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Abstract

Within the exact renormalisation group, the scaling solutions for O(N) symmetric

scalar field theories are studied to leading order in the derivative expansion. The

Gaussian fixed point is examined for d > 2 dimensions and arbitrary infrared reg-

ularisation. The Wilson-Fisher fixed point in d = 3 is studied using an optimised

flow. We compute critical exponents and subleading corrections-to-scaling to high

accuracy from the eigenvalues of the stability matrix at criticality for all N . We es-

tablish that the optimisation is responsible for the rapid convergence of the flow and

polynomial truncations thereof. The scheme dependence of the leading critical ex-

ponent is analysed. For all N ≥ 0, it is found that the leading exponent is bounded.

The upper boundary is achieved for a Callan-Symanzik flow and corresponds, for all

N , to the large-N limit. The lower boundary is achieved by the optimised flow and

is closest to the physical value. We show the reliability of polynomial approxima-

tions, even to low orders, if they are accompanied by an appropriate choice for the

regulator. Possible applications to other theories are outlined.



I. INTRODUCTION

Renormalisation group techniques are important tools to describe how classical physics

is modified by quantum fluctuations. Integrating-out all quantum fluctuations provides the

link between the classical theory and the full quantum effective theory. Universality implies

that the details of the underlying classical theory – other than the global symmetries, long-

or short-range interactions, and the dimensionality – are irrelevant for the characteristics of

the quantum effective theory. For this reason, universal properties of phase transitions in

numerous physical systems (entangled polymers, liquid-vapour transition, superfluid tran-

sition in 4He, ferromagnetic transitions, QCD phase transition with two massless quark

flavours) can be addressed based on simple scalar field theories [1].

A useful method is given by the Exact Renormalisation Group (ERG) [2–6], which is

based on the Wilsonian idea of integrating-out infinitesimal momentum shells. The corre-

sponding flow, which has a simple one-loop structure, is very flexible concerning approxi-

mations, and its domain of applicability is not tied to weak coupling. Recently, it has been

shown that ERG flows can be optimised, thereby providing improved results already to low

orders within a given approximation [7–10]. In the present paper, we apply this idea to the

universality class of O(N) symmetric scalar theories in three dimensions and compute crit-

ical exponents and subleading corrections to scaling. We expect that insights gained from

this investigation will also prove useful for applications to gauge theories [11] or gravity [12],

which are more difficult to handle.

Universal critical exponents have been computed previously using either polynomial

truncations of exact renormalisation group flows, or the derivative expansion to leading

and subleading order [10,13–24], and in [24,25] based on the proper-time renormalisation

group [26]. All results are affected by the underlying approximations which induce a spu-

rious dependence on the regularisation [10,17,22,27–29]. This is somewhat similar to the

scheme dependence within perturbative QCD, or within truncated solutions of Schwinger-

Dyson equations. While this scheme dependence should vanish at sufficiently high order

in the expansion, practical applications are always bound to a finite order, and hence to

a non-vanishing scheme dependence. In some cases, it has even been observed that higher

order results happen to be worse than lower order ones [21]. In consequence, one should

gain some understanding of the spurious scheme dependence. Without this, it is difficult to

decide which of the different scheme-dependent results within a fixed truncation could be

considered as trustworthy.

A partial understanding of the interplay of approximations and scheme dependence has

been achieved previously. For scalar QED [30], the scheme dependence in the region of

first order phase transition has been studied in [28,29]. For 3d scalar theories, the interplay

between the smoothness of the regulator and the resulting critical exponents has been ad-

dressed in [22] using a minimum sensitivity condition. For Einstein quantum gravity, where
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a new UV fixed point has been found recently to low orders in a polynomial truncation, the

corresponding analysis has been given in [31]. The weak scheme dependence found in these

cases suggests that higher order corrections remain small, thereby strengthening the results

existing so far. The evidence created this way is partly circumstantial, because the range

over which a physical observable varies with the scheme depends on the class of regulators.

Here, we address the problem from a different perspective. The main ingredient in our

analysis is the concept of optimisation [7–10]. For a given physical problem, it should be

possible to identify specific regulators which lead to a better convergence behaviour of the

flow. This strategy is based only on the ERG flow itself and has lead to a simple opti-

misation criterion for flows [7]. Optimised flows have a number of interesting properties

[8]. They lead to a fast decoupling of heavy modes, they disentangle quantum and thermal

fluctuations along the flow, and they lead to a smooth approach towards a convex effective

potential for theories in a phase with spontaneous symmetry breaking. The optimisation is

closely linked to a minimum sensitivity condition [9] in a sense which will be made transpar-

ent below. Furthermore, optimised flows have been shown to improve the convergence of the

derivative expansion [10]. Thus, optimised flows are promising candidates for high precision

computations within this formalism. Here, we do so within a local potential approximation.

The second new ingredient of our analysis consists in a study of the largest possible

range of flows, and the corresponding critical exponents. We find that the range is larger

than previously assumed. Furthermore, the results from optimised flows are located at the

(lower) boundary and happen to be closest to the physical values.

For the numerical analysis, and apart from the local potential approximation, we em-

ploy a polynomial approximation. This additional approximation is reliable if it converges

reasonably fast towards the full solution. However, it has been criticised previously in the

literature. For a sharp cut-off, it has lead to spurious solutions [14], and its convergence was

found to be poor [32], which has lead to strong doubts concerning its reliability (see also

[33]). In contrast to these findings, we show that the poor convergence is an artifact of the

sharp cut-off regulator, rather than an artifact of the polynomial approximation. Using an

optimised flow, we find that the polynomial approximation is stable and that it converges

rapidly for all technical purposes.

The format of the paper is as follows. We review the basic ingredients of the formalism

and introduce the optimisation ideas (Sect. II). Then, we introduce our numerical method

and study the non-trivial scaling solution in 3d (Sect. III). We compute the eigenvalues at

criticality to high accuracy from an optimised flow. The convergence and stability of the

flow, and of the polynomial truncation, are established (Sect. IV). We study the scheme

dependence of the critical index ν (Sect. V). Finally, we discuss the main results of the

paper with particular emphasis on the predictive power, on the convergence properties of

flows, and on implications for other theories (Sect. VI). Three appendices contain the study
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of the Gaussian fixed point for arbitrary regularisation and d > 2 (App. A), and technical

details for specific classes of regulators, including a computation of the corresponding flows

and critical exponents (Apps. B and C).

II. RG FLOW FOR O(N) SYMMETRIC SCALAR THEORIES

Here, we briefly review some basic ingredients of the ERG formalism, and its approxi-

mation to leading order in the derivative expansion. We also discuss important aspects of

the regularisation, and its optimisation, which is employed in the following sections.

