one we
thus have

∫

d3x σ̄2 =
6 − n

2

∫

d3x σ̄n. (63)

For n ≥ 6 and σ̄ > 0 this is obviously wrong, as we in-
tended to show.

Thus we have proved that the so-called thick-wall ap-
proximation is useful only for n < 6. From eq.(58) we get

ω

Q
· dQ
dω

= 1 − 2

(

2

n− 2
− 3

2

)

ω2

m2 − ω2
, (64)

so that as ω2 → m2 we have thus

–
ω

Q
· dQ
dω

> 0 for n = 4, 5,

–
ω

Q
· dQ
dω

< 0 for n = 3.

This means that thick-walled Q-balls are known to be sta-
ble only if n = 3.

4.3 An application: Q-balls in the false vacuum.

As an illustration of the use of the approximations we have
just discussed, we will investigate what happens when the
symmetric vacuum becomes unstable, i.e. for ω2

0 < 0. Con-
sider the following potential

U(σ) =
1

2
m2σ2 − α

3
σ3 +

λ

4
σ4. (65)

We explained in sec.2 that the energy spectrum includes

Q-balls if ω2
0 = m2 − 2

9
α2

λ < m2 (see eq.(20)), i.e. if λ > 0.

For ω2
0 ≥ 0, the results of 4.1 and 4.2 show that both

thick-walled and thin-walled Q-balls are stable, which is
enough to show, using Coleman’s theorem, that all Q-
balls are absolutely stable configurations in the unbroken
phase.

The transition ω2
0 ≥ 0 → ω2

0 < 0 changes the energy
spectrum in a dramatic way[14,16]: If before we had sta-
ble Q-balls with all possible charges and energies, there
is now a maximum charge Qc and a maximum energy Ec

which Q-balls can have. One way of seeing this is using the
thin-wall approximation of sec.4.1. As we will show be-
low, we still can use this approximation when −ω2

0 ≪ m2

and ω2 ≪ m2. Eqs.(48) ff show that there is a frequency
ω2

c ≡ 1
5 |ω2

0 | such that Q(ω) attains a maximum at ω = ωc

and only Q-balls with ω2 > ω2
c are stable. Within this

approximation we get

Qc =
32π

3
√

5

(

5

18

)3

σ2
0

√

m2 + |ω0|2
3

|ω0|5
, (66)

Ec =

√
5

2
|ω0|Qc, (67)

and

R̄c =
5

9

√

m2 + |ω0|2
|ω0|2

, (68)

where we used τ = 1
3

√

m2 + |ω0|2σ2
0 . As we know, this

approximation is valid as long as the radius of the critical
Q-ball, R̄c, is much larger than the wall’s thickness, δ ∼
√

m2 − ω2
0

−1
, that is for m2 ≫ |ω0|2, as we said above.

The question is now: What happens as |ω0|2 becomes
larger, that is, for a deeper true vacuum? We will show
that for |ω0|2 > 4m2 the critical Q-ball is already a thick-
walled Q-ball. For the thick-wall approximation to be valid,
the term ∼ (σ′)n+1 = (σ′)4 in eq.(56) should be negleg-
ible when compared to the term ∼ (σ′)n = (σ′)3. Using
the numerical value σ′(0)2 ≃ 2 we get the following con-
dition on the parameters: m2 + |ω0|2 & 10(m2 −ω2). This
shows that if |ω0|2 > 4m2, the approximation is valid for
ω2 ≥ 1

2m
2. Now, a short look at eq.(64) shows that if

the critical Q-ball is thick-walled, the critical frequency is
precisely ω2

c = 1
2m

2. Furthermore we have

Qc =
3

2
S3m

2 σ2
0

(m2 + |ω0|2)2
, (69)



8 F. Paccetti Correia, M.G. Schmidt: Q-balls: some analytical results

Ec =
2
√

2

3
mQc. (70)

In conclusion, both thin-wall and thick-wall approxima-
tions show, for |ω0|2 < m2/100 and |ω0|2 > 4m2, resp.,
that there is a maximum charge Qc which stable Q-balls
can have. Although we can’t calculate Qc and ω2

c ana-
liticaly in the range |ω0|2 ∈ [m2/100, 4m2], using scaling
properties of the model it can be shown that the picture
remains the same[8].

