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Abstract

We propose a cosmological scenario in which the hot big bang universe is

produced by the collision of a brane in the bulk space with a bounding orb-

ifold plane, beginning from an otherwise cold, vacuous, static universe. The

model addresses the cosmological horizon, flatness and monopole problems

and generates a nearly scale-invariant spectrum of density perturbations with-

out invoking superluminal expansion (inflation). The scenario relies, instead,

on physical phenomena that arise naturally in theories based on extra di-

mensions and branes. As an example, we present our scenario predominantly

within the context of heterotic M-theory. A prediction that distinguishes this

scenario from standard inflationary cosmology is a strongly blue gravitational

wave spectrum, which has consequences for microwave background polariza-

tion experiments and gravitational wave detectors.
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I. INTRODUCTION

The Big Bang model provides an accurate account of the evolution of our universe from

the time of nucleosynthesis until the present, but does not address the key theoretical puz-

zles regarding the structure and make-up of the Universe, including: the flatness puzzle

(why is the observable universe so close to being spatially flat?); the homogeneity puzzle

(why are causally disconnected regions of the universe so similar?); the inhomogeneity puz-

zle (what is the origin of the density perturbations responsible for the cosmic microwave

background anisotropy and large-scale structure formation? And why is their spectrum

nearly scale-invariant?); and the monopole problem (why are topological defects from early

phase transitions not observed?). Until now, the leading theory for resolving these puzzles

has been the inflationary model of the universe.1,2 The central assumption of any infla-

tionary model is that the universe underwent a period of superluminal expansion early in

its history before settling into a radiation-dominated evolution. Inflation is a remarkably

successful theory. But in spite of twenty years of endeavor there is no convincing link with

theories of quantum gravity such as M-theory.

In this paper, we present a cosmological scenario which addresses the above puzzles but

which does not involve inflation. Instead, we invoke new physical phenomena that arise

naturally in theories based on extra dimensions and branes. Known as “brane universe”

scenarios, these ideas first appeared in Refs. 3 and 4. However, only recently were they given

compelling motivation in the work of Hořava and Witten5 and in the subsequent construction

of heterotic M-theory by Lukas, Ovrut and Waldram.6 Complementary motivation was

provided both in superstring theory7–9 and in non-string contexts.10,11 Many of the ideas

discussed here are applicable, in principle, to any brane universe theory. For example, in

discussing the features of our model, we draw examples both from the Randall-Sundrum

model10 and from heterotic M-theory. However, in this paper, we emphasize heterotic M-

theory. This is done for specificity and because, by doing so, we know that we are working

in a theory that contains all the particles and interactions of the standard model of particle
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physics. Hence, we are proposing a potentially realistic theory of cosmology.

Specifically, our scenario assumes a universe consisting of a five-dimensional space-time

with two bounding (3+1)-dimensional surfaces (3-branes) separated by a finite gap spanning

an intervening bulk volume. One of the boundary 3-branes (the “visible brane”) corresponds

to the observed four-dimensional universe in which ordinary particles and radiation propa-

gate, and the other is a “hidden brane.” The universe begins as a cold, empty, nearly BPS

(Bogolmon’yi-Prasad-Sommerfield12) ground state of heterotic M-theory, as described by

Lukas, Ovrut and Waldram.6 The BPS property is required in order to have a low-energy

four-dimensional effective action with N = 1 supersymmetry. The visible and hidden branes

are flat (Minkowskian) but the bulk is warped along the fifth dimension.

In addition to the visible and hidden branes, the bulk volume contains an additional

3-brane which is free to move across the bulk. The bulk brane may exist initially as a

BPS state, or it may spontaneously appear in the vicinity of the hidden brane through a

process akin to bubble nucleation. The BPS condition in the first case or the minimization

of the action in the second case require that the bulk brane be flat, oriented parallel to the

boundary branes, and initially at rest. Non-perturbative effects result in a potential which

attracts the bulk brane towards the visible brane. We shall assume that the bulk brane is

much lighter than the bounding branes, so that its backreaction is a small correction to the

geometry. See Figure 1.

The defining moment is the creation of the hot big bang universe by the collision of the

slowly moving bulk brane with our visible brane. Although the universe may exist for an

indefinite period prior to the collision, cosmic time as normally defined begins at impact. The

bulk and visible branes fuse through a “small instanton” transition, during which a fraction

of the kinetic energy of the bulk brane is converted into a hot, thermal bath of radiation and

matter on the visible brane. The universe enters the hot big bang or Friedmann-Robertson-

Walker (FRW) phase. Notably, instead of starting from a cosmic singularity with infinite

temperature, as in conventional big bang cosmology, the hot, expanding universe in our

scenario starts its cosmic evolution at a finite temperature. We refer to our proposal as
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the “ekpyrotic universe”, a term drawn from the Stoic model of cosmic evolution in which

the universe is consumed by fire at regular intervals and reconstituted out of this fire, a

conflagration called ekpyrosis.13 Here, the universe as we know it is made (and, perhaps,

has been remade) through a conflagration ignited by collisions between branes along a hidden

fifth dimension.

Forming the hot big bang universe from colliding branes affects each of the cosmological

problems of the standard big bang model. First, the causal structure of space-time in the

scenario differs from the conventional big bang picture. In standard big bang cosmology,

two events separated by more than a few Hubble radii are causally disconnected. This

relationship between the Hubble radius and the causal horizon applies to FRW cosmologies

that are expanding subluminally, as in the standard hot big bang model, but does not apply

to more general cosmologies, such as de Sitter space-time or the scenario we will describe.
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FIGURES

(a) (b)

(c) (d)

FIG. 1. One possible set of initial conditions of the ekpyrotic scenario has the universe beginning

in a cold, vacuous, nearly BPS state consisting of two static massive orbifold planes and a warped

geometry in the intervening bulk (a) in which the curvature is low near the rightmost orbifold plane

(the hidden brane) and high near the leftmost orbifold plane (the visible brane). Spontaneously, a

bulk brane peels away from the hidden brane over some region of space (b), forming a terrace. The

edges of the terrace expand outwards at light speed, while the interior moves very slowly towards

the opposing visible brane. Although the bulk brane is flat on average, quantum fluctuations

produce ripples over a wide range of length scales as the brane traverses the bulk (c). When

the bulk brane collides with the visible brane, the ripples result in different regions colliding and

reheating at slightly different times (d), thereby impressing a spectrum of density fluctuations on

the visible universe. The energy from the collision is translated into matter and radiation, heating

the universe to a temperature a few orders of magnitude smaller than the unification scale.

In our scenario, the collision sets the initial temperature and, consequently, the Hubble

radius at the beginning of the FRW phase. The Hubble radius is generally infinitesimal
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compared to the collision region. Two events outside the Hubble radius are correlated since

local conditions have a common causal link, namely, the collision with the bulk brane. Here

we take advantage of the fact that the brane is a macroscopic, non-local object and exists

for an indefinitely long period prior to the collision. That is, there is no direct connection

between the time transpired preceding the collision or causality and the Hubble time. This

feature provides a natural means for resolving the horizon problem.

As we have noted above, the boundary branes and the bulk brane are initially flat

and parallel, as demanded by the BPS condition. Furthermore, the motion of the bulk

brane along the fifth dimension maintains flatness (modulo small fluctuations around the

flat background). Hence, the hot big bang universe resulting from the collision of a flat

bulk brane with a flat visible brane is spatially flat. In other words, we address the flatness

problem by beginning near a BPS ground state.

We do not require the initial state to be precisely BPS to resolve the horizon and flatness

problems. It suffices if the universe is flat and homogeneous on scales ranging up to the

(causal) particle horizon, as should occur naturally beginning from more general initial

conditions. In the ekpyrotic scenario, the distance that particles can travel before collision is

exponentially long because the bulk brane motion is extremely slow. As a result, the particle

horizon at collision can be many more than 60 e-folds larger than the Hubble radius at

collision (where the latter is determined by the radiation temperature at collision). That is,

rather than introducing superluminal expansion to resolve the horizon and flatness problems,

the ekpyrotic model relies on the assumption that the universe began in an empty, quasi-

static BPS state which lasted an exponentially long time prior to the beginning of the hot

big bang phase.

Quantum fluctuations introduce ripples in the bulk brane as it moves across the fifth

dimension. During this motion there is a scale above which modes are frozen in, and below

which they oscillate. This scale decreases with time in a manner akin to the Hubble radius

of a collapsing Universe. The fluctuations span all scales up to this freeze-out scale, and we

assume they begin in their quantum mechanical ground state. As the brane moves across the
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bulk, the effective Hubble radius shrinks by an exponential factor while the wavelengths of

the modes decrease only logarithmically in time. Consequently, modes that begin inside the

initial freeze-out scale end up exponentially far outside it, and exponentially far outside the

final Hubble radius at the time of collision. The ripples in the bulk brane cause the collision

between the bulk brane and the visible brane to occur at slightly different times in different

regions of space. The time differences mean regions heat up and begin to cool at different

times, resulting in adiabatic temperature and density fluctuations. Hence, as interpreted by

an observer in the hot big bang FRW phase, the universe begins with a spectrum of density

fluctuations that extend to exponentially large, super-horizon scales.

Of course, the spectrum of energy density perturbations must be nearly scale-invariant

(Harrison-Zel’dovich14) to match observations of large-scale structure formation and tem-

perature anisotropies in the cosmic microwave background. We find that this condition is

satisfied if the potential attracting the bulk brane towards the visible brane is ultra weak at

large separations. This is consistent with potentials generated by non-perturbative effects

such as the exchange of virtual M2-branes (wrapped on holomorphic curves) between the

bulk brane and either of the boundary branes.

While the spectrum of perturbations is approximately scale invariant, as with inflation

there are small deviations from scale invariance. In the examples considered here, the

spectrum is blue (the amplitude increases as the wavelength decreases), in contrast to typical

inflationary models. With exponentially flat potentials, the spectrum is only marginally

blue, consistent with current observations. On the other hand, the potential has no effect

on the tensor (gravitational wave) perturbations, so the tensor spectrum is strongly blue

(spectral index nT ≈ 2), in contrast to the slightly red (nT ≤ 0) spectrum predicted in most

inflationary models. This prediction may be tested in near-future microwave background

anisotropy and gravitational wave detector experiments.

For some aspects of the ekpyrotic scenario, such as the generation of quantum fluctua-

tions, the description from the point-of-view of an observer on the bulk brane is the most

intuitive. For that observer, the scale factor and Hubble radius appear to be shrinking
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because the warp factor decreases as the bulk brane moves across the fifth dimension. How-

ever, as observed from the near-stationary boundary orbifold planes, the universe is slowly

expanding due to the gravitational backreaction caused by the bulk brane motion. Indeed,

a feature of the scenario is that the bulk brane is responsible for initiating the expansion

of the boundary branes. Furthermore, as we shall show, the brane gains kinetic energy due

to its coupling to moduli fields. Upon impact, the bulk brane is absorbed by the visible

brane in a so-called small-instanton phase transition (see Sec. II for details). This transi-

tion can change the gauge group on the visible brane. (For example, before collision the

gauge group on the visible brane might be one of high symmetry, such as E6, whereas after

collision it becomes the standard model gauge group.) Furthermore, the number of light

families of quarks and leptons on the visible brane may change during the transition. (For

example, the visible brane might make a transition from having no light families of quarks

and leptons to having three.) Upon collision, the kinetic energy gained by the bulk brane

is converted to thermal excitations of the light degrees of freedom, and the hot big bang

phase begins. Hence, the brane collision is not only responsible for initiating the expansion

of the universe, but also for spontaneously breaking symmetries and for producing all of the

quarks and leptons.

If the maximal temperature lies well below the mass scale of magnetic monopoles (and

any other cosmologically dangerous massive, stable particles or defects), none will be gen-

erated during the collision and the monopole problem is avoided.

Although the ideas presented in this work may be applicable to more general brane-

world scenarios, such as Randall-Sundrum, in developing our scenario we have felt that it

is important to take as a guiding principle that any concepts introduced in this scenario

be consistent with string theory and M-theory. By founding the model on concepts from

heterotic M-theory, one knows from the outset that the theory is rich enough to contain

the particles and symmetries necessary to explain the real universe and that nothing we

introduce interferes with a fundamental theory of quantum gravity. We emphasize that our

scenario does not rely on exponential warp factors (which are inconsistent with BPS ground
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states in heterotic M-theory) nor does it require large (millimeter-size) extra dimensions. For

example, we consider here a bulk space whose size is only four or five orders of magnitude

larger than the Planck length, consistent with Hořava-Witten phenomenology.15,16 All brane

universe theories, including heterotic M-theory, suffer from some poorly understood aspects.

For example, we have nothing to add here about the stability of the final, late time vacuum

brane configuration. We will simply assume that branes in the early universe move under

their respective forces until, after the big bang, some yet unknown physics stabilizes the

vacuum.