A. Renormalisation group flows

Exact renormalisation group equations are based on the Wilsonian idea of integrating

out momentum modes within a path integral representation of quantum field theory [2]. In

its modern form, the ERG flow for an effective action Γk for bosonic fields φ is given by the

simple one-loop expression [3–6]

∂tΓk[φ] =
1

2
Tr

(

δ2Γk

δφ δφ
+ Rk

)−1

∂tRk (2.1)

Here, t ≡ ln k is the logarithmic scale parameter, and Rk(q
2) is an infrared (IR) regulator at

the momentum scale k. From now on, we suppress the index k on R. The flow trajectory of

Eq. (2.1) in the space of action functional depends on the IR regulator function R. R obeys

a few restrictions, which ensure that the flow equation is well-defined, thereby interpolating

between an initial action in the UV and the full quantum effective action in the IR. We

require that

lim
q2/k2→0

R(q2) > 0 , (2.2)

lim
k2/q2→0

R(q2) → 0 , (2.3)

lim
k→Λ

R(q2) → ∞ . (2.4)

Equation (2.2) ensures that the effective propagator at vanishing field remains finite in the

infrared limit q2 → 0, and no infrared divergences are encountered in the presence of massless

modes. Equation (2.3) guarantees that the regulator function is removed in the physical

limit, where Γ ≡ limk→0 Γk. Equation (2.4) ensures that Γk approaches the microscopic

action S = limk→Λ Γk in the UV limit k → Λ. We put Λ = ∞ in the sequel. For later use,

we introduce a dimensionless regulator function r(y) as

R(q2) = q2 r(q2/k2) . (2.5)
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Now we turn to the flow equation for an O(N) symmetric scalar field theory in d dimensions

to leading order in the derivative expansion, the so-called local potential approximation [34].

This approximation amounts to the Ansatz

Γk =
∫

ddx
(

Uk(ρ̄) +
1

2
∂µφ

a∂µφa

)

. (2.6)

for the functional Γk. The Ansatz neglects higher order corrections proportional to the

anomalous dimension η of the fields. The latter are of the order of a few percent for the

physically interesting universality classes N = 0, · · · , 4. Hence, we expect that a derivative

expansion is sensible, and that the result of a leading order computation is correct up to

corrections of the order of η. Inserting this Ansatz into (2.1) and evaluating it for constant

fields leads to the flow for Uk. We rewrite this flow equation in dimensionless variables

u(ρ) = Uk/k
d and ρ = 1

2φ
aφak

2−d. In addition, the angular integration of the momentum

trace is performed to give [35]

∂tu + du − (d − 2)ρu′ = 2vd(N − 1)ℓ(u′) + 2vdℓ(2ρu′′) (2.7)

with v−1
d = 2d+1πd/2Γ(d

2). The function ℓ(ω) are given by

ℓ(ω) = 1
2

∫ ∞

0
dyyd/2 ∂tr(y)

y(1 + r) + ω
(2.8)

with y ≡ q2/k2 and ∂tr(y) = −2yr′(y). The flow (2.7) is a second order non-linear partial

differential equation. All non-trivial information regarding the renormalisation flow and the

regularisation scheme (RS) are encoded in the function (2.8). The momentum integration is

peaked and regularised: for large momenta due to the regulator term ∂tr(y), and for small

momenta due to r(y) in the numerator. All terms on the left-hand side of Eq. (2.7) do not

depend explicitly on the RS. They simply display the intrinsic scaling of the variables which

we have chosen for our parametrisation of the flow.

B. Optimisation

A good choice for the regulator is most important for a rapid convergence and the stabil-

ity of an approximated flow towards the physical theory. Recently, is has been argued that

such (optimised) choices of the IR regularisation are indeed available [7–9]. The main ob-

servation is that the flow trajectory of (2.1) depends on the regularisation. This observation

is most important for approximated flows: typically, their endpoint also depends spuriously

on the regularisation. The dependence is absent for the full integrated flow. Hence, in order

to provide reliable physical predictions, it is important to seek for regularisations for which

the main physical informations are already contained within a few leading order terms of

an approximation. This issue is intimately linked to the stability of flows.
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The main ingredient in (2.1) is the full inverse propagator. Due to the IR regularisation,

the full inverse regularised propagator displays a gap as a function of momenta [8,9],

min
q2≥0





δ2Γk[φ]

δφ(q)δφ(−q)

∣

∣

∣

∣

∣

φ=φ0

+ Rk(q
2)



 = C k2 > 0 . (2.9)

The functional derivative is evaluated at a properly chosen expansion point φ0. The ex-

istence of the gap C > 0 implies an IR regularisation, and is a prerequisite for the ERG

formalism. Elsewise, (2.1) becomes singular at points where the full inverse effective prop-

agator develops zero modes. It is expected that an approximated ERG flow in the space of

all action functionals is most stable if the regularised full propagator is most regular along

the flow. This reasoning corresponds to maximising the gap.

To leading order in the derivative expansion, and dropping irrelevant momentum-

independent terms, the gap is given by

C = min
y≥0

y(1 + r(y)) . (2.10)

Within the local potential approximation, the gap C in (2.10) depends on the regularisation,

but not on the specific theory considered. A comparison of the gap of different regulators

requires an appropriate normalisation of r. In order to make the flow (2.1) more stable,

we require that the gap, as a function of the RS, is maximal in the momentum regime

where the flow receives its main contributions. This is the optimisation criterion of [7–9].

It corresponds to an optimisation of the radius of convergence of amplitude expansions and

the derivative expansion. It can also be shown that the optimisation is closely linked to a

minimum sensitivity condition. Optimised regulators are those for which the maximum in

(2.10) is attained. In Ref. [8], these considerations have lead to a very specific solution to

the optimisation condition, given by

Ropt(q
2) = (k2 − q2) θ(k2 − q2) . (2.11)

It has a number of interesting properties. For large momenta q2 > k2, the propagation of

modes is fully suppressed since R ≡ 0. For small momenta q2 < k2, all modes propagate

with an effective mass term given by the IR scale, q2 + R(q2) = k2. Based on the discussion

in Refs. [7–9], we expect that Eq. (2.11) leads to an improved convergence and hence better

physical predictions already to leading order in the derivative expansion. Rewriting (2.11)

in the form of (2.5) leads to

ropt(y) = ( 1
y − 1) θ(1 − y) (2.12)

Below, we mainly employ this regulator, and variants thereof (cf. Appendices B and C).

When expressed in terms of the optimised regulator (2.11), the flow equation (2.7) becomes
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∂tu = −du + (d − 2)ρu′ +
4

d
vd

N − 1

1 + u′ +
4

d
vd

1

1 + u′ + 2ρu′′ . (2.13)

Notice that the numerical factors (4vd)/d can be absorbed into the potential and the fields

by an appropriate rescaling.

III. FIXED POINTS

The flow equation (2.13) is known to exhibit two scaling solutions in 2 < d < 4, which

correspond to the Gaussian and the Wilson-Fisher fixed point, respectively. The Gaussian

fixed point is given by the trivial solution u⋆ = const, and is discussed in the Appendix A

for arbitrary regularisation and 2 < d < 4. In this section, we study the non-trivial fixed

point u⋆ 6= const. in 3d based on an optimised flow. We introduce the numerical method,

and discuss the scaling form of the fixed point solution. Universal critical exponents are

computed in the next section.

A. Numerics

Numerical methods for solving partial differential equations are well-known. Here, we

employ a polynomial truncation of the scaling potential, retaining vertex functions φ2n up

to a maximum number ntrunc. Polynomial approximations are reliable if they depend only

very weakly on higher order operators beyond some finite order of the truncation. (In

the following section, we explicitly confirm that this is indeed the case.) Two different

polynomial expansions of the potential are used: expansion I corresponds to

u(ρ) =
ntrunc
∑

n=1

1

n!
λnρ

n . (3.1)

In Eq. (3.1), λ1 denotes the (dimensionless) mass term at the origin. We have normalised the

potential as u(ρ = 0) = 0. All higher order coefficients λn denote the n-th order coupling at

vanishing field. Expansion II, alternatively, approximates the potential about the potential

minimum ρ = ρ0 as

u(ρ) =
ntrunc
∑

n=2

1

n!
λn(ρ − λ1)

n . (3.2)

In Eq. (3.2), λ1 denotes the location of the potential minimum defined by u′(ρ = λ1) = 0.