5 Quantum corrections

This section is meant to explain why Q-balls, which are
classical configurations, are important to quantum theory.
As we will see, in certain circumstances the energy of a
Q-ball of charge q is the zeroth-order contribution in a
semi-classical expansion to the energy of the lowest lying
state of charge q. To show this it is usefull to investigate
the following partition function6:

Z(T ) = tr[e−HT ] =

∫

dφ 〈φ| e−HT |φ〉, (71)

for U(1)-invariant scalar theories. It is possible to perform
a separation of the contributions of sectors of different
charge to Z(T )

Z(T ) =
∑

q

∫

dφ

∫ 2π

0

dα

2π
e−iαq 〈φ| eiαQ e−HT |φ〉. (72)

This can be justified in a heuristic way [17,18], by noting
that

∫ 2π

0

dα

2π
eiα(Q−q) = δQ,q. (73)

(For a more formal derivation see ref.[19].) In the limit
T → +∞, we have

lim
T→∞

Z(T ) =
∑

q

e−E0

qT ≡
∑

q

Zq
0 (T ), (74)

where E0
q is the lowest energy eigenvalue in the sector of

charge q. As is shown in the appendix, Zq
0(T ) turns out

to be given by

Zq
0 (T ) =

∫

[dφ] δ
(

(q −Q)/
√
I
)

exp

(

−
∫

dtE

)

· cos

(

q

∫

dt
Q

I
− qα

)

,

(75)

where the integration is made over configurations whose
values at t = T/2 and t = −T/2 differ only by a global

6 A few words on the notation we use: |φ〉 = |φ(x)〉 is the
eigenvector of the field operator Φ(x) with eigenvalue φ(x) ≡
φR(x) + iφI(x). The measures dφ and [dφ] are respectively
∼
∏

x
dφR(x)dφI(x) and ∼

∏

x,t
dφR(x, t)dφI(x, t), resp.

phase, i.e φ(T/2) = φ(−T/2)eiα and Q[φ] and I[|φ|] are
the functionals defined in sec.2.

The important feature in this expression is that the
δ-function constrains the integration to be over config-
urations of charge q. As we know, there is, in certain
cases, a configuration which minimizes E[φ] for the given
charge: the Q-ball. Furthermore, this configuration also
makes the argument of the cosinus zero, because α =
ωT =

∫

QI−1dt. To conclude: the (stable) Q-ball configu-
ration makes the integrand of the above integral a maxi-
mum. But this is not enough an argument for performing
a semi-classical expansion around the Q-ball. The point
is that if there are configurations with nearly the same
energy, and with the same charge, as the Q-ball for which
q(
∫

dtQ/I − α) = 2πk, k ∈ Z\{0}, the oscillating part
of the integrand erases the contribution of the neighbour-
hood of the Q-ball. This can be the case, for instance,
for thin-walled Q-balls, as these have a low-lying mode,
with eigenvalue (6ω2/(ω2 − ω2

0) − 1)R−1, which becomes
a zero-mode as R → ∞.

Only in the case the cosinus is not oscillating that
fast in the neighbourhood of the Q-ball we can perform
the semi-classical expansion around this configuration, in
which case the classical energy is just the zero-order con-
tribution to E0

q = T−1 lnZq
0(T ). We can then set the cos-

inus equal to 1, rewrite the δ-function as [20]

∏

t

δ((q −Q)/
√
I) ∼ lim

a→0
exp

(

− 1

2a

∫

dt
(q −Q)2

I

)

,

(76)

and then expand the energy functional around the Q-ball

E[φ] = EQball + Efl[ψ], (77)

where Efl[ψ] is the energy contained in the fluctuations

ψ = φ− σ̄ eiωt/
√

2. In this way we get finally

e−E0

qT = e−EQbT lim
a→0

∫

[dψ] exp

[

−
∫

dt

(

Efl +
Q2

fl

2aIfl

)]

,

(78)

where Qfl[ψ] ≡ Q[φ] − q and Ifl[ψ] ≡ I[|σeiωt +
√

2ψ|].
Starting from this expression we can calculate the quan-
tum corrections to the energy of the Q-ball by performing
common perturbation theory.