Figure 1 summarizes the conceptual picture for one possible set of initial conditions. The

remainder of this paper discusses our attempt to transform the conceptual framework into

a concrete model. For this purpose, a number of technical advances have been required:

• an understanding of the perturbative BPS ground state (Section II) and how it can

lead to the initial conditions desired for our scenario (Section III);

• a moduli space formulation of brane cosmology (Section IV A);

• a derivation of the equations of motion describing the propagation of bulk branes in a

warped background in heterotic M-theory, including non-perturbative effects (Section

IV B-D);

• a computation of the bulk brane-visible brane collision energy, which sets the initial

temperature and expansion rate of the FRW phase (Section IV D);

• an analysis of how the gravitational backreaction due to the motion of the bulk brane

induces the initial expansion of the universe (Section IV E);

• a computation of how ripples in the bulk brane translate into density perturbations

after collision with the visible brane (Section V A);

• a theory of how quantum fluctuations produce a spectrum of ripples on the bulk brane

as it propagates through a warped background (Section V B);
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• a determination of the generic conditions for obtaining a nearly scale invariant spec-

trum and application of general principles to designing specific models (Section V

B);

• a calculation of the tensor (gravitational wave) perturbation spectrum (Section V C);

• a recapitulation of the full scenario explaining how the different components rely on

properties of moduli in 5d (Section VI A);

• a fully worked example which satisfies all cosmological constraints (Section VI A);

• and, a comparison of the ekpyrotic scenario with inflationary cosmology, especially

differences in their predictions for the fluctuation spectrum (Section VI B).

In a subsequent paper, we shall elaborate on the moduli space formulation of brane cos-

mology and show how it leads to a novel resolution of the singularity problem of big bang

cosmology.17

The ekpyrotic proposal bears some relation to the pre-big bang scenario of Veneziano et

al.18–20 which begins with an almost empty but unstable vacuum state of string theory but

which, then, undergoes superluminal deflation. Several important conceptual differences are

discussed in Section VIB. Models with brane interactions that drive inflation followed by

brane collision have also been considered.21–25 Applications of the moduli space of M-theory

and Hořava-Witten theory to cosmology have been explored previously in the context of

inflation.26–28 The distinguishing feature of the ekpyrotic model is that it avoids inflation

or deflation altogether. A non-inflationary solution to the horizon problem was suggested

in Ref. 29, but it is not clear how to generate a nearly scale-invariant spectrum of density

fluctuations without invoking inflation.

We hope that our technical advances may be useful in exploring other variants of this

scenario. Some aspects remain more speculative, especially the theory of initial conditions

(as one might expect) and non-perturbative contributions. A detailed understanding of

these latter aspects awaits progress in heterotic M-theory.
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II. TERMINOLOGY AND MOTIVATION FROM HETEROTIC M-THEORY

In this section, we briefly recount key features of heterotic M-theory that underlie and

motivate the example of our ekpyrotic scenario given in this paper. Those who wish to

understand the basic cosmological scenario without regard to the heterotic M-theory context

can proceed directly to the next section.

Heterotic M-theory has its roots in the work of Hořava and Witten5 who showed that com-

pactifying (eleven-dimensional) M-theory on an S1/Z2 orbifold corresponds to the strong-

coupling limit of heterotic E8 × E8 (ten-dimensional) string theory. Compactifying an ad-

ditional six dimensions on a Calabi-Yau three-fold leads, in the low energy limit, to a four-

dimensional N = 1 supersymmetric theory,15 the effective field theory that underlies many

supersymmetric theories of particle phenomenology. By equating the effective gravitational

and grand-unified coupling constants to their physical values, it was realized that the orbifold

dimension is a few orders of magnitude larger than the characteristic size of the Calabi-Yau

space.15,16 There is, therefore, a substantial energy range over which the universe is effec-

tively five-dimensional, being bounded in the fifth-dimension by two (3 + 1)-dimensional

“end-of-the-world” S1/Z2 orbifold fixed planes. By compactifying Hořava-Witten theory

on a Calabi-Yau three-fold, in the presence of a non-vanishing G-flux background (that

is, a non-zero field strength of the three-form of eleven dimensional M-theory) required by

anomaly cancellation, the authors of Refs. 6 and 30 were able to derive the explicit effective

action describing this five-dimensional regime. This action is a specific gauged version of

N = 1 supergravity in five dimensions and includes “cosmological” potential terms that al-

ways arise in the gauged context. It was shown in Ref. 6 that these potentials support BPS

3-brane solutions of the equations of motion, the minimal vacuum consisting of two 3-branes,

each coinciding with one of the S1/Z2 orbifold fixed planes. These boundary 3-branes (the

visible brane and the hidden brane) each inherit a (spontaneously broken) N = 1 E8 su-

per gauge multiplet from Hořava-Witten theory. This five-dimensional effective theory with

BPS 3-brane vacua is called heterotic M-theory. It is a fundamental paradigm for “brane
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universe” scenarios of particle physics.

In order to support a realistic theory, heterotic M-theory must include sufficient gauge

symmetry and particle content on the 3-brane boundaries. In the compactification discussed

above, the authors of Refs. 6 and 30 initially made use of the standard embedding of the spin

connection into the gauge connection, leading to an E6 gauge theory on the visible 3-brane

while the gauge theory on the hidden 3-brane is E8. Subsequently, more general embeddings

than the standard one were considered.31 Generically, such non-standard embeddings (topo-

logically non-trivial configurations of gauge fields known as G-instantons) induce different

gauge groups on the orbifold fixed planes. For example, it was shown in Refs. 32 and 33

that one can obtain grand unified gauge groups such as SO(10), SU(5) and the standard

model gauge group SU(3)C ×SU(2)L ×U(1)Y on the visible brane by appropriate choice of

G-instanton. Similarly, one can obtain smaller gauge groups on the hidden brane, such as E7

and E6. However, as demonstrated in Refs. 31-33, requiring a physically interesting gauge

group such as SU(3)C × SU(2)L × U(1)Y , along with the requirement that there be three

families of quarks and leptons, typically leads to the constraint that there must be a certain

number of M5-branes in the bulk space in order to make the theory anomaly-free. These

M5-branes are wrapped on holomorphic curves in the Calabi-Yau manifold, and appear as

3-branes in the five-dimensional effective theory. The five-dimensional effective action for

non-standard embeddings and bulk space M5-branes was derived in Ref. 31. The key conclu-

sion from this body of work is that heterotic M-theory can incorporate the particle content

and symmetries required for a realistic low-energy effective theory of particle phenomenol-

ogy. There has been a considerable amount of literature studying both the four-dimensional

limit of Hořava-Witten theory34 and heterotic M-theory.35

A feature of M5-branes which we will utilize is that they are allowed to move along the

orbifold direction. It is important to note that the M5-brane motion through the bulk is

not “free” motion. Rather, non-perturbative effects, such as the exchange of virtual open

supermembranes stretched between a boundary brane and the bulk M5-brane, can produce

a force between them. The corresponding potential energy can, in principle, be computed
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from M-theory. Explicit calculations of the supermembrane-induced superpotentials in the

effective four-dimensional theory have been carried out in Refs. 36 and 37. Combined with

the M5-brane contribution to the Kähler potential presented in Ref. 38, one can obtain an

expression for the supermembrane contribution to the M5-brane potential energy. These

non-perturbative effects cause the bulk brane to move along the extra dimension. In partic-

ular, it may come into contact with one of the orbifold fixed planes. In this case, the branes

undergo a “small instanton” phase transition which effectively dissolves the M5-brane, ab-

sorbing its “data” into the G-instanton.39 Such a phase transition at the visible brane may

change the number of families of quarks and leptons as well as the gauge group. For instance,

the observable 3-brane may go from having no light families of quarks and leptons prior to

collision to having three families after the phase transition.

It is in this five-dimensional world of heterotic M-theory, bounded at the ends of the

fifth dimension by our visible world and a hidden world, and supporting moving five-branes

subject to catastrophic family and gauge changing collisions with our visible 3-brane, that

we propose to find a new theory of the very early universe.

III. INITIAL CONDITIONS

All cosmological models, including the hot big bang and the inflationary scenario, rest

on assumptions about the initial conditions. Despite attempts, no rigorous theory of initial

conditions yet exists.

Inflationary theory conventionally assumes that the universe emerges in a high energy

state of no particular symmetry that is rapidly expanding. If traced backward in time, such

states possess an initial singularity. This is only one of several fundamental obstacles to con-

structing a well-defined theory of ‘generic’ inflationary initial conditions. For a theory based

on such general and uncertain initial conditions, it is essential that there be a dynamical at-

tractor mechanism that makes the universe more homogeneous as expansion proceeds, since

such a mechanism provides hope that the uncertainty associated with the initial conditions
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is, in the end, irrelevant. Superluminal expansion provides that mechanism.

The ekpyrotic model is instead built on the assumption that the initial state is quasi-

static, nearly vacuous and long-lived, with properties dictated by symmetry. So, by con-

struction, the initial state is special, both physically and mathematically. In this case, while

a dynamical attractor mechanism may be possible (see below), it is not essential. One can

envisage the possibility that the initial conditions are simply the result of a selection rule

dictating maximal symmetry and nearly zero energy.

Within the context of superstring theory and M-theory, a natural choice with the above

properties is the BPS (Bogolmon’yi-Prasad-Sommerfeld) state.6 The BPS property is already

required from particle physics in order to have a low-energy, four-dimensional effective action

with N = 1 supersymmetry, necessary for a realistic phenomenology. For our purposes, the

BPS state is ideal because, not only is it homogeneous, as one might suppose, but it is

also flat. That is, the BPS condition links curvature and homogeneity. It requires the two

boundary branes to be parallel.

The BPS condition also requires the bulk brane to be nearly stationary. If the bulk

brane has a small initial velocity, it is free to move along the fifth dimension. Assuming the

bulk brane to be much lighter than the bounding branes enables us to treat its backreaction

as a small perturbation on the geometry. Non-perturbative effects can modify this picture

by introducing a potential for the bulk brane. For example, a bounding brane and bulk

brane can interact by the exchange of M2-branes wrapped on holomorphic curves, resulting

in a potential drawing the bulk brane towards our visible brane. In Section V, we shall see

that the non-perturbative potential plays an important role in determining the spectrum of

energy density fluctuations following the collision of the bulk brane with our visible brane.

We do not rule out the possibility of a dynamical attractor mechanism that drives the

universe towards the BPS state beginning from some more general initial condition. Such

parallelism would be a natural consequence of all the branes emerging from one parent

brane. Another appealing possibility is to begin with a configuration consisting of only the

two bounding 3-branes. The configuration may have some curvature and ripples, but these
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can be dissipated by radiating excitations tangential to the branes and having them travel

off to infinity. Then, at some instant, the hidden brane may under go a “small instanton”

transition which causes a bulk brane to peel off. While little is known about the dynamics

of this peeling off, it is reasonable to imagine a process similar to bubble nucleation in first

order phase transitions. We suppose that there is a long-range, attractive, non-perturbative

potential that draws the bulk brane towards our visible brane, as shown in Figure 2. Very

close to the hidden brane, there may be a short-range attractive force between the bulk

brane and the hidden brane due to small-instanton physics (not shown in the Figure). The

situation is similar to false vacuum decay where the position of the bulk brane along the

fifth dimension, Y , plays the role of the order parameter or scalar field. Classically, a

bulk brane attached to the hidden brane is kept there by the energy barrier. However,

quantum mechanically, it is possible to nucleate a patch of brane for which Y lies on the

other side of the energy barrier. At the edges of the patch, the brane stretches back towards

and joins onto the orbifold plane. The nucleated patch would correspond to the minimum

action tunneling configuration. We conjecture that, as in the case of bubble nucleation, the

configuration would be one with maximal symmetry. In this case, this configuration would

correspond to a patch at fixed Y with a spherical boundary along the transverse dimensions.

The nucleation would appear as the spontaneous appearance of a brane that forms a flat,

spherical terrace at fixed Y parallel to the bounding branes (i.e., flat). Once nucleated,

the boundaries of the terrace would spread outwards at the speed of light, analogous to the

outward expansion of a bubble wall in false vacuum decay. At the same time, the brane

(the terrace) would travel towards the visible brane due to the non-perturbative potential.

As we shall see in Section IV, this motion is very slow (logarithmic with time) so that

the nucleation rate is essentially instantaneous compared with the time scale of transverse

motion. In other words, for our purposes, the nucleation process corresponds to a nearly

infinite brane peeling off almost instantaneously.

Beginning in an empty, quasi-static state addresses the horizon and flatness problems, but

one should not underestimate the remaining challenges: how to generate a hot universe, and
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how to generate perturbations required for large-scale structure. The remarkable feature of

the ekpyrotic picture, as shown in the forthcoming sections, is that brane collision naturally

serves both roles.

V=0

brane

(y=R)

"hidden"
brane

"visible" 

Y

V(Y)

(y=0)
FIG. 2. Sketch of the exponential potential V (Y ) = −ve−mαY (the line of zero potential energy

corresponds to the dotted line). The potential attracts the bulk brane towards the visible brane.

The force is strongest near the visible brane and tends to zero at large distances.

In either setup, we begin with a flat bulk brane, either a finite patch or an infinite plane,

which starts nearly at rest, and a non-perturbative force drawing it towards the visible brane.

These initial conditions are sufficient to enable our scenario.

IV. PROPAGATION OF THE BULK BRANE

A. Moduli Space Actions for Brane-World Gravity

In this section, we discuss the moduli space approximation which we shall employ

throughout our analysis. This approximation may be used when there is a continuous
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family of static solutions of the field equations, of degenerate action. It is the basis for

much of what is known of the classical and quantum properties of solitons such as magnetic

monopoles and vortices.40 It is also a powerful tool for cosmology as it neatly approximates

the five dimensional theory in the regime where the rate of change of the geometry, as mea-

sured, for example, by the four dimensional Hubble constant H is smaller than the typical

spatial curvature scale in the static solutions. The moduli are the parameters specifying the

family of static solutions, ‘flat directions’ in configuration space along which slow dynamical

evolution is possible. During such evolution the excitation in other directions is consistently

small provided those directions are stable and characterized by large oscillatory frequencies.