We have normalised the potential as u(λ1) = 0. All higher order coefficients λn denote

the n-th order coupling at the potential minimum. Both expansions (3.1) and (3.2) are

symmetric under φ → −φ, and approximate the potential as an even polynomial in φ.

The number of independent operators contained in Eq. (3.1) or Eq. (3.2) is ntrunc. The
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expansions transform the partial differential equation (2.7) into ntrunc coupled ordinary

differential equations ∂tλi ≡ βi({λn}) for the set of couplings

{λn, 1 ≤ n ≤ ntrunc} . (3.3)

For the numerical study, we use mostly expansion II, which is known to have superior

convergence properties in comparison to expansion I [33,7].

B. Wilson-Fisher fixed point

The Wilson-Fisher fixed point corresponds to the non-trivial scaling solution of (2.13).

Here, we restrict ourselves to the case d = 3, and to the optimised regulator as introduced

above. The scaling potential obeys the differential equation

0 = −3u⋆ + ρu′
⋆ +

1

6π2

N − 1

1 + u′
⋆

+
1

6π2

1

1 + u′
⋆ + 2ρu′′

⋆

+ const. (3.4)

and u⋆(ρ) 6= const. The constant in Eq. (3.4) can be fixed freely, and we chose it such

that the scaling potential vanishes at its minimum, u⋆ = 0 at the point ρ0 with u′
⋆ = 0.

An analytical solution of Eq. (3.4) has been given in Ref. [18] for the limit N = ∞. For

N 6= ∞, and in the vicinity of ρ = 0, the scaling solution can be obtained analytically as a

Taylor expansion in the field. For d = 3 and N = 1, and inserting the expansion (3.1) into

(3.4) with const. = 0, we find

λ0 = 1
18π

−2(1 + λ1)
−1 (3.5a)

λ2 = −4π2 λ1 (1 + λ1)
2 (3.5b)

λ3 = 72
15π

4 λ1 (1 + λ1)
3 (1 + 13 λ1) (3.5c)

λ4 = −1728
7 π6 λ2

1 (1 + λ1)
4 (1 + 7 λ1) (3.5d)

λ5 = 768
7 π8 λ2

1 (1 + λ1)
5 (2 + 121 λ1 + 623 λ2

1) (3.5e)
...

for small fields. Similar explicit solutions are found for d 6= 3 or N 6= 1. Notice that all

couplings are expressed as functions of the dimensionless mass term at vanishing field, λ1.

The domain of validity of this expansion is restricted to 0 ≤ ρ ≤ ρc < ∞. From the explicit

solution for large fields, (3.6) below, it is clear that the polynomial approximation cannot

be extended to arbitrary large fields. The value ρc defines the radius of convergence for

the polynomial approximation. It is linked to the gap parameter C introduced earlier [7].

Not all values for λ1 lead to a scaling solution which remains finite and analytical for all

ρ < ρc. It is at this point where the quantisation of λ1 becomes manifest: only two values for

λ1 correspond to well-defined solutions of the fixed point equation, given by the Gaussian

fixed point λ1 = 0 and the Wilson-Fisher fixed point λ1 = λ1⋆ < 0. The value for λ1⋆ is
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determined by fine tuning λ1 such that the solution (3.5) extends to ρ = ρc. The result is

λ1⋆ = −0.1860642 · · · for N = 1. In the other limit, for large fields ρ ≫ 1, we find

u(ρ) = A ρ3 + 1
450π2 A−1 ρ−2 + . . . , (3.6)

(and similarly for N 6= 1), where the dots denote subleading terms in ρ and the constant

A > 0 has to be fixed appropriately, in a way similar to λ1 in (3.5). It would be interesting

to study the analyticity properties of the fixed point solutions more deeply, and to contrast

it with the analysis of [32] for the sharp cut-off flow. Despite the simple explicit form of the

flow, and its explicit solution for large and small fields, it is more efficient to identify the

scaling solution and the related critical exponents using numerical methods.

C. Scaling potential

We have solved the resulting coupled set of differential equations in d = 3 dimensions,

for N = 0, 1, · · · , 10 and for truncations up to ntrunc = 20. We have retained only the

solution which has one unstable eigendirection, corresponding to the Wilson-Fisher fixed

point. Fig. 1 shows the corresponding scaling potential u⋆ in the vicinity of the potential

minimum. In Fig. 1, the unusual normalisation of the potential has been chosen only for

display purposes. The scaling potential has, for all N , a minimum at non-vanishing field.

For this reason, the expansion II has better convergence properties than expansion I.

cN u⋆(ρ)

ρ ρ

u′
⋆(ρ)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: The scaling potential, with cN =

40 − 2N . From left to right: N = 0, 1, · · · , 10.
Figure 2: The amplitude u′

⋆(ρ) of the scaling

solution. From left to right: N = 0, 1, · · · , 10.
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u′
⋆(ρ) + 2ρu′′

⋆(ρ)

ρ

Figure 3: The amplitude u′
⋆ + 2ρu′′

⋆ of the

scaling solution. The dots indicate the points

where u′
⋆ = 0. From left to right: N =

0, 1, · · · , 10.0 0.1 0.2 0.3 0.4

0

1

2

3

4

5

Fig. 2 shows the amplitude u′ at the fixed point. It is a monotonic function of the field.

It approaches its most negative values at vanishing field. The flow equation would have

a pole at points where 1 + u′ vanishes. This is, however, never the case, because 1 + u′

stays always positive. Fig. 3 shows the radial mode of the scaling potential u′
⋆ + 2ρu′′

⋆ in

the vicinity of the potential minimum. It is a monotonic function of the fields. The dots

in Fig. 3 indicate where the derivative u′
⋆ changes sign. Again, the most negative value is

attained at vanishing field and decreases with increasing N , but it stays always above the

pole of the flow equation, 1 + u′
⋆ + 2ρu′′

⋆ > 0.

The scaling solution is non-universal. However, critical exponents or the eigenvalues of

small perturbations about the scaling solutions are universal. For their determination, it is

sufficient to study the flow of small perturbations in the vicinity of the scaling potential,

which is done next.

IV. CRITICAL EXPONENTS

In this section, we compute the critical exponents to leading order in the derivative ex-

pansion. Numerical results are given up to six significant figures (Tab. 1). A higher precision

can be achieved, but is not required at the present state. We find a rapid convergence of the

polynomial approximation, for all observables considered. Our results are compared with

those from other regulators.
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A. Eigenvalues

Given the Wilson-Fisher fixed point solution, we can seek for universal critical exponents.