6 Conclusions

In the body of this paper we presented an analytical inves-
tigation of the main properties of Q-balls. We want now to
underline part of the results, some of them because they
are new, others as they seem to be unknown in the recent
literature thus leading to some incorrect statements and
others because of their relevance.

As we have seen in sec.2, the existence of Q-balls, so-
lutions of non-zero charge, is a general property of scalar
models with an U(1)-symmetry: They exist in the case
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that ω2
0 = min(2U(σ)/σ2) < m2. As we also said, there is

a theorem by Coleman which states the absolute stability
of those Q-balls for which ω2

0 > 0 and EQb < mQ. This
is however of restricted use. For instance, the gaussian-
shaped B-balls which arise in models with gravity-media-
ted SUSY-breaking have ω2

0 = 0 (the potential grows too
slow at the infinity). For this case and the one with ω2

0 < 0
we can use the theorem of sec.3, which regards the local
stability of Q-balls7. But also for ω2

0 > 0 this theorem
is useful, as it shows that there can be also Q-balls with
more energy than Q free mesons, but locally stable. At
the quantum level this means that they can only decay
through tunneling. It is however not clear how this should
take place.

In sec.4.1 we introduced the thin-wall approximation
from a somehow unusual point of view - as the conse-
quence of a linearization of the eq. of motion for the core
of large Q-balls. The way we did this makes clear, for a
given model, where the approximation breaks. Another
advantage of our method is that it gives the results ob-
tained in [5,14] in an unified and quantitative way. It also
becomes clear that the effective potentials discussed in
ref.[3,21,4] in the context of AD baryogenesis, don’t allow
for thin-walled Q-balls. The reason is that if one turns
off the B-violating non-renormalization terms these po-
tentials are too flat (ω2

0 = 0 and σ0 = ∞), and therefore
we can’t linearize the eq. of motion as we did in sec.4.1.

In what concerns the other limit, ω2
0 → m2, we showed

that the thick-wall approximation is useful only when the
potential is of the form U3(σ) = 1

2m
2σ2 − ασ3 + · · · , or

U4(σ) = 1
2m

2σ2−λσ4 + · · · - in the first case thick-walled
Q-balls are stable, while in the second one unstable. For
more general potentials, like U(σ) = m2σ2 − gΛ4−nσn +
· · · , with n ≥ 6, we don’t know the thick-wall behaviour.
In this we desagree with the authors of ref.[15], which used
the thick-wall approximation for such potentials.

Sec.4.3 discussed the existence of Q-balls living in a
false vacuum. It is well known that in the limit of nearly
degenerate vacua thin-walled Q-balls larger than a cer-
tain radius are unstable and can therefore induce a phase
transition [16]. We shown, for the U3(σ) theory, that for
a very deep true vacuum there still are stable Q-balls in
the spectrum, although only thick-walled ones.

Finally, we revisited the proof, made in ref.[7], of the
stability of thick-walled Q-balls in the model U3(σ). The
author, trying to determine the second variation of the en-
ergy at fixed charge, used the method of lagrangean mul-
tipliers, which indeed is adequate only for the first order
variations. The expression obtained in this way (eq.(18)
of [7]),

δ2EQ
ref.[7]
=

∫

d3x
1

2
δσ(−∇2 + U ′′ + 3ω2)δσ,

7 In the above quoted example of the B-balls, the use of this
theorem shows that only B-balls with ω > R−1 and σ2(0) <
M2

p exp |K|−1, where |K| = 0.1 − 0.01 and Mp is the Planck
mass, are stable. Since we are interested only in σ ≪ Mp, all
interesting B-balls are stable.

misses the important non-local term that we found in
eq.(10) and can be shown to be larger than our result for
all values of ω. For instance, with the above expression one
would get the result that the translational modes, ∂iσ, are
not zero-modes. As we said above, with our expression we
confirm that thick-walled Q-balls are stable in the model
U3(σ).