The action on moduli space is obtained by substituting the static solutions into the full

action with the modular parameters represented as space-time dependent moduli fields, QI ,

where I runs over all the moduli fields. If we consider the time dependence first, as we shall

do for the homogeneous background solutions, the moduli space action takes the form

S =
∫

dτ GIJ(Q)Q̇IQ̇J (1)

where GIJ(Q) is a matrix-valued function of the moduli fields. This is the action for a non-

relativistic particle moving in a background metric GIJ(Q), the metric on moduli space.

For truly degenerate static solutions, the potential term must be constant, and therefore

irrelevant to the dynamics. Even if a weak potential V is additionally present, as it shall

be in our discussion below, the moduli approximation is still valid as long as the dynamical

evolution consists in the first approximation of an adiabatic progression through the space

of static solutions.

In the next section we compute the moduli space action for heterotic M-theory. First,

however, it is instructive to consider a simpler model which demonstrates similar physical

effects and is of some interest in its own right. This model, discussed by Randall and Sun-

drum,10 consists of a five dimensional bulk described by Einstein gravity with a negative

cosmological constant Λ, bounded by a pair of branes with tension ±α. The brane tension

must be fine tuned to the value α = (3|Λ|/(4πG5))
1/2 in order for static solutions to ex-
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ist. Because there are few moduli, the model is simple to analyze and illustrative of some

important effects. However, as we emphasize below, there are reasons for taking heterotic

M-theory more seriously as a candidate fundamental description.

In the Randall-Sundrum model, the static field equations allow a two-parameter family

of solutions, with metric

ds2 = −n2dτ 2 + a2d~x2 + dy2, a = ey/L, n = Na, y1 ≤ y ≤ y0, (2)

and the positive (negative) tension branes located at y0 (y1) respectively. L is the Anti-de

Sitter (AdS) radius given by L2 = 3/(4πG5|Λ|), and N is an arbitrary constant.

The above solutions are specified by the three moduli N , y0 and y1. We now allow them

to be time dependent. The lapse function N(t) is associated with time reparametrization

invariance and, hence, not a physical degree of freedom. The other two moduli represent the

proper distance between the branes, but also the time-dependent cosmological ‘scale factors’

a0 = ey0/L and a1 = ey1/L on each brane. We shall see in a moment how these combine to give

four-dimensional gravity with a massless scalar, related to the proper separation between

the branes.

To compute the moduli space action it is convenient to change from the coordinates

in Eq. (2) to coordinates in which the branes are fixed. This is accomplished by setting

y = (y0 − y1)ỹ + y1, and the branes are now located at ỹ = 0 and 1 respectively. We

substitute the ansatz Eq. (2) into the five dimensional action and integrate over ỹ. All

potential terms cancel. Since the branes do not move in the ỹ coordinates, the kinetic terms

arise only from the five dimensional Ricci scalar, which yields the result

S =
L

16πG5

∫

dτd3xN−1 6(ȧ2
1 − ȧ2

0). (3)

Thus the metric on moduli space is just the 1+1 Minkowski metric, and we infer that moduli

space in this theory is completely flat.

We may now change coordinates to

a0 = a cosh f a1 = a sinh f (4)
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where a2 = a2
0 − a2

1, and the proper separation between the branes is just L ln(a0/a1) =

L ln(coth f). The action (3) then becomes

S =
1

16πG4

∫

dτd3xN−1 6
(

−ȧ2 + a2ḟ 2
)

, (5)

where G4 = G5L
−1, just the action for four dimensional gravity coupled to a massless scalar

field f . This is the ‘radion’ field.41 Note that the ‘4d Einstein frame scale factor’ a is not

the scale factor that is seen by matter localized on the branes: such matter sees a0 or a1.

As we shall see, it is perfectly possible for both of the latter scale factors to expand while a

contracts.

The general solution to the moduli space theory is easily obtained from (3): the scale

factors evolve linearly in conformal time τ , with ȧ1 = ±ȧ0. From the point of view of

each brane, the motion of the other brane acts as a density of radiation (i.e., allowing

ȧ1,0 = constant). Although the moduli space theory has identical local equations to four-

dimensional gravity coupled to a massless scalar, the geometrical interpretation is very

different, so that what is singular from one point of view may be non-singular from the

other.17

To obtain an action that might describe the present, hot big bang phase with fixed

gravitational constant, one might add a potential V (f) which fixes the interbrane separation

f , causing it to no longer be a free modulus (e.g., see Ref. 42). Likewise adding extra fields

on either brane, one sees that a standard Friedmann constraint is obtained from the variation

with respect to N . Generally the matter couplings will involve the field f . However, if V (f)

rises steeply away from its minimum and if its value at the minimum is zero (so that there is

no vacuum energy contribution), f will not evolve appreciably and four dimensional gravity

will be accurately reproduced.

We imagine that, prior to the big bang phase, there is an additional, positive tension

bulk brane. For static solutions to occur, we require that the three brane tensions sum to

zero. Positivity of the bulk brane tension imposes that the cosmological constant to its right,

Λ0, be smaller in magnitude than that to its left, Λ1, so that the corresponding AdS radii
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obey L0 > L1.

For the three brane case we obtain the moduli space action

S =
1

16πG5

∫

dτd3xN−16
(

−L0ȧ
2
0 + (L0 − L1)ȧ

2
B + L1ȧ

2
1

)

, (6)

where aB is the scale factor on the bulk brane. Again this is remarkably simple, just

Minkowski space of 2+1 dimensions. Likewise for N parallel branes, all with positive tension

except the negative tension boundary brane, the system possesses a metric which is that

for N -dimensional Minkowski space. Note that the ‘masses’ appearing in the kinetic terms

for the boundary branes are the opposite of what one might naively expect. Namely, the

positive tension boundary brane (hidden brane) has the negative ‘mass’ −L0, whereas the

negative tension boundary brane (visible brane) has a positive ‘mass’ L1. The magnitudes

of these terms are also surprising: the visible brane has the greater magnitude tension, but

the smaller magnitude moduli space mass.

Just as for the brane-antibrane system, when more branes are present one can change

variables to those in which the theory resembles four dimensional Einstein gravity coupled

to massless fields. For three branes, the required change of variables is

a0 = a coshf,

aB = (L0/(L0 − L1))
1
2 a sinhf cosθ,

a1 = (L0/L1)
1
2 a sinhf sinθ, (7)

and the scalar field kinetic term takes the form a2(ḟ 2 + θ̇2 sinh2 f). The scalar fields live

on the hyperbolic plane H2, and there is a nontrivial Kähler potential. When we introduce

potentials, we must do so in a manner which respects four dimensional general coordinate

invariance. This restricts the form to

∆S = −
∫

dτd3xNa4V (f, θ). (8)

We shall assume that the system starts out nearly static, and that the potential energy

is always negative, so that we are clearly not using inflation to drive expansion. We further
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assume that the interaction potential draws the bulk brane away from the hidden brane

towards the visible brane. The original variables in Eq. (6) provide some insight into what

happens. We consider an interaction between a0 and aB causing the latter to decrease.

But since a0 has a negative ‘mass’ it is actually pushed in the same direction and thus

contracts. Similarly an interaction potential between a0 and a1 can have the opposite effect:

causing both a0 and a1 to expand. Figure (3) shows an example, with the bulk brane being

pushed across the gap, and the visible brane being attracted towards it. The hidden brane

actually ‘bounces’ (this is barely visible in the Figure) due to a competition between the two

effects, so that by the collision between bulk and visible branes, both outer boundary branes

are actually expanding; that is, a0 and a1 are both increasing. At first sight this appears

inconsistent with the four dimensional point of view: if the system starts out static, and with

all potentials negative, then the 4d Einstein frame scale factor a must contract throughout.

The two points of view are consistent because ȧ1 contributes negatively to ȧ. Since a1 is

expanding rapidly compared to a0, a is indeed contracting, as shown in the Figure. Of

course what is happening physically is that the fifth dimension is collapsing, a well known

hazard of Kaluza-Klein cosmology. Here, the inter-brane separation is decreasing while the

scale factors seen by matter on the branes are expanding.
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FIG. 3. Evolution of scale factors in a three-brane system where a bulk brane is drawn across

from the hidden brane to the visible brane. The solid lines show (from top to bottom) the scale

factors on the hidden brane (a0), the bulk brane (aB) and the visible brane (a1). At collision

between the bulk brane and the visible brane, both boundary branes are expanding. The evolution

of the 4d Einstein frame scale factor a is also shown as a dashed line: it contracts throughout.

What happens when the bulk brane meets the boundary? A matching condition is needed

to determine the resulting cosmology. The initial state is specified by the scale factors a0,

aB and a1 and their time derivatives, the final state by a0, a1 and their time derivatives,

plus the coordinates and momenta of any excitations produced in the collision.

One expects that the scale factors a, a1 and a0 should be continuous: likewise ȧ0 would

be expected to be continuous if no bulk brane hits the hidden brane, and if no constraint

on the size of the extra dimension is imposed. However, ȧ1 cannot be continuous since the

bulk brane imparts some momentum on the visible brane. The momentum conservation

condition can be expressed as

L0a
i
0ȧ

i
0 − (L0 − L1)ȧ

i
Bai

B − L1ȧ
i
1a

i
1 = L0a

f
0 ȧ

f
0 − L0a

f
1 ȧ

f
1 , (9)
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where i and f subscripts label initial and final quantities. Conservation of momentum applies

if the forces derive from a potential V which is short-ranged and translation invariant and if

there is no other entity that carries momentum after collision. The above conditions imply

the continuity of the ‘4d Einstein frame scale factor’ a and its time derivative.

This matching condition, if correct, would pose a serious problem for our scenario since

it implies that the four dimensional scale factor a is contracting after collision, at the be-

ginning of the hot big bang phase. Specifically, the matching condition suggests a simple

continuation of the motion in Figure 3 after collision in which both branes are expanding but

a is decreasing because the two branes are approaching one another and the fifth dimension

is collapsing.

In the M-theory models which we consider in this paper, we shall simply impose a

constraint on moduli space which ensures that the distance between the visible and hidden

branes becomes fixed after collision, as required to converge to the Hořava-Witten picture.

The constraint corresponds to fixing a0/a1 after collision, forcing a discontinuity in both

ȧ1 and ȧ0. In this case the momentum matching condition (continuity of ȧ) yields rather

paradoxical behavior in which both ȧ1 and ȧ0 reverse after collision, so the universe collapses.

This does not seem physically plausible, especially when matter is produced at collision, and

the expansion of the matter would then have to be reversed as the size of the fifth dimension

became fixed. More plausible is that ȧ is also discontinuous: the branes collide, their

separation becomes fixed, and the pair continue in the same direction of motion (expansion)

as before collision. Here we simply wish to flag this issue as one that we have not resolved

in the M-theory models considered here: more work is needed to do so.

We have identified at least one mechanism for avoiding contraction or collision while

still remaining within the moduli space approximation. We have constructed models for

branes in AdS employing ‘non-minimal’ corrections to the kinetic terms of a1,0, which are

allowed by four dimensional general coordinate invariance. These non-minimal kinetic terms

both stabilize the size of the extra dimension and allow final expansion from static initial

conditions, with negative potentials.17
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Another possibility is that the moduli space approximation break-down at collision (it

must break down, since radiation is produced) leads to the release of radiation into the

bulk. This is prohibited by planar symmetry in the AdS example, but is possible in the

more general M-theory context. Radiation emitted into the bulk contributes to the pressure

T55, which, from the G55 Einstein equations, acts to decelerate a1. The emitted radiation is

redshifted as it crosses the bulk, so is likely to have less effect on the hidden brane if it is

absorbed there. The net result would be a slowing of a1, causing the effective scale factor a

to increase.

We do not want to understate the challenge of obtaining a final expanding universe with

stabilized fifth dimension. In a conventional four-dimensional theory (Einstein gravity plus

scalar fields) it would simply be impossible to start from zero energy and, through evolution

involving negative potentials, obtain a final expanding universe. Our point is that brane

world scenarios offer ways around this ‘no-go theorem’, which we have just begun to explore.

The AdS examples we have discussed are instructive in that they are easier to ana-

lyze than the full M-theory case. However, as mentioned above, it is unlikely that these

model theories are quantum mechanically consistent. The most obvious problem is that fine

tuning is needed to balance the brane tension against the cosmological term. Without this

balance, no static solutions are possible. Computing the quantum corrections may in fact be

impossible since, in the thin-brane limit, these are generally infinite and non-renormalizable.

Therefore, for the remainder of the paper, we turn to analogous examples in heterotic

M-theory, which is more complex but has other advantages. The branes in this theory are

BPS states, protected from quantum corrections by supersymmetry. Their tensions are fixed

by exact quantum mechanical symmetries and there is no fine tuning problem analogous to

that present in the Randall-Sundrum models.
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B. The Background BPS Solution in Heterotic M-theory

The five-dimensional effective action of heterotic M-theory was derived in Refs. 6 and 30.

Its field content includes a myriad of moduli, most of which will be assumed frozen in this

paper. We shall, therefore, use a simplified action describing gravity gγδ, the universal

“breathing” modulus of the Calabi-Yau three-fold φ, a four-form gauge field Aγδǫζ with field

strength F = dA and a single bulk M5-brane. It is given by

S =
M3

5

2

∫

M5

d5x
√−g

(

R− 1

2
(∂φ)2 − 3

2

e2φF2

5!

)

−3
3
∑

i=1

αiM
3
5

∫

M
(i)
4

d4ξ(i)

(

√

−h(i)e
−φ − ǫµνκλ

4!
Aγδǫζ∂µXγ

(i)∂νX
δ
(i)∂κX

ǫ
(i)∂λX

ζ
(i)

)

, (10)

where γ, δ, ǫ, ζ = 0, . . . , 4, µ, ν, . . . = 0, . . . , 3. The space-time is a five-dimensional manifold

M5 with coordinates xγ . The four-dimensional manifolds M(i)
4 , i = 1, 2, 3 are the visible,

hidden, and bulk branes respectively, and have internal coordinates ξµ
(i) and tension αiM

3
5 .