In the vicinity of the non-trivial fixed point, we have to solve the eigenvalue equation

∂t δu(m) = ω δu(m) (4.1)

in order to determine the various universal eigenvalues ω. Using the flow equation, setting

d = 3 and choosing m = 1, and expanding the flow to leading order about the Wilson-Fisher

fixed point, we find

0 =

[

ω + 2 − N

6π2

u′′
⋆

(1 + u′
⋆)

2

]

δu′ +
1

3π2

[

2N

1 + u′
⋆

− 1 + u′
⋆ − ρu′′

⋆ − 2ρ2u′′′
⋆

(1 + u′
⋆ + 2ρu′′

⋆)
2

]

δu′′

+
1

3π2

ρ

1 + u′
⋆ + 2ρu′′

⋆

δu′′′ . (4.2)

Instead of solving Eq. (4.2) directly for an eigenperturbation δu′ with eigenvalue ω, we follow

a slightly different line which is numerically less demanding. Based on the polynomial

expansion used in the previous section, the fixed point potential is given by the set of

couplings {λn,⋆}. At the fixed point, the flow of the couplings ∂tλn ≡ βn vanishes, βn(λi,⋆) =

0. The eigenvalues ω of the stability matrix at criticality

Mij = ∂βi/∂λj |λ=λ⋆
(4.3)

correspond to the eigenvalues of Eq. (4.1). Hence, the problem of finding the eigenvalues of

Eq. (4.1) reduces to the problem of finding the eigenvalues of the stability matrix M .

N ν ω ω2 ω3 ω4

0 0.592083 0.65788 3.308 6.16 9.2

1 0.649562 0.655746 3.180 5.912 8.80

2 0.708211 0.671221 3.0714 5.679 8.440

3 0.761123 0.699837 2.9914 5.482 8.125

4 0.804348 0.733753 2.9399 5.330 7.867

5 0.837741 0.766735 2.9108 5.2195 7.665

6 0.863076 0.795815 2.8967 5.1409 7.512

7 0.882389 0.820316 2.8916 5.0863 7.396

8 0.897338 0.840612 2.89163 5.04848 7.3086

9 0.909128 0.857384 2.89438 5.02232 7.2425

10 0.918605 0.871311 2.89846 5.00420 7.1921

∞ 1 1 3 5 7

Table 1: The first five eigenvalues ω0 < 0 < ω1 < ω2 < ω3 < ω4, with ν = −1/ω0 > 0 for various

N and d = 3 dimensions.
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B. Results

We have computed the eigenvalues of (4.3) as functions of the order of the polynomial

truncation. The numerical results for the first five eigenvalues for various N and d = 3

dimensions are given in Tab. 1 and in Figs. 4 – 8. Results for other regulators are compared

in [10] (see also Sects. IVD and V), and results for the asymmetric corrections to scaling are

given elsewhere. Exact results, independent on the regularisation, are known for N = ∞.

The exact eigenvalues are given by ωn = 2n−1+O(1/N), and only the subleading corrections

O(1/N) depend on the regulator. For N = −2, it is known that ν = 1
2 . Tab. 1 shows the

first five eigenvalues, ordered as ω0 < 0 < ω < ω2 < ω3 < ω4. The critical exponent ν is

given by ν = −1/ω0 > 0. As a function of N , the eigenvalue ν interpolates monotonically

between the exact values ν = 1
2 for N = −2 and ν = 1 for N = ∞. The eigenvalues ω and

ω2 are non-monotonic functions of N . For small N , ω decreases until N ≈ 1, and increases

towards the exact asymptotic value ω = 1 for N → ∞. The eigenvalue ω2 decreases until

N ≈ 7 − 8 before settling to the asymptotic value ω2 = 3 at N = ∞. The eigenvalues ω3

and ω4 are monotonically decreasing functions of N .

ν(N)

ntrunc

ω(N)

ntrunc

4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

1

6 8 10 12 14 16 18 20

0.6

0.7

0.8

0.9

1

Figure 4: The exponent ν(N) as a func-

tion of N and of the order of the truncation.

From top to bottom: N = 10, 4, 3, 2, 1, 0.

Figure 5: The eigenvalue ω(N) as a func-

tion of N and of the order of the truncation.

From top to bottom: N = 10, 4, 3, 2, 0, 1.

Fig. 4 shows the results for ν as a function of ntrunc and N . It is seen that the expan-

sion is very stable. It convergences already within low order of the truncation towards the

asymptotic value. Typically, ntrunc ≈ 6 gives the correct result below the percent level. Fur-

thermore, the convergence is better for larger values of N . This behaviour is observed for all

eigenvalues (e.g. Figs. 4 – 8). Fig. 5 shows the same behaviour for the smallest subleading

eigenvalue ω. For ntrunc ≈ 8, it has settled below the percent level of the correct result.
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ω2(N)

ntrunc

ω3(N)

ntrunc

6 8 10 12 14 16 18
2.6

2.8

3

3.2

3.4

3.6
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Figure 6: The critical index ω2(N) as a func-

tion of N and of the order of the truncation.

From top to bottom: N = 0, 1, 2, 3, 4, 10.

Figure 7: The critical index ω3(N) as a func-

tion of N and of the order of the truncation.

From top to bottom: N = 0, 1, 2, 3, 4, 10.

ω4(N)

ntrunc

Figure 8: The critical index ω4(N) as a func-

tion of N and of the order of the truncation.

From top to bottom: N = 0, 1, 2, 3, 4, 10. The

isolated point at n = 7 corresponds to N = 10,

and the two at n = 9 to N = 2 (upper) and

N = 3 (lower). The intermediate points (at

n = 8 and n = 10, resp.) are missing because

they have a small imaginary part.
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For low orders of the truncation, the eigenvalues ω2, ω3 and ω4 (Figs. 6, 7 and 8, respec-

tively) depend more strongly on ntrunc, and do not even lead to real eigenvalues in some cases

(c.f. Figs. 7 and 8). Again, the dependence is even stronger for smaller N . For sufficiently

high order in the truncation, however, all eigenvalues are real, and the convergence towards

the asymptotic value is fast. Typically, ω2, ω3 and ω4 reach their asymptotic values below

the percent level for ntrunc ≈ 10, 12 and 14.

For all eigenvalues, the basic picture is the same: for small ntrunc, the truncation tends

to overshoot the asymptotic value, but with increasing ntrunc it relaxes towards it with a
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remaining oscillation and decreasing amplitude. From a specific order onwards, the trun-

cation sits – for all technical purposes – on top of the asymptotic value. For a fixed level

of accuracy, a lower order in the truncation is required for the dominant observables like

ν or ω, while a higher order is required for the subleading eigenvalues. Roughly speaking,

to obtain the eigenvalue ωn, n = 0, · · · accurate below the percent level, a truncation with

ntrunc ≈ 2n + 6 independent couplings is required.

C. Convergence and stability

Next, we discuss the convergence and stability of the polynomial approximation for

an optimised flow. From the results presented so far (cf. Figs. 4 - 8), we conclude that

the optimised flow (2.13) leads to a fast convergence of the polynomial approximation for

the scaling potential. More importantly, we have seen that the inclusion of further vertex

functions — increasing ntrunc → ntrunc+1 — does not alter the fixed point structure. Rather,

it leads to a small modification of the actual fixed point solution and to minor corrections

for the critical exponents. This implies that the flow is very stable, and that most of the

physical information is already contained in a few leading order terms of the truncation.

This result is by no means trivial. A counter example is furnished by the sharp cutoff (see

also the following section), where the convergence of the polynomial approximation is poor.