The expression of ref.[7] was later used in ref.[22], for
potentials of the form U4(σ) in 1+1-dimensions, as a basis
for a numerical calculation of the vibration spectrum, and
for the determination of the parameter regions of stable
Q-balls and unstable Q-balls. To verify the validity of their
results the authors observed numerically the evolution of
a Q-ball belonging to the unstable parameter region, and
saw that it realy decays into plane waves. This positive
test, however, is not a convincing argument. The reason
is that this Q-ball was picked up exactly from the board-
ing line that separates the real unstable region and the
supposed unstable region in parameter space: they chose
a point in parameter space which lies on the line which
separates unbroken from broken symmetry and observed
a thin-walled Q-ball which, as we have seen in sec.4.3, is an
unstable configuration for ω2

0 < 0. Would one have picked
up a configuration lying in the middle of the supposed un-
stable region, one wouldn’t have observed any instability.

Our intention in sec.5 (and in the appendix) was to
show how the classical Q-balls are related with the proper-
ties of the quantum theory. Usually classical stable config-
urations are supposed to appear in the quantum theory as
dominant contributions to some functional integral, since
they are extrema of the action or the energy. In this spirit
we did an investigation of a functional integral which fur-
nishes the lowest lying energy state for a given charge q.
Although the Q-ball does not maximize the integrand in
the original integral, since the integration runs over all
possible configurations, we were able, after some cosmet-
ics, to rewrite the integral in such a way that the inte-
gration runs only over configurations of charge q and the
Q-ball of charge q maximizes the integrand. But, there was
a collateral effect - an oscillating term appeared which can
erase the contribution of the neighborhood of the Q-ball to
the integral. As we remarked there, we must compare the
period of the oscillation and the thickness of the gaussian
around the Q-ball configuration, to see whether it makes
sense to perform a semi-classical expansion or not. In the
case of an affirmative answer, the energy of the Q-ball is
the zeroth order contribution to the lowest lying energy
eigenstate of the given charge and we can use eq.(78) to
calculate radiative corrections to it.
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A Functional Integral for fixed charge

The purpose of this appendix is to derive the expression
for Zq

0(T ), eq.(75), starting from (see eq.(72)):

Zq
0(T ) =

∫

dφ

∫ 2π

0

dα

2π
e−iαq 〈φ| eiαQ e−HT |φ〉. (79)

A great part of the this derivation follows closely the one
by Rajaraman and Weinberg in ref.[17], whose intention
was to get to expression (87), although in the real time
(i.e. Minkowski) formalism.

Our first task is to calculate 〈φ| eiαQ e−HT |φ〉. The
effect of applying eiαQ in 〈φ| is just that of changing its
phase: e−iαQ|φ(x)〉 = |φ(x) eiα〉. We have thus

∫

dφ〈φ| eiαQ e−HT |φ〉 =

∫

dφ〈φ eiα| e−HT |φ〉

=

∫

[dφ] exp

(

−
∫

dt LE [φ]

)

,

(80)

where the integration is made over paths with φ(T/2) =
φ(−T/2)eiα.

We now change to the polar coordinates8 σ ≡
√

2|φ|
and ϑ ≡ arg (φ) we already used in sec.3. With these co-
ordinates the euclidean lagrangian reads

LE [σ, ϑ] =

∫

d3x [ 12 σ̇
2 + 1

2 (σϑ̇)2]

+

∫

d3x [ 12 (∇σ)2 + 1
2σ

2(∇ϑ)2 + U(σ)],

(81)

which turns to be the energy E[σ, ϑ] of the configuration

σeiϑ/
√

2. In the following E will therefore be used in place
of LE . Also, the measure is now [dφ] = [σ dσ][dϑ] and
the integration is performed over paths with σ(x, T/2) =
σ(x,−T/2) and ϑ(x, T/2) = ϑ(x,−T/2) + α. It is usefull
to extend the range of ϑ from [0, 2π] to ]−∞,+∞[, a step
which poses no problem as its only effect is to multiply
the integral with an infinite constant. The same applies to
the integration over α.