Note that αi has dimension of mass. If we denote α1 ≡ −α, α2 ≡ α − β, and α3 ≡ β,

then the visible brane has tension −αM3
5 , the hidden brane (α− β)M3

5 , and the bulk brane

βM3
5 . It is straightforward to show that the tension of the bulk brane, βM3

5 , must always be

positive. Furthermore, one can easily deduce that the tension on the visible brane, −αM3
5 ,

can be either positive or negative. The ekpyrotic scenario can be applied, in principle, to

any such vacua. In this paper, for specificity, we will always take α > 0, so that the tension

on the visible brane is negative. Furthermore, we will choose β such that α−β > 0, that is,

the tension of the hidden brane is positive. The tensor h(i)
µν is the induced metric (and h(i)

its determinant) on M(i)
4 . The functions Xγ

(i)(ξ
µ
(i)) are the coordinates in M5 of a point on

M(i)
4 with coordinates ξµ

(i). In other words, Xγ
(i)(ξ

µ
(i)) describe the embedding of the branes

into M5.

The BPS solution of Lukas, Ovrut, and Waldram6 is then given by1

1We have changed the notation used in Ref. 6 by replacing their H(y) with D(y). In this paper,
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ds2 = D(y)(−N2dτ 2 + A2d~x2) + B2D4(y)dy2

eφ = BD3(y)

F0123Y = −αA3NB−1D−2(y) for y < Y

= −(α − β)A3NB−1D−2(y) for y > Y, (11)

where

D(y) = αy + C for y < Y

= (α − β)y + C + βY for y > Y, (12)

and A, B, C, N and Y are constants. Note that A, B, C, N are dimensionless and Y has the

dimension of length. The visible and hidden boundary branes are located at y = 0 and

y = R, respectively, and the bulk brane is located at y = Y , 0 ≤ Y ≤ R. We assume that

C > 0 so that the curvature singularity at D = 0 does not fall between the boundary branes.

Note that y = 0 lies in the region of smaller volume while y = R lies in the region of larger

volume.

Finally, note that inserting the solution of the four-form equation of motion into Eq. (10)

yields precisely the bulk action given in Ref. 6 with charge −α in the interval 0 ≤ y ≤ Y

and charge −α + β in the interval Y ≤ y ≤ R. The formulation of the action Eq. (10) using

the four-form A is particularly useful when the theory contains bulk branes, as is the case

in ekpyrotic theory.

C. The Moduli Space Action of Heterotic M-theory

As in Section IVA, we shall use the moduli space approximation to study the

dynamics of heterotic M-theory with a bulk brane. The static BPS solution in-

volves five constants A, B, C, N , and Y . These now become the moduli fields, QI =

we will use the symbol H to denote the Hubble parameter. Furthermore, comparing with their

notation, we have rescaled α by a factor of
√

2/3 and have defined eφ = V .
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(A(~x, τ), B(~x, τ), C(~x, τ), N(~x, τ), Y (~x, τ)). In the limit of homogeneity and isotropy, the

moduli fields are functions of time only. Substituting the static ansatz (11) into the ac-

tion (10), and integrating over y, we obtain the moduli space action Smod with Lagrangian

density

Lmod = GIJ(Q)Q̇IQ̇J − V (Q) = Lbulk + Lβ, (13)

where

Lbulk = −3A3BI3M
3
5

N







(

Ȧ

A

)2

+

(

Ȧ

A

)[(

Ḃ

B

)

+
3I2

I3

Ċ +
3I2b

I3

βẎ

]







−3A3BI3M
3
5

N







− 1

12

(

Ḃ

B

)2

+
I1

2I3

Ċ2 +
I1b

I3

ĊβẎ +
I1b

2I3

β2Ẏ 2







Lβ =
3βM3

5A3B

N

[

1

2
D2(Y )Ẏ 2 − N2V (Y )

]

(14)

and

Ima ≡ 2
∫ Y

0
Dmdy =

2

α(m + 1)
[(αY + C)m+1 − Cm+1]

Imb ≡ 2
∫ R

Y
Dmdy =

2

(α − β)(m + 1)
[((α − β)R + C + βY )m+1 − (αY + C)m+1]

Im ≡ Ima + Imb. (15)

Note that Im has the dimension of length. We see from Eq. (14) that the Lagrangian of the

4d effective theory is the sum of two parts, Lbulk and Lβ. The first contribution, Lbulk, comes

from the bulk part of the five-dimensional action, whereas the second contribution, Lβ, is

the Lagrangian of the bulk brane. Note that we have added by hand a potential V (Y ) in Lβ

which is meant to describe non-perturbative interactions between the bulk brane and the

boundary branes.36–38 The actions of the two boundary branes, which are at fixed values of

y, do not contribute to the 4d effective action. Their contribution is canceled by bulk terms

upon integration over y. This cancellation is crucial, since it yields a 4d effective theory

with no potentials for A, B, C, or N , thereby confirming that these fields are truly moduli

of the theory.
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Eq. (14) is analogous to the action for gravity with scale factor A coupled to scalar

fields. Since the overall factor of BI3M
3
5 will generically be time-dependent before collision,

it follows that the scalar fields B, C, and Y are non-minimally coupled to gravity. In order

to match onto a theory with fixed Newton’s constant G4, we shall impose the condition that

this factor become constant after collision. Hence, after collision, we can identify the 4d

effective Planck mass as

M2
pl =

BM2
5 (I3M5)

αR + C
(16)

where I3 is evaluated at Y = 0 and for B, C at the moment of collision. Note that in the

limit (α − β)R ≪ C, this expression agrees with the 4d Planck mass identified in Ref. 15.

At this point, one can define a new scale factor a ≡ A(BI3M5)
1/2, as well as n ≡

N(BI3M5)
1/2. This has the effect of removing off-diagonal terms in the moduli space metric

that couple the field A to the other variables. In these new variables, the bulk Lagrangian

becomes

Lbulk =
3a3M2

5

n







−
(

ȧ

a

)2

+
1

3

(

Ḃ

B

)2

+
1

2

Ḃ

B

İ3

I3







+
3a3M2

5

n

{(

9I2
2

4I2
3

− I1

2I3

)

Ċ2 +

(

9I2I2b

2I2
3

− I1b

I3

)

ĊβẎ +

(

9I2
2b

4I2
3

− I1b

2I3

)

β2Ẏ 2

}

. (17)

In this form, it is clear that a is an scale factor analogous to the variable a of the previous

section. The moduli B, C and Y behave effectively as scalar fields, albeit with nontrivial

kinetic terms.

In analogy with the example in Section IV A and the discussion following Eq. (5), we

now impose two constraints consistent with four dimensional covariance. These reduce the

moduli degrees of freedom and simplify the system. Namely, we shall impose that

B = constant

C = constant. (18)

At the moment of collision, the modulus Y disappears from the theory. The above conditions

then imply that the distance between the boundary branes as well as the volume of the
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Calabi-Yau three-fold become fixed. This is necessary if we want to match onto a theory with

fixed gravitational and gauge coupling constants. For instance, since I3 becomes constant

at collision, it follows from Eq. (16) that Mpl freezes at that point.

If we impose Eq. (18), and if we further assume that the tension of the bulk brane is

small compared to that of the boundary branes, that is, β ≪ α (which allows us to neglect

the correction to the kinetic term for Y coming from Lbulk), then the full Lagrangian reduces

to

L =
3M2

5 a3

n

{

−
(

ȧ

a

)2

+
β

I3

[

1

2
D(Y )2Ẏ 2 − n2 V (Y )

BI3M5

]}

. (19)

This action describes a scalar field Y minimally coupled to a gravitational background with

scale factor a. Note that the gravitational coupling constant associated with a is simply M5.

A repeating theme of this paper is that the effective scale factor (and the associated

Hubble parameter) can be defined several different ways involving different combinations of

moduli fields, depending on the physical question being addressed. For example, looking

ahead, we will show that a is not the same as the effective scale factor for an observer on a

hypersurface of constant y or the effective scale factor relevant for describing fluctuations in

Y .

D. Equations of Motion, the Ekpyrotic Temperature, and the Horizon Problem

From the moduli space action obtained in Section IVC, we can find the equation of

motion for the bulk brane, described by Y , in the limit that the bulk brane tension is small,

β ≪ α. We will use this equation to compute the ekpyrotic temperature, the temperature

immediately after the branes collide and the universe bursts into the big bang phase. We

will then compare the Hubble radius at the beginning of the big bang phase to the causal

horizon distance estimated by computing the time it takes for the bulk brane to traverse the

fifth dimension.

Recall that for the static BPS solution, A and N are constants. Without loss of generality,
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we can choose A = N = 1 in the BPS limit. Variation of Eq. (19) with respect to n yields

the Friedmann equation which, setting n = a, is given by

H2 ≡
(

ȧ

a2

)2

=
βM5

B(I3M5)2

(

1

2
D(Y )2Ẏ 2 + V (Y )

)

. (20)

Here we have introduced H to denote the Hubble constant associated with a. Since the

gravitational coupling constant associated with a is M5, we can identify from Eq. (20) the

energy density of the bulk brane

ρβ = 3M2
5 H2. (21)

The equation of motion for a yields the second equation of FRW cosmology

ä

a
≈ − β

I3

(

1

2
D(Y )2Ẏ 2 − 2V (Y )

)

. (22)

Finally, we can express the equation of motion for Y in a simple way by defining Ψ such

that Ψ̇ = (D(Y )/(I3M5)
1/2)Ẏ . Once again making the gauge choice n = a, one finds that

Ψ satisfies

d

dτ

(

1

2
a−2Ψ̇2 + Veff(Ψ)

)

= −3
(

ȧ

a3

)

Ψ̇2, (23)

where Veff ≡ V (Y )/(B(I3M5)
2). In this form, Eq. (23) looks like the equation of motion

for a scalar field in a cosmological background. It is, therefore, simple to analyze. The left

hand side is the time derivative of the total energy density associated with the motion of Y .

The right hand side either decreases or increases due to the cosmic evolution described by

the scale factor a. Hence, as regards the kinetic energy of the bulk brane, a is the relevant

scale factor.

Perturbing around the BPS limit, we have A = 1+O(β/α) and I3 = I
(0)
3 +O(β/α), where

I
(0)
3 is the value of I3 when β = 0 and is time-independent. Therefore, a = (BI

(0)
3 M5)

1/2 +

O(β/α). If V (Y ) ≤ 0, then all contributions on the right hand side of Eq. (22) cause ä to

be negative. Hence, beginning from a static initial condition (ȧ = 0), a will contract. If a

contracts, then, from Eq. (23), the total energy of Ψ grows with time. Thus, as long as V
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is negative semi-definite, the field Ψ gains energy as the bulk brane proceeds through the

extra dimension.

At the moment of collision, the modulus Y effectively goes away and new moduli describ-

ing the small instanton transition and new vector bundle take its place. In particular, the

potential for Y matches onto the potential for these new moduli. While V (Y ) will generi-

cally be negative up to the moment of collision, we shall assume that, once the other moduli

are excited during the small instanton transition, the potential rises back up to zero in the

internal space of the new moduli such as to leave the universe with vanishing cosmological

constant. We base this assumption on the notion that both the initial and final states consist

of two branes in a BPS vacuum with V = 0. That is, if we were to adiabatically detach the

bulk brane from the hidden brane and, then, transport and attach it to the visible brane,

both the initial and final states would consist of two branes only in a BPS configuration

with cosmological constant zero.

To mimic the effect of the other moduli during the small instanton transition, we shall

assume that V (Y ) is negative and approaches zero as Y → 0. Note that if a were constant,

the kinetic energy and the total energy, ρβ , would go to zero as V → 0 and as the branes

collide. However, from Eq. (23), we see that Ψ (and therefore Y ) has extra kinetic energy

as V → 0 due to the gravitational blue shift effect caused by a contracting scale factor

a. We assume that the extra kinetic energy (equal to ρβ at collision) is converted into

excitations of light degrees of freedom, at which point the radiation-dominated era begins.

The temperature after the conflagration that arises from the brane collision is referred to as

the “ekpyrotic temperature,” analogous to the reheat temperature after inflation.

Conceivably, some fraction of the extra kinetic energy is converted into thermal excita-

tions, some into coherent motion of moduli fields, and some, perhaps, into bulk excitations

(gravitons). If coherent motion is associated with massless degrees of freedom, the associ-

ated kinetic energy redshifts away faster than radiation. If associated degrees of freedom

are massive, they can ultimately decay into radiation. Neither case is problematic. For

simplicity, we shall just assume that the kinetic energy at collision is converted entirely into
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radiation with an efficiency of order unity.

The collision energy can be computed by integrating the equation of motion, Eq. (23),

which is expressed explicitly in terms of the time derivative of the total bulk brane energy.

However, it is somewhat simpler to first compute the Hubble parameter Hc upon collision

using Eq. (22), and then to substitute in Eq. (21) to obtain the collision energy ρβ . (Note

that the subscript c denotes that the quantity is evaluated at the moment of collision.)

