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1. Introduction

Renormalisation group (RG) methods are an essential
ingredient in the study of non-perturbative problems in
continuum and lattice formulations of quantum field the-
ory. A number of RG equations have been proposed,
where the starting point is the (infrared) regularised one
loop effective action. Taking the derivative w.r.t. the
infrared scale together with a subsequent one loop im-
provement leads to a flow for the effective action. The
merit of such an equation is its flexibility, as it allows for
non-perturbative approximations not bound to the weak
coupling regime. Thus, these flows are particularly inter-
esting for theories where one has to resort to truncations
because the full problem is too hard to attack. Indeed,
surprisingly good results concerning critical exponents in
scalar theories have been obtained within simple approx-
imations to a particular version of a one loop improved
RG [1], based on a proper-time representation of the one
loop effective action [2]. It has also been suggested that
the proper-time RG may be an interesting tool for gauge
theories, since the regularisation respects a local non-
Abelian gauge symmetry [3].

However, results obtained within a truncated system
are only as good as the accompanying quality checks.
Apart from the inherent problems of these checks, the
present situation requires additional care, since most of
the one loop improved RG lack a first principle deriva-
tion. Such flows suffer from a severe conceptual problem.
It is unclear, whether they are only approximations to
flows for the full effective action or whether they repre-
sent an exact flow. The latter is indeed known to hold
true for Exact RG (ERG) flows [4,5] (for reviews see [6]).
They can be obtained within a one loop improvement,
but also from a first principle derivation, mostly done
within a path integral representation. The strength of
exact RG flows is that systematic approximations of the
integrated flow correspond to systematic approximations
to the full quantum theory. This property, in combina-
tion with the convergence behaviour of the flow, is at
the root of the predictive power of the formalism. The
similarity of the different one loop improved flows, in-
cluding ERG flows, has fuelled hopes that the scenario

just described for exact flows may be valid in general.
Based on this picture, and prior to an application of

a general one loop improved flow to any physical prob-
lem, it is mandatory to either prove that a given flow
is exact, or to unravel its inherent approximations. A
way to settle these questions consist in a detailed com-
parison of one loop improved flows with known exact
flows. Within the derivative expansion, this has been
studied in [1]. In this note, we take a different route and
study one loop improved RG equations within pertur-
bation theory. It is shown that they only represent, in
general, approximations to flows in the full theory. This
result is achieved by a structural analysis of the flows,
and by calculating the diagrammatic representation of
the two loop contributions to the effective action gener-
ated by the flow through an iterative formal integration.
In general neither the graphs nor the combinatorial fac-
tors of the two loop diagrams that originate from one
loop improved flows, are the correct ones. A full account
of the present calculation together with a discussion of
related issues will be presented in [7].

2. One loop improved renormalisation group

We briefly review the philosophy of a one loop improved
renormalisation group. The starting point is the formal
equation for the one loop effective action:

Γ1−loop = Scl + 1
2
Tr lnS(2) . (1)

The trace in (1) is ill-defined and requires -at least- an UV
regularisation. A one loop improved RG is derived from
(1) by first employing an explicit regularisation, taking
the derivative w.r.t. the cut-off scale k and then substi-
tuting S(2) by Γ(2). Here, we concentrate on infrared
regularisations; this does not make a difference for the
flow itself, which in either case should be local in mo-
mentum space, e.g. only a small momentum range about
q2 ≈ k2 contributes to the flow at fixed k.

Let us start with the derivation of the ERG flow [4–6].
Adding an infrared regulator R (a momentum dependent
mass term) to S(2) in (1) and proceeding according to the
one loop improvement philosophy, we arrive at
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∂tΓk = 1
2
Tr
(

Γ
(2)
k + R

)−1

∂tR , (2)

where t = ln k is the logarithmic infrared scale introduced
via R. The regulator R has to meet some requirements
as a function of momentum and the cut-off scale, which
are discussed at length in the literature. For our purpose
these consistency requirements are irrelevant, since we
only want to perform iterative formal integrations.