Now, we put the system in a box and expand ϑ(x) in
its Fourier modes:

ϑ(x, t) = b0(t) +
∑

ki 6=0

bki
(t) eikixi ≡ b0(t) + θ̃(x, t). (82)

It’s easy to recognize that the zero-mode b0(t) is the only
degree of freedom affected by the U(1) internal rotation
ϑ(x) → ϑ(x) + α. This follows readily from the fact that
∫

d3x θ̃(x, t) = 0. The effect of this coordinate transfor-
mation in the path integral is thus to change the measure
and the integration limits in the following way: [dϑ] =

[dθ̃] [db0] J , θ̃(T/2) = θ̃(−T/2), b0(T/2) = b0(−T/2) + α

8 Although this change of coordinates is non-trivial, it can
be shown that the naive substitution of coordinates that we
perform is correct up to terms of 4th order in the fluctuations
around the Q-ball, if we make the change q2 → q2 − 1/4[17,8].

where J is a path independent jacobian. We can now cal-
culate

Zq
0 =

∫ 2π

0

dα

2π

∫

[σ dσ] [dθ̃] [db0] J e
−
∫

dt E−iαq . (83)

To do this note that α = b0(T/2) − b0(−T/2) =
∫

dt ḃ0,
and therefore
∫

dtE[σ, ϑ] + iαq =

∫

dtE[σ, θ̃] +

+

∫

dt

(

1

2
ḃ20 I[σ] + ḃ0

(

Q[σ, θ̃] + iq
)

)

,

(84)

where I[σ] and Q[σ, θ̃] are the functionals defined in sec.2.
Now, we see that the integration in b0(t) combined

with the integration in α is the same as integrating over
arbitrary paths in b0, and that the integral is gaussian.
Thus, from these integrations we only get a term:

(

∏

t

√

I[σ]
−1

)

· exp

(
∫

dt
(Q+ iq)2

2I

)

, (85)

in this way obtaining an effective energy [17]

Eeff [σ, θ̃] ≡ E[σ, θ̃] − (Q[σ, θ̃] + iq)2

2I[σ]
, (86)

and the following expression:

Zq
0(T ) =

∫

[
√

I(σ)
−1
σ dσ] [dθ̃] J e−

∫

dt Eeff

, (87)

where, as we said, θ̃(x) includes all non-static spatial Fou-
rier modes, and the paths are cyclical. The energy Eeff

contains an imaginary part ImEeff = −qQ[σ, θ̃]/ I[σ],
but this will not contribute to any imaginary part of the
path integral, since while ReEeff is an even function of
θ̃, ImEeff is an odd one and Zq

0(T ) becomes

Zq
0 =

∫

[
√

I(σ)
−1
σ dσ] [dθ̃] J ·

· e−
∫

dt Eq cos

(

q

∫

dt
Q[σ, θ̃]

I[σ]

)

,

(88)

with

Eq[σ, θ̃] ≡ ReEeff = E[σ, θ̃] +
q2 −Q2[σ, θ̃]

2I[σ]
. (89)

We will now introduce the following identity under the
integral:

C =

∫

[db0(t)] δ

(

ḃ− q −Q[σ, θ̃]

I

)

, (90)

where we integrate over all possible paths, and C is an
infinite constant, which as usual will be absorbed in the
measure. The advantage of this step is that one recovers
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the integral over all the degrees of freedom and therefore
we can rewrite the measure in cartesian coordinates. To
get rid of [

√
I
−1

] =
∏

t(I(t))
−1/2 we absorb it in the δ-

function as follows

I−1/2δ

(

ḃ− q −Q[σ, θ̃]

I

)

= δ

(

q −Q[σ, ϑ]√
I

)

, (91)

where we used Q[σ, ϑ] = Q[σ, θ̃] + ḃI[σ]. Since the δ-
function imposes q = Q[σ, ϑ] we can readily show that

Eq[σ, θ̃] = E[σ, ϑ]:

E[σ, ϑ] = E[σ, θ̃] +
1

2
ḃ(Q[σ, θ̃] +Q[σ, ϑ]

= E[σ, θ̃] +
Q2[σ, ϑ] −Q2[σ, θ̃]

2I
.

(92)

Finally with the definitions φ = σeiϑ/
√

2 and α =
∫

dt ḃ
we obtain

∫

dt
Q[σ, θ̃]

I[σ]
=

∫

dt
Q[φ]

I[|φ|] − α. (93)

Using equations (88) to (93) we are led to eq.(75).
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