Eq. (22) can be rewritten as

ä

a
≈ − β

I3

(

1

2
D(Y )2Ẏ 2 + V (Y ) − 3V (Y )

)

≈ − β

I3
(−3V (Y )), (24)

where we have used the fact that, to leading order in β/α,

1

2
D2(Y )Ẏ 2 + V (Y ) = E ≈ 0. (25)

Note that E is the total energy of the bulk brane which is assumed small compared to the

energy gained from gravity. We can then integrate Eq. (24) to obtain

ȧ

a
= −3

∫ Y =0

Y =R

β

I3
(−V (Y ))

dτ

dY
dY = − 3β√

2I3

∫ Y =R

Y =0
D(−V )1/2dY, (26)

where we have made use of the fact that I3 = I
(0)
3 = constant to leading order in β/α. Since

a ≈ (BI
(0)
3 M5)

1/2, we obtain

Hc =

∣

∣

∣

∣

ȧ

a2

∣

∣

∣

∣

=
3βM5√

2B(I3M5)3/2

∫ Y =R

Y =0
D(−V )1/2dY. (27)

Now that we have an expression for the Hubble parameter Hc, we can substitute in Eq. (21)

and find

ρβ =
27β2M4

5

2B(I3M5)3

(

∫ Y =R

Y =0
D(−V )1/2dY

)2

. (28)

The corresponding ekpyrotic temperature is then

T

Mpl
∼
(

ρβ

M4
5

)1/4

=
33/4

√
β

(2B)1/4(I3M5)3/4

[

∫ Y =R

Y =0
D(−V )1/2dY

]1/2

. (29)

(N.B. The identification of energy density or effective Planck mass may vary under Weyl

transformation, but the ratio T/Mpl is invariant.) For instance, consider a potential of the

32



form V (Y ) = −ve−mαY , where v and m are positive, dimensionless constants. Since non-

perturbative potentials derived from string and M-theory are generically of exponential form

(for motivation, see the discussion under Eq. (64)), this potential will be a standard example

throughout. In that case, the temperature is calculated, using Eq. (29), to be

T

Mpl
≈ 33/4(2v)1/4

(I3M5)1/2(αR + C)1/4

(

M5

Mpl

)1/2 (
β

α

)1/2
(mC + 2)1/2

m
. (30)

where we have used Eq. (16). As an example, we might suppose α = 2000M5, β = M5,

B = 10−4, C = 1000, R = M−1
5 , v ∼ 10−8, and m = 0.1, all plausible values. This gives

M5 = 10−2Mpl and produces an ekpyrotic temperature of 1011 GeV. Note that, with these

parameters, the magnitude of the potential energy density for Y is (10−6Mpl)
4 at collision.

Thus, the typical energy scale for the potential is 1013 GeV. Later, we will see that these same

parameters produce an acceptable fluctuation amplitude. We want to emphasize, however,

that there is a very wide range of parameters that lead to acceptable cosmological scenarios.

Let us now turn our attention to the homogeneity problem. We have argued that the

universe begins in a BPS state, which is homogeneous. This condition is stronger than

needed to solve the homogeneity problem. It suffices that the universe be homogeneous on

scales smaller than the causal, particle horizon. Let (−τ)tot denote the time taken by the

bulk brane to travel from the hidden to the visible brane. By integrating Eq. (25), we find

that the comoving time is

(−τ)tot =
∫ R

0

D(Y ′)dY ′

√

−2V (Y ′)
. (31)

The horizon distance dHOR, as measured by an observer on the visible brane, is the elapsed

comoving time at collision (Y = 0) times the scale factor, D1/2(y = 0) = C1/2. We find, for

an exponential potential of the above form, that

dHOR = C1/2(−τ)tot ≈
√

2C

mα
√

v
(αR + C)emαR/2. (32)

On the other hand, the Hubble radius at collision is obtained from Eq. (27)

H−1
c =

m2I3(BI3M5)
1/2

3
√

2v(mC + 2)

(

α

β

)

. (33)
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The causal horizon problem is solved if the particle horizon at collision satisfies

dHOR

H−1
c

∼ emαR/2 >

(

T

Mpl

)

· e70. (34)

The condition is easily satisfied for the values of parameters mentioned above, where

mαR/2 ∼ 102, the equivalent of 100 e-folds of hyperexpansion in an inflationary model.

E. Cosmological Evolution for an Observer at Fixed y

We have seen that the scale factor relevant to describing the equation of motion for Y is

a, a particular combination of moduli fields. Furthermore, if we assume nearly BPS initial

conditions (that is, vanishing potential and kinetic energy), then a is a decreasing function

of time. Hence, the scalar field Y evolves as if the universe is contracting.

However, as pointed out previously, an important feature is that the effective scale fac-

tor for other physical quantities depends on other combinations of moduli fields. In this

subsection, we shall derive the cosmological evolution as seen by an observer living on a

hypersurface of constant y (for example, an observer on the visible brane). We will find that

the scale factor seen by such family of observers is different than a. In particular, we find

that any such observer sees the universe expanding before the bulk brane collides with the

visible brane.

Consider, for concreteness, an observer living on the visible brane. The induced metric

on that hypersurface is obtained from Eq. (11)

ds2
y=0 =

a2C

BI3M5

(−dτ 2 + d~x2) ≡ a2
1(−dτ 2 + d~x2). (35)

The rate of change of the induced scale factor a1 can be written as

ȧ1

a1
=

ȧ

a
− 3β

I2b

I3
Ẏ =

ȧ

a
+ 3β

I2b

I3

√

−2V (Y )

D(Y )
, (36)

where we have used Eq. (25). In this way, we have expressed ȧ1 as the sum of two contribu-

tions: the first contribution is given by a and tends to make a1 contract; the second term,
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coming from I3, is positive and tends to make a1 expand. To determine which of these two

terms dominates at the moment of collision, we note from Eq. (26) that

ȧ

a
∼ (−V (Y ))1/2. (37)

Therefore, both terms on the right hand side of Eq. (36) are proportional to (−V (Y ))1/2.

However, the coefficients are different functions of α and C. For the case of the exponential

potential, for instance, one finds that reasonable values of α, C, and m (such as those given

at the end of Section IVD) result in the I3 term being larger than the a term in Eq. (36).

The net effect is to make a1 grow with time; that is, an observer at y = 0 sees the universe

expanding. This is in agreement with the results for the AdS case presented in Section IVA.

For other hypersurfaces of constant y, a similar story holds. The induced scale factor

is the product of a which decreases and a function of Y which increases. Once again,

reasonable values of the parameters result in expanding hypersurfaces at the time of collision.

In particular, a0, the scale factor on the y = R hidden brane, is expanding at collision, in

agreement with the AdS results.

To summarize, for shallow potentials (for example, an exponential potential) and rea-

sonable values of the parameters, we have seen that both a1 and a0 are expanding at the

moment of collision. On the other hand, a is contracting. Since this agrees qualitatively

with the AdS case (see Fig. 3), the discussion at the end of Section IVA concerning the

matching condition at collision and the subsequent expansion of the universe applies also to

heterotic M-theory.

F. Cosmological Evolution for an Observer on the Bulk Brane

So far, we have adopted the point of view of the low-energy four-dimensional effective

action. It is sometimes useful, for instance in calculating the fluctuation spectrum, to adopt

the point of view of an observer living on the bulk brane. The motion of the bulk brane

through the curved space-time induces an FRW evolution on its worldvolume. In terms of

conformal time η on the bulk brane, the induced metric is given to lowest order in Ẏ by
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ds2
4 = D(Y (η))(−dη2 + d~x2). (38)

From the form of the metric in Eq. (38), we see that the scale factor aB(η) describing the

FRW evolution on the brane is simply given by aB(η) ≡ D1/2(η). Since the bulk brane

moves from a region of larger D (location of the hidden brane) to a region of smaller D

(location of the visible brane), an observer on the bulk brane sees a contracting universe (as

opposed to an observer on the visible brane who sees expansion). Finally, we note that for

non-relativistic motion, one has η ≈ τ , where τ is global conformal time.

G. Summary of homogeneous propagation of the bulk brane

In this section, we have described the spatially homogeneous propagation of the bulk

brane in terms of the evolution of three different quantities: the scale factor as felt by the

modulus Y of the bulk brane, the scale factor for an observer living on a hypersurface of

constant y, and the scale factor for an observer on the bulk brane. For nearly BPS initial

conditions, we have seen that the scale factor that appears in the equation of motion for

the bulk brane, namely a, decreases with time. This means that there is a gravitational

blue shift effect that increases the kinetic energy of the bulk brane. This added energy, we

propose, is converted to radiation and matter upon collision. Furthermore, we have shown

that observers at fixed y generically see an expanding universe. Finally, an observer on the

bulk brane sees a contracting universe. This is a simple geometrical consequence of the fact

that the bulk brane travels from a region of smaller curvature to a region of larger curvature.

We should mention that both the modulus Y and observers at fixed y see scale factors

which are slowly-varying in time, in fact almost constant. This is because both variations

are due to the back-reaction of the bulk brane onto the geometry, an effect which is of order

β/α. On the other hand, the cosmological evolution felt by an observer on the bulk brane

is faster, although only by a logarithmic factor. No superluminal expansion is taking place

from the point-of-view of any observer. Rather, what characterizes the ekpyrotic scenario

is that all motion and expansion is taking place exceedingly slowly for an exceedingly long
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period of time.

V. SPECTRUM OF FLUCTUATIONS

In this section, we show how the ekpyrotic scenario can produce a nearly scale-invariant

spectrum of adiabatic, gaussian, scalar (energy density) perturbations that may account for

the anisotropy of the cosmic microwave background and seed large-scale structure formation.

The density perturbations are caused by ripples in the bulk brane which are generated by

quantum fluctuations as the brane traverses the bulk. The ripples result in 3d spatial varia-

tions in the time of collision and thermalization, and, consequently, they induce temperature

fluctuations in the hot big bang phase.

Because both the ekpyrotic scenario and inflationary cosmology rely on quantum fluc-

tuations to generate adiabatic perturbations, the calculational formalism for predicting the

perturbation spectrum and many of the equations are remarkably similar. One difference is

that inflation entails superluminal expansion and the ekpyrotic scenario does not. For the

ekpyrotic scenario, the fluctuations are generated as the bulk brane moves slowly through

the bulk. For the examples considered here, the motion is in the direction in which the warp

factor is shrinking. Because of the shrinking warp factor, the Hubble radius for an observer

on the brane is decreasing. The effect of a decreasing Hubble radius is to make the spectrum

blue. In inflation, the Hubble radius is expanding in the 4d space-time, and, consequently,

the spectrum is typically red.

Here, we give an abbreviated version of the derivation that emphasizes the similarities and

differences from the inflationary case. For this purpose, we adapt the “time-delay” approach

introduced by Guth and Pi for the case of inflation to the colliding brane picture.43 This

approach has the advantage that it is relatively simple and intuitive. Experts are aware

that this approach is inexact and non-rigorous44 and, hence, might question the reliability.

The more cumbersome and less intuitive gauge invariant approach introduced by Bardeen,

Steinhardt and Turner45 and by Mukhanov46 (see also Ref. 47) is preferable since it is
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rigorous and applies to a wider range of models. We have developed the analogue of the

gauge invariant approach for the colliding branes, and we find that the time-delay approach

does match for the cases we consider. We will present the gauge invariant formalism for the

ekpyrotic scenario and a fully detailed analysis in a separate publication.48

In the first subsection, we shall assume that the ripples in the bulk brane have already

been generated and begin our computation just as the bulk brane collides with our visible

brane. The bulk brane has position Y (τ, ~x) = Y0(τ) + δY (τ, ~x), where Y0(τ) is the average

position of the brane along the bulk (y) direction and δY represents the small ripples. Our

goal is to adapt the time-delay formalism to compute how the ripples translate into density

fluctuations in the hot big bang phase. In the second subsection, we shall discuss how δY is

set by quantum fluctuations and the general conditions under which the fluctuation spectrum

will be nearly scale-invariant. Then, we will present specific models that satisfy the scale-

invariant conditions and discuss general model-building principles and constraints. In the

final subsection, we will present the computation for the case of tensor (gravitational wave)

perturbations and show that the spectrum is tilted strongly towards the blue, a prediction

that differs significantly from inflationary models.

A. From brane ripples to density fluctuations

The fluctuations δY result in variations in the time of collision (δτ) that depend on

the position along the bulk surface, ~x. In this sense, the bulk brane position Y plays a

role analogous to the inflaton φ and the fluctuations δY play a role similar to inflaton

fluctuations δφ. The time-delay formalism applies under the assumption that the time

delay is independent of time when the perturbations are well outside the horizon; that is,

δτ = δτ(~x). The formalism, then, allows one to compute how δτ(~x) converts into a density

perturbation amplitude.

In the de Sitter limit, one has δτ ∼ δφ/φ̇, where the fluctuations δφ are time-independent

and φ̇ is also time-independent. Hence, the assumption of the time-delay formalism is
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satisfied. In the ekpyrotic scenario, δτ ∼ δY/Ẏ . Note that δY is time-dependent, and

so is Ẏ . However, under circumstances to be discussed later in this section, the two have

the same time-dependence and, consequently, δτ is time-independent, as required. (The

time-independent condition is only approximate in both scenarios. The weakness of the

time-delay approach is that it cannot be simply generalized to the time-dependent case;

corrections must be computed using a gauge invariant formulation.44)

We shall assume that the stress-energy tensor after collision is that of an ideal fluid with

pressure P and energy density ρ = 3P

T µν = Pgµν + (P + ρ)uµuν, (39)

where uµ is the velocity of the fluid normalized to u2 = −1.

The perturbations can be characterized by the Olson49 variables, S and div X, defined

by

S ≡ −1 + 3ρ · (hµν∇µuν)
−2

divX ≡ ∇µ(hµν∇νρ), (40)

where hµν ≡ gµν + uµuν . The calculation then proceeds in two steps. First, we find the

value of S and divX at the moment of collision. Secondly, we calculate the time-evolution

of S in a radiation-dominated universe.