We emphasise that a general exact flow is the flow of
some operator insertion within the theory. A first prin-
ciple derivation of the ERG, for example, is based on the
insertion 1

2

∫

φRφ. Insisting on the one loop nature of
the flow, one is bound to an insertion which is at most
quadratic in the fields. Otherwise, the corresponding ex-
act flow would also contain higher loop contributions.
We conclude that an exact flow with a one loop struc-
ture must depend linearly on the full propagator. This is
indeed the case for the ERG flow (2).

Another possibility for regularising the expression in
(1) is to modify the trace itself by inserting an operator
ρ multiplicatively [8]. This amounts to the replacement
Tr lnS(2) → Trρ lnS(2) in (1) and leads to the one loop
improved RG flow

∂tΓk = 1
2
Tr ∂tρ ln Γ

(2)
k

. (3)

The multiplicative structure of this flow is particularly
convenient, when used in numerical applications. Note,
that opposed to (2), the flow (3) depends on the loga-

rithm of Γ
(2)
k . Based on this structure, we can already

conclude that (3) cannot be exact.
Finally we consider a regularisation based on a proper-

time representation of (1),

Γ1−loop = Scl −
1
2

∫

ds

s
Tr exp

(

−s S
(2)
cl

)

. (4)

Now we multiply the integrand in (4) by a regularising
function f(s Λ2)− f(s k2) [9]. Proceeding along the lines
of the one loop improvement we arrive at [2]

∂tΓk = 1
2

∫ ∞

0

ds

s
∂tf Tr exp

(

−sΓ
(2)
k

)

. (5)

In order to facilitate the perturbative calculations below,
we cast the flow equation (5) in a form which is more con-
venient for this purpose. This alternative representation
also reveals more clearly the structure of the proper-time
flows. To that end, we expand a general proper-time flow
in the following basis set of regulator functions f :

∂tf(x; m) =
2

Γ(m)
xm exp (−x) . (6)

Here, x = k2s. Note that the IR behaviour is con-
trolled by the term e−x, where x serves as a mass. These
flows cover all proper-time flows that have been studied

in the literature [1–3,10–18]. Moreover, linear combina-
tions

∑

m dm f(x; m) of (6) with
∑

m dm = 1 cover all
flows with mass-like IR behaviour. The trace in (5) can
be written in terms of the normalised eigenfunctions Ψn

of Γ
(2)
k with Γ

(2)
k Ψn = λnΨn. Within this representa-

tion we deal with simple s-integrals. By performing the
s-integration we arrive at [7]

∂tΓk = Tr

(

k2

Γ
(2)
k + k2

)m

. (7)

The operator kernel inside the trace is the mth power of
a Callan-Symanzik kernel. We note that the functional

dependence of (7) on Γ(2) depends on the regularisation.
Above, we have argued that an exact one loop flow has
to depend linearly on the full propagator. Hence, (7) is
not exact for m 6= 1 due to the non-linear dependence of
(7) on the full propagator.

In addition, (7) also signals that, at least in perturba-
tion theory, the deviation of a general proper-time flow
from an exact flow is regularisation-dependent. In con-
trast, for both (2) and (3), the functional dependence on
Γ(2) and, thus, the result of their formal integration is in-
dependent of the regularisation. For (5), however, linear
combinations of (7) span the space of all kernels which
decay at least as (Γ(2) + k2)−1 and reproduce the one
loop effective action. A general kernel trivially leads to a
non-unique endpoint of the flow. This result also implies
that (5), in general, is not an exact flow.

3. Effective action at one loop

Thus, prior to any use of the flows (3) and (5), it is
mandatory to collect more information on their inherit
deviation from exact flows. Here, this is done by explic-
itly calculating one loop and two loop effective actions
following from the flows. This also serves as an indepen-
dent proof of our general statements. We restrict our-
selves to a scalar theory with one species of fields, but
with general interaction. The results are easily gener-
alised to arbitrary field content. As the flows (2), (3)
and (5) are derived as one loop improved flows from the
one loop effective action (1), their integrals reproduce the
one loop effective action in the limit, where the infrared
cut-off tends to zero. It is instructive to see how this
comes about. The one loop contribution ∆Γ1 is given by

∆Γ1 =

∫ k

Λ

dk′

k′
(∂t′Γk′)1−loop . (8)

Here, (∂t′Γk′ )1−loop stands for the right-hand sides in ei-

ther of the flow equations (2), (3) or (5), with Γ
(2)
k sub-

stituted by S(2). This is sufficient to obtain the effective
action at one loop.