Here, the good convergence hinges on the use of an appropriately optimised regulator [7–9].
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∣
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Figure 9: Ising universality class. Conver-

gence of νtrunc (expansion II) towards νopt with

increasing truncation. Points where νtrunc is

larger (smaller) than νopt are denoted by o (•).
Roughly speaking, for 2 < ntrunc < 20, the ac-

curacy of the critical exponents improves by

one decimal point every ∆n ≈ 2 − 2.5.-10
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Let us have a closer look at the rate of convergence towards the asymptotic values of

expansion II (cf. Fig. 9). We denote with νtrunc the approximate critical exponent which

retains n = ntrunc independent parameters in the effective action. The semi-logarithmic

plot in Fig. 9 then shows the rate with which successive approximations converge towards
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the asymptotic value νopt. The series νtrunc oscillates about the asymptotical values with

a decreasing amplitude and, roughly, a four-fold periodicity in the pattern + + −−. The

curve in Fig. 9 can be approximated by a straight line with a slope ≈ −.4 to −.5. Hence,

for every ∆n ≈ 2− 2.5, the accuracy of νtrunc increases by one decimal place. Here, we have

analysed the convergence for N = 1. For larger N , the convergence is typically faster than

for N = 1, while for N = 0, it is about the same. Hence, the present considerations are

qualitatively the same for all N .

ntrunc ntrunc

νIsing
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II I

II

2 4 6 8 10 12 14 16
0.5
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0.6494
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0.6496

0.6497

0.6498

Figure 10: The critical index ν for the Ising universality class as a function of the order

of the truncation ntrunc, for expansion I around vanishing field and expansion II around

the non-trivial minimum. Left panel: I and II converge towards the asymptotic value.

Right panel: Magnification by a factor of 625. The variation of all data points is below

10−3. II converges faster than I. Expansion I (II) fluctuates about the asymptotic value

with decreasing amplitude and a six-fold (four-fold) periodicity; see also Fig. 9.

Until now, we have only employed expansion II, defined in (3.2). It is worthwhile to

employ as well expansion I, defined in (3.1). This has been done for the critical exponent ν

of the Ising universality class in Fig. 10. The left panel shows that both expansions lead to

a fast convergence towards the asymptotic value. The right panel is a magnification by 625,

showing that expansion II indeed converges faster, although for ntrunc = 10 their difference

is already below 10−3. Expansion I fluctuates about the asymptotic value with decreasing

amplitude and a six-fold periodicity in the pattern + + + −−−.

D. Convergence and scheme dependence

In this section, we discuss the convergence of the ERG flows and the polynomial expan-

sion for various regulators. In Fig. 11, we have computed the critical exponent ν (N = 1)

for the sharp cutoff rsharp(y) = 1/ θ(1− y)− 1, the quartic regulator rquart(y) = y−2 and the
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optimised regulator (2.12). The left (right) panel uses the expansion I (II). Both rquart and

ropt are optimised regulators in the sense coined in section IIB. From Fig. 11, three results

are noteworthy. First, for the expansion I, we confirm that the convergence is very poor for

the sharp cutoff. For both the quartic and the optimised regulator we find a good conver-

gence. Second, the convergence is additionally improved by switching to the expansion II.

Third, the critical exponents obey νsharp > νquart > νopt. Hence, the better the convergence

and the stability of the flow, the smaller the resulting critical exponent ν. This observation

is also linked to the convergence of the derivative expansion [10].
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Figure 11: The critical index ν for the Ising universality class. Results are given for

Expansion I (left panel) and II (right panel), and for the sharp cutoff (upper curves) the

quartic regulator (middle curves) and the optimised regulator (lower curves).

In [7], it has been shown that the gap C (the radius of convergence for amplitude ex-

pansions) is linked to the radius of convergence C ′ for the expansions (3.1) and (3.2). An

alternative way for identifying C ′ consists in studying the complex structure of the scaling

solution. For real ρ, the scaling solution is finite and real for all ρ < ∞. In the complex

plane, the scaling solution has (various) poles. Those closest to the chosen expansion point

constrain the radius of convergence C ′. For the sharp cutoff and the expansion I, this has

been analysed in [32] for N = 1. It was found that νsharp cannot be determined to an

accuracy better than 8 · 10−3. Hence, the polynomial expansion I for a sharp cutoff does

not converge beyond a certain level.

However, the findings of [32] do not imply that polynomial truncations are not trustwor-

thy per se. To the contrary, the decisive difference between “good” or “bad” convergence

properties stems essentially from an appropriate choice of the regularisation. When opti-

mised, the regularisation implies a significant improvement for either expansion. In this

light, the non-convergence of the sharp cutoff flow within expansion I is understood as a
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deficiency of the sharp cutoff regularisation. This picture is consistent with the results of

[33], who showed that expansion II leads to an improved convergence over expansion I —

even for the sharp cutoff.

V. BOUNDS ON CRITICAL EXPONENTS

In this section, we discuss how the critical exponents computed in the previous sections,

depend on the regularisation. This discussion is mandatory because observables computed

from a truncated flow, are known to depend spuriously on the regularisation. It is decisive to

understand the range over which νERG may vary as a function of the IR regulator. The origin

of the spurious RS dependence is easily understood. The regulator, while regulating the

flow, also modifies the coupling amongst all vertex functions of the theory. These regulator

induced contributions are of no relevance for the integrated full flow, but they do matter

for approximated flows, like in the present case. It is argued that the smallest value for the

exponent ν
ERG

is obtained for the optimised regulator Ropt. Prior to this, we recall the results

obtained previously in the literature, where, by a number of groups [13,32,20,22,24,10],

critical exponents have been computed based on (2.1) for different regulators to leading

order in the derivative expansion. For all N , all previously published results obey

νsharp ≥ ν
ERG

≥ νmin . (5.1)

The regulators studied in the literature cover the sharp cutoff and a variety of smooth cutoff

(exponential, power-law), and classes of regulators interpolating between the sharp cutoff

and specific smooth cutoffs. Most results have been published for the Ising universality

class N = 1. For any N ≥ 0, the smallest value νmin obtained in the literature is larger

than the value νopt: νmin > νopt. For a detailed comparison of critical exponents to leading

and subleading order in the derivative expansion, and a comparison to results from other

methods and experiment, we refer to Ref. [10].

A. Upper boundary

Now, we turn to a general discussion on the scheme dependence of ν. At first sight,

(5.1) suggests that the possible range for ν is bounded from above and from below. Let

us assess the two boundaries. We begin by showing that the inequality νsharp ≥ ν
ERG

does

not hold for generic regulator. Indeed, the upper boundary in (5.1) can be overcome by

choosing regulators which lead to a worse convergence than the sharp cutoff. To see this

more explicitly, consider a class of regulators discussed in Appendix B. It is given by

Ra(q
2) = a (k2 − q2) θ(k2 − q2) , (5.2)

and is a variant of the optimised regulator (2.11), to which it reduces for a = 1. For a → ∞,

it corresponds to the sharp cut off. The regulator leads to an effective radius of convergence
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Ca = a for a < 1, and Ca = a
2a−1 for a ≥ 1. Since Ca ≪ 1 for a ≪ 1, we expect that the

corresponding critical exponents will become large. Our results for Ra in (5.2) are given in

Fig. 12 (for more details, see Appendix B and Tab. 3). We find that νa is a monotonously

increasing function for decreasing a ≤ 1. In particular, for small a we find indeed that

νa > νsharp. Hence, this result confirms the above picture: Flows with a poor radius of

convergence lead to large numerical values for ν.