If the average collision time is τ = 0, then τ ′ ≡ τ − δτ(~x) = 0 is the time when collision

occurs at position ~x. We have

S(τ ′ = 0) = − 2

3acHc

~∂2δτ(~x)

divX (τ ′ = 0) = 6a−2
c HcḢc

~∂2δτ(~x). (41)

It is useful to define a dimensionless time variable x by

x =
k√
3

(

τ ′ +
1

acHc

)

. (42)
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When x < 1 (x > 1), the mode is outside (inside) the sound horizon. Then, as shown by

Olson, the density perturbation with wavenumber k, δk, is related to the Fourier mode Sk

via

1

2x

d

dx
(x2δk) = Sk, (43)

where Sk satisfies the evolution equation

x2 d2Sk

dx2
− 2x

dSk

dx
+ (2 + x2)Sk = 0. (44)

The solution of the Sk equation can be written as

Sk = C1x sin x + C2x cos x. (45)

To fix the coefficients C1 and C2, we use the initial conditions given in Eq. (41). In terms

of x, the collision time is xc = k/(
√

3acHc), and the conditions at collision read

Sk = 2x2
cacHc∆τ(k)

xc
dSk

dxc
= 2

(

1 − Ḣc

acH2
c

)

Sk, (46)

where ∆τ(k) ≡ k3/2δτ(k)/(2π)3/2. Using these conditions, one finds that the coefficients C1

and C2 are given by

C1 = 2acHc

(

1 − 2Ḣc

acH2
c

)

∆τ(k)

C2 =

(

1 − 2Ḣc

acH2
c

)−1 (
2Ḣc

acH2
c

)

xcC1 (47)

The modes of interest lie far outside the horizon at the time of collision, that is, xc ≪ 1.

Thus, when x ≫ 1 (when the mode comes back inside the horizon), the second term on the

right hand side of Eq. (45) is suppressed by a factor of xc and is therefore negligible. (This

is the “decaying” mode.) Using this fact in integrating Eq. (43), one obtains

|δk| = 4acHc

(

1 − 2Ḣc

acH2
c

)

|∆τ(k)|. (48)

40



We see that δk is the product of two factors: the factor acHc|∆τ(k)| accounts for the fact that

different regions of space heat up and therefore begin to redshift at different times, while the

factor in parentheses depends on Ḣc and describes how the change in the Hubble parameter

during collision affects the fluctuations. For inflationary models near the de Sitter limit,

Ḣc → 0, and so δk is directly related to the time delay δτ(k). For the ekpyrotic model, the

scale factor a(τ) is of the form const.+log τ and Ḣ/aH2 is approximately constant. Hence,

once again, δk is directly related to the time delay. In both scenarios, Eq. (48) agrees with

the exact gauge invariant calculation of density perturbations except for small corrections

to the prefactor.

For example, consider the exponential potential V = −ve−mαY . In that case, Eq. (48)

yields

|δk| ≈
4m2α

√
2v

mC + 2
|∆τ(k)|, (49)

where we have used Eq. (27), and where we have assumed that Ḣc/(acH
2
c ) ≫ 1, a reasonable

approximation for the values of α, C, and m of interest.

B. From quantum fluctuations to brane ripples

Eq. (48) expresses the density perturbation in terms of the time delay at the time of

collision, ∆τ(k). In this section, we compute the spectrum of quantum fluctuations of the

brane δYk and use the result to compute the time delay, ∆τ(k).

1. The scalar fluctuation equation

For the calculation of quantum fluctuations, it is sufficient to work at the lowest order

in β/α. Without loss of generality, we can therefore set A = N = 1. In that case, the bulk

brane Lagrangian is given by

Lβ = 3βM3
5B

[

1

2
D(Y )2ηµν∂µY ∂νY − V (Y )

]

. (50)
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Note that this agrees with Lβ given in Eq. (14) when we set A = N = 1 and spatial gradients

of Y to zero. Let us first consider the spatially homogeneous motion of the brane which will

be described by Y0(τ). (The subscript “0” emphasizes that we want to think of Y0 as the

background motion.) It is governed by the following equation of motion

1

2
D(Y0)

2Ẏ0
2
+ V (Y0) = E, (51)

where E is a constant. Eq. (51) is, of course, simply the statement that the energy E of the

bulk brane is conserved to this order in β/α. Since we have chosen the visible brane to lie

at y = 0 and the hidden universe to lie at y = R, we focus on the branch Ẏ < 0 in which

case the bulk brane moves towards the visible brane. The solution to Eq. (51) is then given

by

(−τ) =
∫ Y0

0

D(Y ′)dY ′

√

2(E − V (Y ′))
(52)

with τ ≤ 0, and with the collision occurring at τ = 0.

Let us now consider fluctuations around the background solution Y0(τ). Namely, if

Y = Y0(τ) + δY (τ, ~x), with δY (τ, ~x) ≪ Y0(τ), we can expand the action to quadratic order

in δY

Lfluc ∼
1

2
D2

0[−δẎ 2 + (~∂(δY ))2] +

[

α2D−2
0 (V0 − E) − αD−1

0

dV0

dY0
+

1

2

d2V0

dY 2
0

]

(δY )2. (53)

where we have used Eq. (51), and where we have introduced D0 ≡ D(Y0) and V0 ≡ V (Y0)

for simplicity.

The key relation is the fluctuation equation as derived from the action (53)

x2 d2f~k

dx2
−
[

äpert

apert
τ 2 − x2

]

f~k = 0

x ≡ |~k|(−τ), (54)

where f~k ≡ D0 · δY~k and where apert is defined by

äpert

apert
≡ D−3

0

(

α
dV0

dY0
− D0

d2V0

dY 2
0

)

. (55)
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The fluctuation equation, Eq. (54), can be compared with the corresponding equation

for the perturbations of a scalar field with no potential and minimally coupled to an FRW

background with scale factor a(τ)

δφ̈~k + 2
ȧ

a
δφ̇~k + k2δφ~k = 0. (56)

Defining f~k = a · δφ~k, Eq. (56) becomes

x2 d2f~k

dx2
−
[

ä

a
τ 2 − x2

]

f~k = 0. (57)

Comparing Eqs. (54) and (57), one sees that apert plays the role of an effective background

for the perturbations. An observer on the bulk brane sees a scale factor aB = D1/2 (Eq. (38))

but the fluctuations evolve, according to Eq. (54), as if the scale factor were apert. Hence,

the shape of the fluctuation spectrum depends on apert, not aB = D1/2; but the physical

wavelength is determined by aB = D1/2, not apert. This is an important subtlety in our

calculation. Let us now discuss the Hubble horizon for the perturbations. Recall that in

usual 4d cosmology (see Eq. (57)), we have

x = k(−τ) =

(

k

a

)

· a · (−τ) = kphysa · (−τ) ∼ kphysH
−1, (58)

where H−1 ≡ a2/ȧ is the Hubble radius as derived from the scale-factor a. By definition,

a mode is said to be outside the Hubble horizon when its wavelength is larger than the

Hubble radius. From Eq. (58), we see that this occurs when x < 1. Therefore, a mode with

amplitude f~k crosses outside the horizon when x ∼ O(1). Similarly, in our scenario we can

write

x = k(−τ) = kphysD
1/2
0 (−τ) ≡ kphysH

−1
pert, (59)

where kphys = k/D
1/2
0 (since aB = D

1/2
0 relates comoving scales to physical length scales on

the bulk brane). The role of the Hubble radius is replaced by

H−1
pert ≡ D

1/2
0 (−τ) = D

1/2
0

∫ Y0

0

D(Y )dY
√

2(E − V (Y ))
, (60)
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which is to be thought of as an effective Hubble radius for the perturbations. So, as suggested

above, the length scale at which amplitudes freeze depends on aB (rather than apert), but

the amplitude itself, as derived from Eq. (54), depends on apert. The feature of two different

scale factors is a novel aspect of the ekpyrotic scenario.

By the time the bulk brane collides with the visible brane, modes are frozen on all

scales less than the value of H−1
pert when the bulk brane leaves the hidden brane. Comparing

Eqs. (34) and (60), we see that this initial value of H−1
pert is of the order of the particle

horizon dHOR at the moment of collision. Recall from Section IVD that dHOR is required

to be exponentially larger than the Hubble radius at collision, H−1
c , in order to solve the

homogeneity problem. Hence, we see that modes are frozen on scales exponentially larger

than H−1
c , thereby solving the inhomogeneity problem.
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FIG. 4. Sketch comparing the generation of a super-horizon spectrum of perturbations in (a)

inflationary cosmology versus (b) the ekpyrotic universe. During inflation, the Hubble radius is

nearly fixed and the fluctuation wavelength grows exponentially fast, causing modes to be stretched

outside the horizon. In the ekpyrotic scenario, modes correspond to ripples on the moving bulk

brane. The perturbations have nearly constant wavelength but the effective Hubble radius shrinks,

once again causing modes to cross outside the horizon.

The comparison to inflationary cosmology is made in Figure 4. The salient feature of

both models is that perturbation modes inside the Hubble horizon escape outside in the

early universe and re-enter much later. However, the behavior of the scale factor and the

Hubble horizon are quite different. In inflation, the wavelengths are stretched superluminally

while the horizon is nearly constant. In the ekpyrotic scenario, the wavelengths are nearly

constant while the horizon shrinks.

It remains to show that we can obtain a spectrum which is scale-invariant. Writing the

equation for the perturbations in the form of Eq. (54) is useful since one can read off from

it the spectral slope of the power spectrum. It is determined by the value of (äpert/apert)τ
2.

In particular, one obtains a scale-invariant spectrum if (äpert/apert)τ
2 = 2 when the modes

observed on the CMB cross outside the horizon. (Note that in usual 4d cosmology, this

is achieved for an expanding de Sitter universe with a ∝ −τ−1 or a contracting matter-

dominated universe with a ∝ τ 2.) Combining Eqs. (52) and (55), we find

äpert

apert
τ 2 = D−3

0

(

α
dV0

dY0
− D0

d2V0

dY 2
0

)





∫ Y

0

D(Y ′)dY ′

√

2(E − V (Y ′))





2

. (61)

The spectrum will be scale-invariant if the right hand side of Eq. (61) equals 2 when the

modes of interest cross outside the horizon.

As a simple example, consider the case where |V (Y )| ≪ |E|. Eq. (61) then generically

gives (äpert/apert)τ
2 ≪ 1. This leads to a density spectrum of the form |δk| ∼ k, which

is thus unacceptably blue. (A similar calculation was repeated for other set-ups such as

Randall-Sundrum and the solutions presented in Ref. 50. It was found that none of these
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solutions predict a scale-invariant spectrum of fluctuations when V is turned off.) It is

therefore crucial to add a potential in order to obtain a scale-invariant spectrum of density

fluctuations.

2. A successful example: The exponential potential

We can add a potential V (Y ) of the form that might result from the exchange of wrapped

M2-branes. We would like to think of V as the potential derived from the superpotential W

for the modulus Y in the 4d low energy theory. Typically, superpotentials for such moduli

are of exponential form, for example,

W ∼ e−cY , (62)

where c is a positive parameter with dimension of mass. The corresponding potential is

constructed from W and the Kähler potential K according to the usual prescription

V = eK/M2
pl

[

KijDiW ¯DjW − 3

M2
pl

WW̄

]

. (63)

where Di = ∂/∂φi + Ki/M
2
pl is the Kähler covariant derivative, Ki = ∂K/∂φi, Kij =

∂2K/∂φi∂φj and a sum over each superfield φi is implicit. Eqs. (62) and (63) imply that V

decays exponentially with Y . For the purpose of this paper, we shall not worry about the

exact form of the superpotential in heterotic M-theory. Rather, it will suffice to perform the

calculation using a simple exponential potential, namely

V (Y ) = −ve−mαY , (64)

where v and m are positive, dimensionless constants. In this paper, it is convenient to

parameterize the exponent in terms of α. Note that, in the case where the potential is

generated by the exchange of wrapped M2-branes, the parameter m is of the form m =

cT3ν/α, where c is a constant, T3 is the tension of the M2-brane, and ν is the volume of the

curve on which it is wrapped. The potential defined in Eq. (64) is shown in Figure 2. The

perturbation modes of interest are those which are within the current Hubble horizon. As
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the wavelengths corresponding to those modes passed outside the effective Hubble horizon on

the moving bulk-brane, the amplitudes became fixed. Scale invariance will require mD ≫ 1

during this period. (In section VB3, we shall generalize this condition for an arbitrary

potential V .)

We have already seen at the end of Section VB1 that, if the potential V is negligible

compared to E, the spectrum of fluctuations is not scale-invariant. Hence, we consider the

limit where |E| ≪ |V0|. This condition, as seen from the equation of motion for Y0, Eq. (51),

is satisfied if Ẏ0 = 0 initially, or, equivalently, if the bulk brane begins nearly at rest. For

the brane to be nearly at rest, one must have |E| ≈ |V0| initially. As the brane traverses the

fifth dimension, |V | increases exponentially, whereas E is constant. Hence, the condition

|E| ≪ |V0| is automatically satisfied. The bulk brane beginning nearly at rest is precisely

what we expect for a nearly BPS initial state.