Consequently, integrating the ERG flow (2) leads to
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∆Γ1 = 1
2
Tr
[

ln(S(2) + R)
]k

Λ
. (9)

Note that even for k 6= 0 the expression functionally re-
sembles the one loop contribution to the effective action.
Indeed, it is the UV regularised one loop contribution for
a theory with propagator S(2) + R.

Integrating the one loop improved flow (3) leads to

∆Γ1 = 1
2
Tr
[

ρ lnS(2)
]k

Λ
. (10)

Again this resembles the one loop effective action for any
k. In contrast to an ERG flow, however, it is impossible
to interpret (10) as the one loop contribution of an UV-
regularised modified theory.

Integrating the proper-time flow (7) at one loop, we
get after a straightforward algebra

∆Γ1 = 1
2m

Tr
[(

k′2

S(2)

)m

2F1

(

m, m; m + 1;− k′2

S(2)

)]k

Λ
, (11)

where pFq(x, y; z; w) is the generalised hyper-geometric
series. For integer m, the series in 2F1 in (11) can be
summed up and there is a simpler representation for the
one loop contribution:

∆Γ1 = 1
2
Tr

[

ln
(

S
(2) + k

′2
)

−

m−1
∑

n=1

1
n

(

k′2

S(2)+k′2

)n

]k

Λ

. (12)

For k 6= 0 (11) does not resemble the one loop contribu-
tion to the effective action. Of course, for k → 0, (11)
reproduces the one loop effective action 1

2
[Tr ln(S(2) +

k2)]ren where the renormalisation at Λ is included.

4. Effective action at two loop

As the ERG flow (2) has a first principle derivation, ob-
viously it has to reproduce the correct two loop result.
Structurally it belongs to the same class as the usual
Callan-Symanzik flow, and the calculation of diagrams
and combinatorial prefactors of either flow goes along the
same lines. Here, we only present the result of such a cal-
culation. The two loop contribution ∆Γ2 to the effective
action obeying (2) is given by

∆Γ2 =

∫

pp′qq′

[1

8
Gpp′ S

(4)
p′pqq′ Gq′q

−
1

12

∫

ll′
Gpp′ S

(3)
p′lq Gll′ S

(3)
l′pq′ Gq′q

]

ren.
, (13)

where the subscript ren. indicates that these are renor-
malised diagrams due to the subtractions at Λ. We have
introduced the abbreviations Gpp′ ≡ (S(2) + R)−1(p, p′),

the vertices S
(n)
p1···pn

≡ δ(n)S/δφ(p1) · · · δφ(pn), and a con-
venient short-hand notation for the momentum integrals
∫

p1···pn

≡
∫

ddp1

(2π)d
· · · ddpn

(2π)d
. The combinatorial factors in

(13) are in agreement with perturbation theory. Again,
even for k 6= 0 the result (13) functionally resembles
the perturbative structure. This analysis can be easily
extended to any loop order. Note that one can always
rewrite the integrands as total t′-derivatives. Thus, the
precise form of the regulator R is irrelevant for the result,
as it should.

Expanding the one loop improved flow equation (3) at
two loop leads to the following expression:

∆Γ2 = 1
2

∫ k

Λ

dk′

k′

∫

pp′qq′

∆Γ
(2)
1,pp′ Gp′q ∂t′ρqq′ (14)

and G = 1/S(2). It is easy to rewrite the expression on
the right hand side of (14) as a total derivative, since the

only k-dependence of ∆Γ
(2)
1 is given by ρ. We finally get

∆Γ2 =

∫

pp′qq′

[1

8
(Gρ)pp′ S

(4)
p′pqq′ (Gρ)q′q

−
1

8

∫

ll′
(Gρ)pp′ S

(3)
p′lq Gll′ S

(3)
l′pq′ (Gρ)q′q

]

ren.
. (15)

Again, as for (13), the result does not depend on the regu-
lator for k = 0, where ρ = 1. Differentiating (15) w.r.t. k
leads to the integrand of (14), as it should. The combina-
torial factors of the diagrams in (15) do not match those
in (13). Thus the flow (3) fails to reproduce perturbation
theory beyond one loop.