γ 1
2

3
4

4
5

5
6 1 3

2 2

νγ 1 .7354 .7216 .7142 .6895 .6604 .6496

Table 2: Critical exponents ν (Ising universality class) for the flows ℓγ and various γ.

Ra : •
Rγ : o
Rc : opt

ν
ERG

x

phys
opt

sharp

large-N

Figure 12: Ising universality class. The criti-

cal exponent ν for various classes of regulators.

For display purposes, we use x = 2
3(γ − 1

2 )

for Rγ , x = a
a+1 for Ra and x ≡ c for Rc.

Boundaries: The full line (opt) corresponds to

Rc and denotes the lower boundary, the upper

full line (large-N) denotes the upper bound-

ary. For comparison: The dashed line (sharp)

indicates the sharp cut off value, and the thick

full line (phys) the physical value.0.6
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Next, we turn to a class of regulators aimed at probing the maximal spread of flows.

We recall that, to leading order in the derivative expansion, all regulator-dependence is

contained in the functions ℓ(ω). In Ref. [24], it has been shown that the function ℓ(ω)

decays at most as ω−1, if the regulator, obeying the basic constraints (2.2)-(2.4), is not a

strongly oscillating function of momenta. Hence, regulators leading to a function

ℓγ(ω) ∼ (1 + ω)1−γ (5.3)

define for γ = 2 a boundary in the space of regulators. This is the case for Ropt. No regulator

can be found such that γ > 2 [24]. The proportionality constant in (5.3) is irrelevant because

it can be scaled away into the fields in (2.7). The second boundary is set by a mass term

regulator Rmass = k2: For a mass term, the corresponding flow is a Callan-Symanzik flow

which is not a Wilsonian flow in the strict sense. This comes about because the condition
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(2.3) does no longer hold true for Rmass in the limit q2 → ∞. In higher dimensions, this may

lead to an insufficiency in the integrating-out of large momentum modes. Inserting Rmass

into (2.8) in d = 3 dimensions leads to (5.3) with γ = 1
2 . This sets the second boundary.

The regulator Rγ is explicitly known for the cases γ = 2, 3
2 , 1 and 1

2 , and corresponds, re-

spectively, to the optimised regulator, the quartic regulator Rquart = k4/q2, the sharp cutoff

and a mass term regulator Rmass = k2. For all other values of γ ∈ [12 , 2], Rγ can be recovered

explicitly from ℓγ(ω) [24]. In the present case, we only need to know that such regulators

exist.

We have computed the critical index νγ for ℓγ(ω) with γ ∈ [12 , 2], and our results are

given in Tab. 2. In Fig. 12, the results are denoted by open circles for x = 2
3(γ − 1

2). As a

result, the function νγ increases for decreasing γ, νγ ≥ νopt. In particular, once γ < 1, the

results obey νγ > νsharp. When γ → 1
2 , the eigenvalues at criticality approach their large-N

values ν → 1 and ωn → 2n − 1 for any N . Note that the large-N limit is exact in that

it is independent of the regularisation [10]. The large numerical value for νγ=1/2 is due to

the deficiencies of the Callan-Symanzik flow. We conjecture that the large-N limit ν
large N

corresponds, for any N , to an upper boundary for any regulator

ν
ERG

≤ ν
large N

= 1 . (5.4)

B. Lower boundary

Next, we assess the lower boundary. It would be important to know whether the opti-

mised regulator leads to the smallest attainable value for ν in the present approximation.

We are not aware of a general proof for this statement. However, strong evidence is provided

by studying alterations of the optimised regulator. We have done so for various classes of

regulators, three of which are discussed here more explicitly. For more details, we defer to

the Appendices B and C. In Appendix B, we employ variants of the optimised regulator,

given by the class Ra of (5.2), and by the class Rb defined as

Rb(q
2) = (k2 − q2) θ(k2 − q2) θ(q2 − 1

2k
2) + (bk2 + (1 − 2b)q2) θ(1

2k
2 − q2) . (5.5)

for 0 ≤ b ≤ ∞. This class contains the optimised regulator (2.11) for b = 1. The limit

b → ∞ corresponds to a variant of the standard sharp cutoff. Another new class of regulators

Rc is studied in Appendix C, where we allow for an additional k-dependence on a mass scale

within the regulator. We use the class

Rc(q
2) = (k2 − q2 − c m2

k) θ(k2 − q2 − c m2
k) . (5.6)

Here, c is a free parameter and m2
k = U ′′

k (φ = 0) is the mass term at vanishing field. For

c = 0, it turns into the optimised regulator (2.11). Due to the implicit scale dependence of
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mk on k, the corresponding flow equations are substantially different from the usual one.

Most notably, they contain terms proportional to the flow of mk.

The classes Rγ , Ra, Rb and Rc probe “orthogonal” directions in the space of regulators.

Rγ is sensitive to the analyticity structure of the flow, Ra and Rb are sensitive to alterations

of the function r(y) in the low momentum regime, and Rc, while keeping the shape of the

regulator r(y) fixed, alters the implicit modifications due to an additional running mass

term. As such, Ra, Rb and Rc can be seen as variants of the optimised regulator. The class

Rγ covers the largest domain of qualitatively different flows [27].

ν
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− 1

N
∞

Wegner-Houghton

opt

Callan-Symanzik
Figure 13: The spread of the critical expo-

nent ν for various N to leading order in the

derivative expansion. The upper bound is set

by the large-N limit (Callan-Symanzik flow).

The sharp cut-off results (Wegner-Houghton

flow) are given for comparison.
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We have computed the critical exponent ν for the Ising universality class for all these

classes of regulators. A part of our results for N = 1 is displayed in Fig. 12. Similar re-

sults are found for all N . The classical (mean field) value for ν is νmf = 1
2 . The results

for Ra in (5.2) are displayed in Fig. 12 by full circles, with x = a
a+1 . Some numerical val-

ues are collected in Tab. 3 (cf. Appendix B). It is found that all critical indices νa obey

ν
large N

≥ νa ≥ νopt > νmf . This proves that alterations of the regulator in the low momen-

tum region do not lead to values for ν smaller than νopt. An analogous result is found for all

regulators Rb in (5.5), where ν
large N

≥ νb ≥ νopt. Some numerical values are given in Tab. 4

(Appendix B). In Fig. 12, our results for Rb are represented by open circles, and those for

Rc by a dashed line, with x ≡ c. All regulators Rc from Eq. (5.6) lead to the same critical

exponent as Ropt in Eq. (2.11), νc ≡ νopt (see Appendix C).

In Fig. 13, we discuss the spread of ν
ERG

to leading order in the derivative expansion for

all N ≥ 0. The spread ν
large N

/νopt − 1 is a N -dependent quantity. For N = 1, the spread is

about 0.54, and hence quite large. For comparison, the relative width with respect to the
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sharp cut off νsharp/νopt − 1 is roughly 0.06 and significantly smaller. With increasing N ,

the spread vanishes as ∼ 1/N . This follows trivially from the fact that the ERG flow, to

leading order in the derivative expansion, becomes exact in the large-N limit [10].