Applying the condition |E| ≪ |V0|, Eq. (52) reduces to

τ 2 ≈ 1

2v

[

∫ Y0

0
D(Y ′)emαY ′/2dY ′

]2

≈ 2D2
0

m2α2ve−mαY0

(

1 − 2

mD0

)

, (65)

where we have neglected the endpoint contribution at Y = 0. On the other hand, Eq. (55)

gives

äpert

apert
=

m2α2ve−mαY0

D2
0

(

1 +
1

mD0

)

. (66)

Combining the above two expressions yields

äpert

apert

τ 2 = 2
(

1 +
1

mD0

)(

1 − 2

mD0

)

. (67)

The right hand side of Eq. (67) is approximately equal to 2 in the limit of large mD0.

Hence, the exponential potential of Eq. (64) results in a nearly scale-invariant spectrum

of perturbations provided that |E| ≪ |V0| and mD0 ≫ 1 are satisfied when modes pass

outside the effective Hubble horizon. Note that it would be exceedingly difficult to maintain

(äpert/apert)τ
2 close to almost any other value than 2. It is indeed fortunate that scale-

invariance is the desired result because obtaining a different spectral index from the ekpyrotic

scenario would be highly problematic.
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We next compute the perturbation amplitude, by using Eq. (54) to calculate |∆Yk|. As

shown above, in order for the spectrum to be scale-invariant, the conditions |E| ≪ |V0| and

mD0 ≫ 1 must be satisfied when wavelengths pass outside the horizon. These conditions

can be relaxed once the mode is well outside the horizon. For example, we will assume no

restrictions on mC, the value of mD0 at y = 0.

In the limit that mD0 ≫ 1 when the relevant modes cross outside the horizon, Eq. (54)

reduces to

x2 d2f~k

dx2
−
[

2 − x2
]

f~k = 0, (68)

with solution

fk = x1/2
(

C1(k)J3/2(x) + C2(k)J−3/2(x)
)

, (69)

where J±3/2 are Bessel functions. The coefficients C1(k) and C2(k) are fixed by requiring

that modes well-within the horizon (i.e., x ≫ 1) be Minkowskian vacuum fluctuations, that

is

f~k =
1

√

6kβM3
5B

e−ikτ for x ≫ 1. (70)

(Note that the factor of
√

6βM3
5 B in Eq. (70) arises when we change variables from Y to a

canonically-normalized scalar field.) Using this initial condition, we find the following rms

amplitude for modes outside the horizon (with x ≪ 1)

∆fk ≡ k3/2fk

(2π)3/2
=

−i

(−τ)(2π)3/2
√

6βM3
5B

. (71)

Substituting Eq. (65) and using fk = D0δYk, we find

∆Yk =
mα

2(2π)3/2
√

3βM3
5 B

√
ve−mαY0

D2
0

. (72)

Finally, we define the time-delay ∆τ(k) by

|∆τ(k)| =

∣

∣

∣

∣

∣

∆Yk

Ẏ0

∣

∣

∣

∣

∣

=
m2α

16π3/2
√

3βM3
5 B

(

2

mD0

)

, (73)
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where we have used the equation of motion for Y0, Eq. (51). Note that the time-dependence

of ∆τ(k) is mild, a necessary condition for the validity of the time-delay formalism. The

factor of mD0 ≡ mD(Y0(τ)) is to be evaluated at time τ when a given mode crosses outside

the horizon during the motion of the bulk brane. Let Dk denote the value of D0 at horizon

crossing for mode k. Since horizon crossing occurs when x = 1, or, equivalently, when

(−τ) = k−1, Eq. (65) gives

Dk ≈ 2

m
log





m2α

2k

√

vemC

2



 . (74)

Substituting Eqs. (73) and (74) into Eq. (49), we find

|δk| =
α2m4

√
2v

4π3/2
√

3βM3
5 B(mC + 2)

(

2

mDk

)

. (75)

This expression for |δk| increases gradually with increasing k, corresponding to a spectrum

tilted slightly towards the blue. The blue tilt is due to the fact that, in this example, D is

decreasing as the brane moves. That is, the spectral index,

ns ≡ 1 +
d log |δk|2
d log k

≈ 1 +
4

mDk
, (76)

exceeds unity. The current CMB data constrains the spectral index to lie in the range about

0.8 < ns < 1.2. Therefore, for our results to be consistent with experiments, we must have

mDk > 20, (77)

a constraint that is easily satisfied.

3. General potential

As a second example, consider the power-law potential

V (Y ) = −vD(Y )q = −v(αY + C)q, (78)

where v > 0 and q < 0 are constants. In this case, Eq. (61) gives
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äpert

apert
τ 2 ≈ 2

(

1 − 2
q

)

(

1 − 4
q

)2 ≈ 2 (79)

for |q| ≫ 1. Hence, a power-law potential can also lead to a nearly scale-invariant spectrum

provided that its exponent is sufficiently large. (The smaller is the value of |q|, the bluer is

the spectrum.)

We can straightforwardly extend our analysis to an arbitrary potential V (Y ). Let us

suppose that V (Y ) satisfies

∣

∣

∣

∣

∣

D(Y )
dV

dY

∣

∣

∣

∣

∣

≫ α|V (Y )|
∣

∣

∣

∣

∣

D(Y )
d2V

dY 2

∣

∣

∣

∣

∣

≫ α

∣

∣

∣

∣

∣

dV

dY

∣

∣

∣

∣

∣

, (80)

(For the exponential potential, V (Y ) = −ve−mαY , these two conditions amount to mD ≫ 1.)

Then, Eq. (61) reduces to

äpert

apert
τ 2 ≈ 2

(

V V ′′

V ′2

)

. (81)

Hence, the conditions for scale invariance are Eqs. (80) as well as

V V ′′

V ′2
≈ 1. (82)

C. Gravitational waves from colliding branes

In inflationary cosmology, the analysis of tensor (gravitational wave) perturbations fol-

lows closely the analysis of scalar (energy density) perturbations.47 Metric fluctuations can

be divided into two polarizations, each of which acts like a massless scalar field evolving in

the same cosmic background as the inflaton. Hence, it is not surprising that the spectrum of

tensor fluctuations has nearly the same scale-invariant spectral shape as the scalar spectrum.

In the ekpyrotic scenario, the relationship between scalar and tensor perturbations is less

direct. The excitations that produce scalar perturbations are ripples on the moving brane,

which are directly dependent on the rate at which the brane traverses the fifth dimension
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and the potential that drives it. The tensor fluctuations, on the other hand, are excitations

of the gravitational field, which lives in the bulk. (The moving brane itself does not support

tensor fluctuations.) The net result is a different effective scale factor in the fluctuation

equation of motion for the tensor modes than for the scalar modes.

We shall briefly outline the derivation here, with more details to follow in our more formal

paper on perturbations.48 If ḡµν is the unperturbed, homogeneous metric (see Eq. (11) with

A and N functions of time), the perturbed 5d metric can be written as

gµν = ḡµν + A2(t)D(y, t)hµν(~x, t), (83)

where µ, ν = 0, . . . 3. Note that since we shall work at the level of the 4d effective theory,

we can treat the tensor perturbations hµν as functions of ~x and t only. We are interested in

the tensor perturbations which satisfy the conditions: h0µ = 0, hi
j = 0, and ∂ihij = 0. The

perturbed 5d Einstein action to quadratic order is

ST
fluct ≡

M3
5

2

∫

d5x
√−gR =

M2
5

8

∫

d4xa2(ḣµ
νḣ

ν
µ − ∂ih

µ
ν∂

ih ν
µ ) (84)

where the second expression is obtained by integrating over y. The tensor action is analogous

to the scalar action given in Eq. (53). From the action, we can derive the tensor analogue

of the scalar fluctuation equation of motion, Eq. (54)

x2
d2fT

~k

dx2
−
[

ä

a
τ 2 − x2

]

fT
~k

= 0, (85)

where

hµ
ν ≡

∫

d3k

(2π)3
ǫµ

νhk(τ) (86)

and

fT
~k
≡ a h~k. (87)

The critical difference between this tensor equation and the scalar fluctuation equation,

Eq. (54), is that the effective scale factor apert in Eq. (54) has been replaced by a.
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We introduced a potential to insure that apert led to a nearly scale-invariant spectrum,

(äpert/apert)τ
2 ≈ 2. However, a(τ) in the tensor equation is approximately constant (recall

that a = (BI
(0)
3 M5)

1/2 + O(β/α)). Consequently, the root mean square tensor fluctuation

amplitude,

|∆h~k| ≡
k3/2h~k

(2π)3/2
∼ k

(2π)3/2
. (88)

is not scale-invariant. Rather, the tensor spectrum is tilted strongly to the blue. Fitting

the mean square amplitude to a scale-free form, ∼ knT , where nT is the conventional tensor

spectral index, the spectrum above corresponds to nT = 2, compared to the inflationary

prediction, nT ≤ 0.

The tensor spectrum is a prediction that clearly distinguishes the ekpyrotic scenario

from inflationary cosmology. In both cases, for the same Hubble parameter at reheating (for

inflation) or collision, Hc, the mode with wavelength of order H−1
c has similar amplitude,

Hc/Mpl, where Mpl is the 4d Planck mass. The wavelength of this mode today is roughly 60

e-folds smaller than the current Hubble radius. Hence, if we extrapolate from this wavelength

to one comparable to the present Hubble radius, H−1
0 , the inflationary prediction is that the

amplitude is nearly the same (since the spectrum is nearly scale-invariant), whereas the blue

spectrum computed above predicts that the amplitude is exponentially small. Hence, the

search for a gravitational wave signal using the CMB polarization on horizon scales becomes

a key test for our proposal. Future gravitational wave detectors, beyond the presently

planned LISA and LIGO projects, may also someday detect the stochastic background of

gravitational waves as well. Observing a nearly scale invariant primordial gravitational wave

background falsifies the ekpyrotic scenario and is consistent with inflation.

VI. CONCLUSIONS
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A. Recapitulation

Conceptually, the ekpyrotic scenario appears to be simple: a bulk brane strikes our visible

brane and a hot big bang universe is born. In actuality, to accomplish the transformation

from a cold, nearly BPS state into an expanding, hot universe with nearly scale-invariant

density perturbations without invoking inflation requires a series of seemingly incongruous

conditions. Remarkably, these conditions can be satisfied simultaneously in heterotic M-

theory.

First, the gravitational backreaction due to the kinetic energy of the bulk brane must

trigger cosmic expansion. In 4d gravity, kinetic energy usually causes cosmic deceleration

and, if the initial state is static, it triggers contraction. Second, the total energy of the brane

has to grow by drawing energy from the gravitational field since, otherwise, the total bulk

brane energy before and after collision is zero and there is no radiation. In 4d gravity, this

blue shift effect occurs if the universe is contracting, but here it occurs even though the scale

factor on the visible brane is expanding. Third, the scalar (energy density) fluctuations must

be nearly scale-invariant. Although scale-invariance is ordinarily associated with inflation,

here we have shown that a scale-invariant spectrum results even though the universe is

quasi-static. The only requirement is a bulk brane potential whose magnitude increases

by an exponential factor as the brane traverses the bulk. Potentials of this type occur in

string theory. (Our analysis suggests that scale-invariance is especially favored in the 5d

theory. It occurs for rather simple, physically-motivated potentials, whereas more general

spectral shapes are difficult to obtain.) Fourth, the tensor fluctuation spectrum is not scale-

invariant but, rather, strongly tilted towards the blue, providing an observational signature

that distinguishes the ekpyrotic scenario from inflationary cosmology.

In the context of 4d gravity, some of these features suggest slow expansion, others super-

luminal expansion, yet others contraction. How do we obtain all of these features simulta-

neously? All of this is possible in our 5d theory because the role of gravity in the equations

of motion for the expansion, the brane motion, and the scalar and tensor fluctuations is
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played by different combinations of moduli fields for each equation. That is, each equation

is similar to the corresponding equation for a scalar field in a 4d FRW background except

that the scale factor a(t) is replaced by some function of the moduli fields that differs for

each physical quantity. Some combinations increase with time, mimicking an expanding uni-

verse, and others decrease, mimicking a contracting universe. The remarkable result is that

just the right combinations of moduli occur in heterotic M-theory to produce the behavior

required for a viable cosmological scenario.

An observer at any surface of fixed y has a scale factor equal to AD1/2(y, τ) (see Eq. (11)),

which is expanding as the bulk brane collides with the visible brane. In Eq. (23), which

describes the time variation of the total energy of the bulk brane, the role of the scale factor

is played by a, which is contracting. The contraction produces the blue shift or increase in

the total energy so that, upon collision, there is excess kinetic energy that can be converted

to radiation. The scalar fluctuations are ripples in the bulk brane surface that evolve as if

the scale factor were apert in Eq. (54), corresponding to a contracting effective Hubble radius.

We have identified simple criteria for the potential which result in a scale-invariant spectrum.

The tensor fluctuation spectrum naturally differs from the scalar spectrum because tensor

fluctuations occur in the bulk volume rather than on the brane surface. The effective scale

factor for the tensor fluctuations is a, rather than apert. The differences account for the fact

that the scalar spectrum is scale-invariant, whereas the tensor spectrum is tilted strongly to

the blue.

A useful mnemonic for recalling the difference between the scalar and tensor fluctuation

spectra in our scenario is to consider the equivalent relations for inflationary cosmology, but

with the inflaton scalar field replaced by Y . For the scalar fluctuations, the amplitude is

δS ∼ H
(

∆Y

Ẏ

)

k=H
(89)

and the tensor fluctuation amplitude is

δT ∼
(

H

Mpl

)

k=H

, (90)
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where Mpl is the 4d Planck mass, ∆Y is the fluctuation amplitude for Y , and the subscript

means that the expressions are to be evaluated when the wavenumber of a given mode

is equal to the inverse Hubble radius H as it passes beyond the horizon. For inflation,

H , ∆Y and Ẏ are nearly constant, so δS and δT are both nearly scale-invariant. For the

ekpyrotic scenario, ∆Y and Ẏ are both strongly time-varying. However, for an exponential

potential V (Y ) as is naturally generated by non-perturbative exchange of M2-branes, the

time-variation in the ratio ∆Y/Ẏ in the expression for δS nearly cancels. Consequently, the

ratio is nearly constant and the resulting spectrum is nearly scale-invariant. However, δT

involves only H , which is increasing with time as smaller and smaller wavelength modes

pass beyond the horizon. This accounts for the fact that the spectrum is blue.