Finally we discuss the proper-time flow (5). Below
(7), we have already argued that the flow (5) is not an
exact flow for a general regulator. Here, as an explicit
example, we calculate the two loop effective action for
m = 2. Expanding the flow (5) at two loop we get

∆Γ2 =−2

∫ k

Λ

dk′

k′

∫

pp′

∆Γ
(2)
1,pp′ (G k′2 G k′2 G)p′p, (16)

where Gpp′ ≡ (S(2)+k′2)−1(p, p′). Note, that it is impos-
sible to rewrite the integrand in (16) as a total derivative
w.r.t. the scale parameter t′. This already is a strong
hint at the fact that one cannot get the correct two loop
result. Let us cast (16) in a form which shows explicitly
how it deviates from perturbation theory. Using partial
t′-integrations we obtain from (16), after some lengthy
but straightforward algebra,

∆Γ2 =

∫

pp′qq′

[1

8
Gpp′ S

(4)
p′pqq′ Gq′q

−
1

12

∫

ll′
Gpp′ S

(3)
p′lq Gll′ S

(3)
l′pq′ Gq′q

]

ren.

−
1

2

∫ k

Λ

dk′

k′

∫

pp′qq′ll′

[

(G k′2 G)pp′ S
(3)
p′ql

×(G k′2 G)qq′ S
(3)
q′pl′ (G k′2 G)l′l

]

. (17)

Differentiating (17) w.r.t. k leads to the integrand of (16),
as it should. The first two terms in (17) correspond to
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the correct two loop result as presented in (13). The last
term denotes the deviation from standard perturbation
theory. The d ln k′-integrand of the last term in (17) is
the non-standard diagram depicted in Fig. 1. The last
term on the right-hand side of (17) cannot be absorbed
in renormalisation constants. It contains arbitrary pow-
ers in fields and momenta and does not integrate to zero
in the limit k → 0 and Λ → ∞. For massive theories
both limits are safe. Consequently this term displays a
non-trivial deviation of the proper-time flow from per-
turbation theory. The form of the integrand is that of
the sunset graph where all propagators have been substi-
tuted by their squares. This is clearly related to the fact
that the form of the proper-time flow is that of a Callan-
Symanzik flow with all propagators substituted by their
squares.

Figure 1: The integrand of the non-standard term in (17).

The two vertices S
(3) are denoted by •, the six internal lines

are the propagators G = (S(2) + k
′2)−1, and the three inser-

tions correspond to k
′2.

To be more explicit, consider the example of a mas-
sive φ4-theory with mass M and quartic interaction
λ

4!

∫

ddxφ4. The contribution of the non-standard dia-
gram to the propagator is obtained after taking the sec-
ond derivative with respect to the fields in (17) at φ = 0.
We find

λ2

∫ 0

∞

dk

k

∫

ddq

(2π)d

ddl

(2π)d

[ k2

(k2 + M2 + q2)2

×
k2

(k2 + M2 + l2)2
k2

(k2 + M2 + (l + q − p)2)2

]

. (18)

The integrand it strictly positive. Hence the integral is
non-vanishing. Moreover it has a non-trivial momentum
dependence. This can be seen by evaluating the limits
p → 0 and p → ∞. For p → 0 we are left with a non-
vanishing constant. In turn, for p → ∞ the expression in
(18) vanishes.

5. Discussion

Having established that neither (3) nor, in general, (5)
provide exact flows, we want to understand what pre-
cisely causes the deviation from perturbation theory.
First we recall the argument made prior to (3): A general

exact flow is related to the flow of an operator insertion
in the theory. Demanding, additionally, that the flow has
a one loop structure restricts possible insertions to oper-
ators quadratic in the fields. Consequently such a flow
has to depend linearly on the full propagator.