In summary, the critical exponent ν, as a function of the infrared regularisation, is

bounded. The upper boundary is realised for flows with a mass term regulator, e.g. Callan-

Symanzik flows. The lower boundary is given by

ν
ERG

≥ νopt (5.7)

to leading order in the derivative expansion. Hence, νopt appears indeed to be the smallest

value attainable within the present approximation. The inequality (5.7) provides a quan-

titative basis for the optimisation procedure which has lead to Ropt in the first place. For

the observable ν, we have equally shown that the optimised regulator corresponds, at least,

to a “local minimum” in the space of all regularisations. Furthermore, we have established

flat directions in the space of regulators. Based on the conceptual reasons which have lead

to Ropt [7,8], we expect that νopt even corresponds to the global minimum. At present,

however, we have no regulator-independent proof for this conjecture.

VI. DISCUSSION AND CONCLUSIONS

We studied in detail O(N) symmetric scalar theories at criticality, using the ERG method

to leading order in the derivative expansion. This included a complete investigation of the

Gaussian fixed point in d > 2 for arbitrary regulator, and the computation of universal

critical exponents and subleading corrections at the Wilson-Fisher fixed point for d = 3.

Furthermore, we studied the spurious scheme dependence for the critical exponent ν at the

Wilson-Fisher fixed point in three dimensions. One of the main new results is that the

leading critical exponent, as a function of the IR regulator, is bounded from above and from

below as

ν opt ≤ ν
ERG

≤ ν
large N

. (6.1)

This result has been achieved by studying the maximal domain of ERG flows in the present

approximation, ranging from Callan-Symanzik flows to optimised flows and variants thereof.

The qualitative result – the existence of a non-trivial Wilson-Fisher fixed point – is very

stable, although the spread of values for ν is fairly large (see Fig. 13). Supposedly, this is a

consequence of a small anomalous dimension η, which constrains higher order corrections.

The spread would shrink to zero only to sufficiently high order in the derivative expansion

or in the large-N limit.

The important quantitative question is: Which value for ν could be considered as a good

approximation to the physical theory? In view of the regulator dependence, a prediction
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solely based on (6.1) is of little use. Our answer to this problem is entirely based upon the

structure of the ERG flow. We proposed to use specific regulators which lead to more stable

ERG flows in the space of all action functionals. The numerical determination of critical

exponents and subleading corrections to scaling as given in Tab. 1, is based on an optimised

flow. We expect that the results should be in the vicinity of the physical theory. In the

present approximation, the results for νopt are indeed closest to the physical ones [1],

νphys < ν opt . (6.2)

The understanding of the spurious scheme dependence reduced the ambiguity in ν to a small

range about νopt. Typically, the results from optimised flows other than Ropt are close to

the values achieved by Ropt, and hence close to the lower boundary of (6.1). In this light,

optimised flows are solutions to a “minimum sensitivity condition” in the space of all IR

regularisations [9].

Next we turn to the Callan-Symanzik flow, which is the flow with a mass term regulator

Rmass = k2. We argued that it defines the upper boundary of values for ν. It is quite

remarkable that this flow, for any N , leads to the same eigenvalues at criticality given by

the large-N result. Here, this result has been achieved numerically. It would be helpful

if it could also be understood analytically. The large numerical value for ν reflects the

poor convergence properties of a Callan-Symanzik flow, essentially due to deficiencies in the

integrating-out of large momentum modes.

Now we discuss our results concerning polynomial approximations. The reliability of

this additional truncation is guaranteed if the approximation convergences reasonably fast.

Here, we have established that optimised flows converge very rapidly within the local po-

tential approximation. The efficiency is remarkable: a simple approximation with only six

independent operators — say, the running v.e.v. and five running vertex functions up to

(φaφa)
5 — reproduces the physical result for the exponent ν at the percent level. A bet-

ter agreement cannot be expected, given that anomalous dimensions of the order of a few

percent have been neglected. These findings are in contrast to earlier computations based

on the sharp cut-off, where the polynomial approximation has lead to spurious fixed point

solutions, even to high order in the approximation [14]. Hence, the efficiency of the for-

malism not only depends on the choice for the degrees of freedom and the truncation, but

additionally, and strongly, on the IR regulator. We conclude that polynomial approxima-

tions are reliable for all technical purposes, and even to low orders, if they are backed-up

by appropriate regulators. These considerations should be useful in more complex theories

whose algebraic complexity requires polynomial approximations, e.g. quantum gravity.

It would be interesting to apply the present ideas to theories like QCD, where the

propagating modes are strongly modified in the low momentum regime due to confinement

[36,37]. Then, an optimised regulator is found by requiring that the regularised inverse prop-

agator is again flat, i. e. momentum-independent for small momenta. Interesting choices
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are R = (k2 − X) θ(k2 − X) and X = Γ
(2)
k [φ = φ0] and variants thereof. Here φ0 denotes a

non-propagating background field. This conjecture is supported by first results.
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A. GAUSSIAN FIXED POINT

In this appendix, we discuss the Gaussian fixed point of the flow equation (2.13) in d > 2

dimensions and for arbitrary regulator. The Gaussian fixed point corresponds to the specific

solution u⋆(ρ) = const. All higher derivatives of the potential vanish, u
(n)
⋆ (ρ) = 0. From the

flow equation, we deduce that

u⋆ =
2vd

d
N
∫ ∞

0
dy y

d
2−1 −r′(y)

1 + r(y)
. (A.1)

For the optimised regulator, we find u⋆ = 4Nvd/d
2. More information can be extracted

by studying small perturbations δu(m) around the m-th derivative of the scaling solution

u⋆(ρ)(m). The eigenperturbations obey the differential equation

∂t δu
(m) = ω δu(m) (A.2)

with eigenvalues ω. Expanding the flow equation to leading order in δu, the eigenvalues

obey

0 = [ω + d − (d − 2)m] δu(m) +
[

2A(
N

2
+ m) − (d − 2)ρ

]

δu(m+1) + 2ρA δu(m+2) . (A.3)

Here, the scheme-dependent coefficient A is given by

A = 2vd

∫ ∞

0
dy y

d
2−3 −r′(y)

[1 + r(y)]2
(A.4)

and 0 < A < ∞. For the optimised regulator, Aopt = 4vd/d. Introducing new variables

x = (d − 2)ρ/(2A) and f(x) = δu(ρ), the differential equation (A.3) transforms into the

(generalised) Laguerre differential equation

0 =

(

d + ω

d − 2
− m

)

f (m)(x) +
(

N

2
+ m − x

)

f (m+1)(x) + xf (m+2)(x) . (A.5)

We consider only polynomial solutions to Eq. (A.5). The requirement that solutions to

Eq. (A.5) are bounded by polynomials fixes the possible eigenvalues as
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ω = (d − 2)(n + m) − d (A.6)

for non-negative integers n and m. Apart from an irrelevant normalisation constant, the

n-th eigensolution to Eq. (A.5) are given by the (generalised) Laguerre polynomials

δu(m)(ρ) = Lm−1+N/2
n

(

2A ρ

d − 2

)

. (A.7)

Eq. (A.7) is the most general eigensolution at the Gaussian fixed point in d > 2 dimensions

with eigenvalues given by Eq. (A.6). The result holds for arbitrary regulator function. The

scheme dependence enters only the argument of the Laguerre polynomials in Eq. (A.7).

It is interesting to note that the eigenvalues are independent of the regularisation scheme.

Furthermore, the rescaled differential equation (A.5) is also independent of the regulator.