As a specific fully-worked example, consider the case of an exponential bulk brane po-

tential, V (Y ) = −v exp(−mαY ), as discussed in Section VB2. We have computed the

ekpyrotic temperature at the beginning of the hot big bang phase (Eq. (30)),

T

Mpl
≈ 33/4(2v)1/4

(I3M5)1/2(αR + C)1/4

(

M5

Mpl

)1/2 (
β

α

)1/2
(mC + 2)1/2

m
. (91)

In terms of this temperature, the scalar (energy density) fluctuation amplitude in Eq. (75)

can be rewritten as

|δk| =
m6(I3α)3/2

36π3/2(mC + 2)2

(

α

β

)3/2
2

mDk

(

T

Mpl

)2

. (92)

A simple example which satisfies all constraints is α = 2000M5, β = M5, B = 10−4,

C = 1000, R = M−1
5 , m = 0.1, and v = 10−8, all of which are plausible values. In

this example, Dk (the value of D at horizon crossing) is of order 103. Then, we find that

M5 ∼ 10−2 Mpl; the ekpyrotic temperature is T ∼ 10−8 Mpl; and the scalar perturbation

amplitude is |δk| ∼ 10−5. Note that the ekpyrotic temperature, the maximal temperature

of the hot big bang phase, tends to be small compared to the Planck or unification scale.

This is a characteristic feature of the model. With these parameters, the magnitude of

the potential energy density at collision is (10−6Mpl)
4. This corresponds to a characteristic

energy scale for the potential of 1013 GeV. Finally, note that these values are consistent

55



with Hořava-Witten phenomenology. For instance, the proper distance between the branes

is R−1
proper ∼ 10−5Mpl. If we further assume that the characteristic length scale LCY of the

Calabi-Yau three-fold is approximately 10 times smaller than Rproper (in order for the five-

dimensional effective theory to be valid), then we get agreement with the values of Rproper,

LCY , and the 11d Planck mass M11 inferred by Witten in Ref. 15 in matching the gauge

and gravitational coupling constants.

While we are pleased that the numerical constraints from cosmology and those from

Hořava-Witten phenomenology can be simultaneously satisfied, we should emphasize that

there is a lot of flexibility in terms of parameters. For instance, in the above example the

ratio β/α was chosen to be of order 10−3. However, one can easily make this ratio as large

as 1/10 if one wishes. For example, choosing α = 200M5, β = 20M5, B = 10−2, C = 100,

R = M−1
5 , m = 1, and v = 10−10 results in T ∼ 10−7 Mpl, |δk| ∼ 10−5, M5 ∼ 10−2 Mpl,

R−1
proper ∼ 10−5Mpl, and characteristic energy scale for the potential of 1014 GeV. The value

of Rproper could also take a significantly different value, if one wishes, and there would still be

enough freedom to obtain reasonable ekpyrotic temperature and fluctuations. We can also

imagine applying the same ideas in a different brane world context, such as AdS, and still

obtaining a successful scenario from a cosmological point-of-view. The challenge, of course,

is to figure out how to break supersymmetry, obtain a correct phenomenology and stabilize

moduli. Here we have presumed that this challenge can be met, and have shown through

examples how the brane world approach to particle phenomenology might be combined with

new ideas in cosmology to obtain a successful picture of the early Universe.

B. Colliding Branes and Inflationary Cosmology

We have laid out a detailed cosmological scenario that offers a resolution of the flatness,

horizon, and monopole problems and generates a nearly scale-invariant spectrum of energy

density perturbations based on concepts that derive naturally from extra dimensions, branes,

and heterotic M-theory. The key conceptual difference from inflation is how the universe
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begins. In the usual approaches to inflationary cosmology, as in standard big bang cosmol-

ogy, the universe begins with a cosmological singularity. The universe emerges in a high

energy state with no particular symmetry and rapidly expanding. Superluminal expansion

is invoked to smooth out and flatten the emerging state. The ekpyrotic scenario intro-

duces a different philosophy in which the universe begins in a non-singular, infinite, empty,

quasi-static state of high symmetry. Superluminal expansion is not needed because the BPS

vacuum state is flat and smooth. Brane collision can account for the matter-radiation energy

and primordial density perturbations.

Let us briefly summarize how the ekpyrotic scenario addresses the various cosmological

problems:

• Causal Horizon Problem: In the ekpyrotic scenario, the local temperature and density

are set by the collision of the visible brane and bulk brane, which acts as a non-local

event that occurs nearly simultaneously over a region much larger than the Hubble

horizon.

• Flatness Problem: The universe is assumed to begin in a nearly BPS ground state.

The BPS state corresponds to a spatially-flat geometry. The process of bulk brane

formation/nucleation and propagation maintains flatness. (We do not demand that

the initial state be globally BPS to resolve the horizon and flatness problems. It

suffices that the universe be flat and homogeneous on scales up to the (causal) particle

horizon, as should occur naturally beginning from more general initial conditions. In

the ekpyrotic scenario, because the bulk brane motion is extremely slow, the particle

horizon at collision is exponentially large compared to the Hubble horizon, where the

latter is set by the radiation temperature after collision.)

• Monopole Problem: The hot big bang epoch commences when the bulk brane col-

lides with the visible brane and heats the universe to a finite temperature. Provided

the temperature is less than the monopole mass, the monopole abundance will be

negligible.
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• Inhomogeneity Problem: Quantum fluctuations generate ripples in the bulk brane

as it traverses the bulk. Due to the ripples, collision and thermalization occur at

varying times across the visible brane, resulting in fluctuations in energy density and

gravitational waves.

Both the ekpyrotic scenario and inflationary cosmology have the feature that the causal

horizon is exponentially greater than the Hubble horizon. In inflation, superluminal expan-

sion rapidly stretches the causal horizon while the Hubble horizon is nearly fixed. In the

colliding brane picture, the collision of the bulk brane acts as a non-local interaction that

causally links regions separated by much more than a Hubble distance.

Both the inflationary and ekpyrotic scenarios produce a nearly scale-invariant spectrum

of energy density perturbations from quantum fluctuations. For inflation, quantum fluc-

tuations are stretched beyond the Hubble horizon as the universe expands superluminally.

For the ekpyrotic universe, the Hubble horizon is shrinking compared to the quantum fluc-

tuations as the universe contracts very slowly. The equations describing the evolution of

perturbations are (nearly) equivalent in the two cases (see discussion of Eq. (54)), even

though, one describes an expanding de Sitter phase and the other a contracting pressureless

phase. The similar equations account for why both lead to scale-invariant spectra for density

perturbations even though the mechanisms are different.

From the point-of-view of an observer on the stationary orbifold planes, the universe is

expanding as the branes collide. The bulk brane is what causes their expansion, a grav-

itational backreaction effect due to its motion. The expansion is very slow as the brane

moves across the fifth dimension, but assumes the usual big bang rate after collision and

thermalization.

One might hope that the ekpyrotic scenario avoids the tuning problems required in stan-

dard inflation in order to obtain an acceptable perturbation spectrum. Thus far, the situa-

tion is unclear. We found that we had to introduce a flat potential for the bulk brane that

is roughly similar to the flat inflaton potential used in standard inflation. The form is also
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qualitatively consistent with non-perturbative potentials that arise in M-theory. Perhaps the

potential parameters needed for our scenario will be shown to arise naturally. However, it

should also be noted that the reasons for introducing the potential in the ekpyrotic scenario

are different from the case of inflation. In our case, the need for a flat potential is linked

to the precise form of the background static BPS solution of Lukas, Ovrut and Waldram

used in this paper. Perhaps there exist other initial conditions which avoid the need for flat

potentials altogether.

Although inflationary cosmology and the colliding brane picture both produce a nearly

scale-invariant spectrum of perturbations, the deviation from scale-invariance differs due

to the fact that the background felt by the perturbations is expanding in one scenario

and contracting in the other. In standard inflationary cosmology, the spectrum of scalar

(density) and tensor (gravitational wave) perturbations is typically red (amplitude decreases

as wavelength decreases).51 The amplitude of a given mode is proportional to the Hubble

parameter when the wavelength is stretched beyond the horizon. The Hubble parameter

decreases (slowly) in an expanding, inflating universe. Since smaller wavelength modes

stretch beyond the horizon at later times when the Hubble parameter is smaller, they have

a smaller amplitude, resulting in a red spectrum. The degree of redness is expressed in

terms of a “spectral index,’52 nS,T for scalar and tensor perturbations respectively, where

nS −1 = nT = 0 is defined as precise scale-invariance, and nS −1 < 0 and nT < 0 correspond

to red spectra. In the examples of the ekpyrotic scenario discussed here, the apparent Hubble

radius for an observer on the bulk brane is shrinking. Consequently, the corresponding

spectra are blue. By introducing a potential for the bulk brane (dependent, say, on its

position Y ), the density perturbation spectrum can be made nearly scale-invariant, slightly

blue (nS − 1 > 0) in our examples. On the other hand, the gravitational wave spectrum is

unaffected by the potential and is strongly blue nT ≈ 2.

For energy density perturbations, there are exceptional cases where inflation can give a

blue spectrum.53 The blue spectrum arises because the density perturbation amplitude is

not only proportional to the Hubble parameter, but also inversely proportional to the kinetic
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energy of the inflaton. As inflation proceeds, the Hubble parameter decreases and, in most

models, the inflaton kinetic energy increases; so both effects tend to make the spectrum red.

But models can be rigged where the Hubble parameter decreases, as usual, but the inflaton

kinetic energy decreases more rapidly. In that case, the spectrum is blue. Similarly, it is

possible to get a red spectrum in the ekpyrotic model, for example, if the bulk brane moves

in the direction of increasing warp factor.54 Hence, observing a red or blue density spectrum

is not a decisive test for distinguishing the two scenarios.

However, the gravitational wave spectrum for inflation is always red — the amplitude

depends only on the Hubble parameter — and so observing a strongly blue gravitational

wave spectrum, as predicted by the ekpyrotic scenario, is a key test. The cosmic microwave

background polarization is one method of detecting the presence of primordial gravitational

waves with wavelengths comparable to the Hubble horizon today. For the slightly red spec-

trum of inflationary cosmology, the gravitational wave amplitude may be large enough to be

detected. However, for a strongly blue spectrum, the signal at large length scales is exponen-

tially small and undetectable. Hence, the detection of gravitational waves in the microwave

background polarization would falsify our scenario. Currently planned gravitational wave

detectors, such as LIGO and LISA, are not sensitive enough to detect the gravitational waves

from inflation or from our scenario. However, future detectors may discover the stochastic

background and determine the spectral slope.

Certain aspects of our scenario are reminiscent of the novel, string-inspired, pre-big bang

models introduced by Veneziano and Gasperini.18,19 Both assume the universe begins in a

flat, empty state.20 In both models, the gravitational wave perturbation spectrum is blue.55

However, the structure, ingredients, dynamics and predictions of the two models are very

different. The pre-big bang scenario does not entail extra dimensions or branes in a direct

way. The pre-big bang begins with a semi-infinite period of contraction which is superluminal

(deflation). This period ends in a global singularity in which the Hubble constant becomes

infinite. Matching across this singularity is the biggest challenge facing the pre-big bang

model. If it is possible at all, it can only be at the string scale where non-perturbative stringy
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effects are large and difficult to compute. In our model, matching to the universe after the

bulk-boundary collision is complex, and will require calculations in the five dimensional

theory which we have not studied here. But the collision event itself is nonsingular and

it is an important advantage of our scenario that it only involves physics taking place at

low energies, which is in principle describable using the effective low energy Lagrangian. A

second difference is that all expansion and contraction are subluminal in our model. Finally,

in the simplest renditions of pre-big bang, the fluctuation spectrum is so strongly tilted to

the blue relative to a scale invariant spectrum that current observational bounds on the

microwave background anisotropy are violated. The ekpyrotic scenario obtains a spectrum

that is consistent with current observations.

To summarize, we have presented a novel scenario for the beginning of the hot big bang

universe, within a framework consistent with string theory and supergravity. The universe

begins in the simplest state possible, one which is cold, nearly BPS, and nearly vacuous. At

some time, a bulk brane exists or is nucleated in the vicinity of the hidden brane (through

a small instanton phase transition), and begins to move towards the visible brane. The

bulk brane eventually collides with the visible brane and is absorbed in a small instanton

phase transition. This transition may change the gauge group on the visible brane to the

standard model gauge group, as well as create three families of light quarks and leptons. At

the moment of collision, a fraction of the kinetic energy of the brane is converted to thermal

excitations of the light degrees of freedom on the visible brane, causing the universe to

enter an FRW radiation-dominated phase. Furthermore, ripples on the bulk brane imprint

a spectrum of energy density fluctuations consistent with current observations and which

provides the seeds for structure formation. While parts of our scenario remain speculative

at present (such as the dynamics of the small instanton phase transition), it is our hope

that advances in heterotic M-theory will eventually allow us to solidify the components of

our cosmological model. For the moment, we consider our scenario as a first step towards a

new, testable model for the early universe consistent with current cosmological observations

and fully-motivated by string theory.
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