For a general flow it might be hard to decide, whether
one has such a situation. Already for general proper-time
flows we had to take the detour of expanding general
flows in the basis (6) in order to reach to a conclusion.
Thus, we would like to provide an additional criterion,
which also reflects the necessity of a linear dependence
on the full propagator. Indeed, a sufficient condition for
a RG equation to reproduce perturbation theory can be
deduced from the iterative structure of the perturbation
series: It suffices that the solution of a RG equation has
the same iterative structure even at non-vanishing cut-
off. Without this property, the corresponding RG equa-
tion has to satisfy an infinite tower of iterative constraints
in order to reproduce perturbation theory in the limit,
where the infrared cut-off tends to zero. Consequently,
one can assess from the structure of the one loop effec-
tive action at k 6= 0, whether a flow is likely to reproduce
perturbation theory.

The iterative structure discussed above is absent in the
one loop effective action given in (11) for k 6= 0. More-
over, it cannot be regained by considering linear combina-
tions of regulators (6). Despite this discouraging fact, let
us shed some more light on the structure of proper-time
flows. It is not possible to integrate a general proper-
time flow beyond one loop without knowing the precise
form of the regulator. Still, there are recursive relations
between different proper-time flows at a given loop or-
der. These relations tell us how the flows differ from
each other for arbitrary m, integer or not. At two loop,
and with G = (S(2) + k2)−1, the most general recursion
relation is given by [7]

∆Γ2,m − ∆Γ2,m−1 =
1

2

∫ 0

∞

dk

k
Tr
[ (

Gk2
)m−1

G

× ( m

m−1
k2G − 1)

δ2

(δφ)2
Tr (Gk2)m−1

]

, (19)

apart from irrelevant terms from the different renormal-
isation procedures for the two flows. The difference (19)
(or, more generally, ∆Γ2,m − ∆Γ2,m−n with integer n)
depends on arbitrarily high powers of the fields and does
not integrate to zero.

Eq. (19) can be used to give an independent explicit
proof of the non-exactness of general proper-time flows.
To that end, let us assume for a moment that the proper-
time flow for a particular m0 is exact. Then it follows
from (19) that all flows with m = m0 + n for integer n
are not exact, because the corresponding terms (19) do
not vanish identically in the fields. Hence, of all proper-
time flows of the form (5) with regulators (6) or finite
linear combination thereof, the set of exact flows is of

4



measure zero. This has an immediate consequence for
flows with integer m. The Callan-Symanzik flow (m = 1)
is exact, but any flow with integer m > 1, or any linear
combinations thereof, are not exact. Hence, the structure
of the findings for m = 2 is present for arbitrary m,
and (19) provides an independent explicit proof for the
general statement derived after (7).

Thus, for proper-time flows, we arrive at the following
picture. The only known exact proper-time flow is the
Callan-Symanzik flow. Other exact proper-time flows -
if they exist- would require a linear dependence on the
full propagator, possibly in some disguise. Based on our
findings, no further exact flows can be found within the
set of regulators (6), which covers all flows previously
studied in the literature. Of course, it is not excluded,
that a regulator, which is represented by an infinite series
of regulators (6), is exact. However, there is no a priori

criterion upon which one could embark on and construct
such a regulator.

To summarise, we have shown that the one loop im-
proved flows (3) and, in general, (5) are not exact flows.
We have shown explicitly, that they fail at the first non-
trivial order, at two loop. These results imply that hopes
expressed in the literature – suggesting that the RG flows
(3) and (5) correspond to exact flows only with a dif-
ferent implementation of the regularisation – cannot be
maintained. In fact, these flows are substantially different
from exact flows, and describe at best approximations to
the latter. Justification of their use requires a deep un-
derstanding of the inherent approximation in order to
furnish these methods with predictive power. This ques-
tion has only been addressed within the derivative ex-
pansion [1]. However, the potential benefits of general
one loop improved RG flows within numerical implemen-
tations justify further investigations. An extensive study
of this problem, including a more detailed account of the
present calculations, will be given elsewhere [7].
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[14] O. Bohr, B. J. Schäfer and J. Wambach, Int. J. Mod.

Phys. A 16 (2001) 3823 [hep-ph/0007098].

[15] J. Meyer, K. Schwenzer, H. J. Pirner and A. Deandrea,

hep-ph/0110279.

[16] A.Bonanno and D. Zappalà, Phys. Lett. B504 (2001) 181
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