In d = 3 dimensions, the relevant and marginal operators are L
N/2−1
0 , L

N/2−1
1 , L

N/2−1
2

and L
N/2−1
3 with eigenvalues ω = −3,−2,−1 and 0 for m = 0, or L

N/2
0 , L

N/2
1 and L

N/2
2 with

eigenvalues ω = −2,−1 and 0 for m = 1. In d = 4 dimensions, the relevant and marginal

operators are L
N/2−1
0 , L

N/2−1
1 and L

N/2−1
2 with eigenvalues ω = −4,−2 and 0 for m = 0, or

L
N/2
0 and L

N/2
1 with eigenvalues ω = −2 and 0 for m = 1. For m ≥ d

d−2 , all eigenoperators

are marginal or irrelevant.

For 2m + N = 1 (2m + N = 3), the solution Eq. (A.7) can be rewritten in terms of

Hermite polynomials of even (odd) degree,

m = 1−N
2 : δu(m)(ρ) =

(−1)n

n!
2−2n H2n





√

2Aρ

d − 2



 (A.8)

m = 3−N
2 : δu(m)(ρ) =

(−1)n

n!
2−2n−1

√

d − 2

2Aρ
H2n+1





√

2Aρ

d − 2



 . (A.9)

Let us finally mention that some of these solutions have been given earlier in the literature

for the case of a sharp cutoff regulator (with Asharp = 1): for N = 1 and m = 1, Eq. (A.9)

has been given in Ref. [13], and Eq. (A.7) for m = 1 has been given in Ref. [20].

B. VARIANTS OF THE OPTIMISED CUTOFF

In this appendix, we discuss variants of the optimised regulator (2.11). The aim is to

probe whether certain alterations of the regulator may lead to lower values for the critical

exponent ν. Here, the properties of the regularisation are changed in the low momentum

region by modifying the function r(y). In the following appendix, we discuss modifications

of r(y) through the introduction of additional (theory-dependent) k dependent parameters.
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y(1 + ra)

y

Figure 14: The function y(1+ra) for the class

of regulators (B.1). All lines for different a co-

incide for large momenta y ∈ [1,∞] (full line),

but differ for small momenta y ∈ [0, 1[ (dashed

lines). The dashed lines clock-wise from the

bottom: a = 1
2 , 1, 2 and ∞. The short dashed

line corresponds to a = 0 (no regulator).0 0.5 1 1.5 2
0

0.5

1

1.5

2

1. Definition

In this appendix, we discuss two variants of the optimised regulator (2.11). First, we

consider the class of regulators given by

Ra(q
2) = a (k2 − q2) θ(k2 − q2) . (B.1)

These regulators have a compact support. They vanish for all q2 > k2. In the infrared,

they have a mass-like limit Ra(q
2 → 0) = ak2 for all 0 < a < ∞. The limit a → ∞

corresponds to the sharp cut-off case. For a = 0, the regulator is removed completely.

For a = 1, the regulator (B.1) reduces to the optimised regulator (2.11). As a function of

a, the regulators differ only in the momentum regime y ∈ [0, 1[ , where y ≡ q2/k2. The

dimensionless functions ra corresponding to (B.1) are given by

ra(y) = a ( 1
y − 1) θ(1 − y) . (B.2)

In Fig. 1, we have displayed the function y(1 + ra) for various cases. The full line corre-

sponds to the range y ∈ [1,∞], for all regulators (B.1). The dashed lines, clock-wise from

the bottom, correspond to a = 1
2 , 1, 2 and ∞. The gaps associated to (B.1) are given by

Ca = a
2a−1 for a ≥ 1, and Ca = a for 1

2 < a < 1. They are obtained from the normalised

analogue of (B.1), chosen such that ra(
1
2) = 1.

Second, we consider another variant of the optimised regulator, where the properties of

the regularisation are changed only in the low momentum region by modifying the function

r(y). Consider the class of regulators given by

Rb(q
2) = (k2 − q2) θ(k2 − q2) θ(q2 − 1

2k
2) + (bk2 + (1 − 2b)q2) θ(1

2k
2 − q2) . (B.3)

24



These regulators have a compact support. They vanish for all q2 > k2. In the infrared, they

have a mass-like limit Rb(q
2 → 0) = b k2 for all 0 < b < ∞. At first sight, it may seem that

(B.3) is not a viable regulator for b = 0, because Rb=0 vanishes in the infrared limit (no gap).

However, for b = 0 the function ∂tRb=0 vanishes identically for all q2 < 1
2k

2. Hence, (B.3)

provides a gap because Rb=0(
1
2k

2) = 1
2k

2 > 0. For b = 1, the regulator (B.3) reduces to the

optimised regulator (2.11). As a function of b, the regulators differ only in the momentum

regime y ∈ [0, 1
2 [ , where y ≡ q2/k2. The dimensionless functions rb corresponding to (B.3)

are given by

rb(y) = ( 1
y − 1) θ(1 − y) θ(y − 1

2) + ( b
y + 1 − 2b) θ(1

2 − y) . (B.4)

In Fig. 15, we have displayed the function y(1+rb) for various cases. The full line corresponds

to the range y ∈ [12 ,∞], for all regulators (B.3). The dashed lines, clock-wise from the

bottom, correspond to b = 0, 1
2 , 1, 2 and ∞. By construction, the regulator is normalised as

rb(
1
2) = 1. The associated gaps are given by Cb = 1 for b ≥ 1 and b = 0 (see below), and

Cb = b for 0 < b < 1. For comparison, we have also given the curve for the standard sharp

cutoff (dotted line). The corresponding gap is Csharp = 1
2 .

y(1 + rb)

y

Figure 15: The function y(1+rb) for the class

of regulators (B.3). All lines for different b co-

incide for large momenta y ∈ [12 ,∞] (full line),

but differ for small momenta y ∈ [0, 1
2 ] (dashed

lines). The dashed lines clock-wise from the

bottom: b = 0, 1
2 , 1, 2 and ∞. The standard

sharp cutoff regulator (dotted line) is given for

comparison.0 0.5 1 1.5 2
0

0.5

1

1.5

2

The regulators Ra and Rb have a similar low momentum limit for q2 → 0, e.g. Ra(q
2 →

0) = Rb=a(q
2 → 0) = a k2. The crucial difference between them concerns the intermediate

momentum regime q2 ≈ k2. Here, the regulator Rb leads by construction to a plateau for

y(1 + rb), which is absent for Ra.

2. Flows

In order to employ (B.1) for the computation of critical exponents in d = 3, the associated

flows ℓ(ω) → ℓa(ω) have to be computed. For the function ℓa(ω) and for a ≤ 1, we find in
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d = 3 (similar expressions are found for any d)

ℓa(ω) =
2a

1 − a



1 −
√

a + ω

1 − a
arctan

√

1 − a

a + ω



 . (B.5)

The region a > 1 is obtained by analytical continuation:

ℓa(ω) =
2a

1 − a



1 −
√

a + ω

a − 1
arctanh

√

a − 1

a + ω



 . (B.6)

These flows have the following structure. They have poles on the negative ω-axis at ω = −1.

For a = ∞, the function decays only logarithmically for asymptotically large ω. In the

limiting cases a = 1 and ∞, we find

ℓa=1(ω) = 2
3(1 + ω)−1 (B.7)

ℓa=∞(ω) = − ln(1 + ω) + const. (B.8)

For a = 1, in (B.7), both expressions (B.5) and (B.6) have the same limit discussed earlier in

[8]. In the limit a → ∞, the resulting regulator is equivalent to the standard sharp cut-off.

In order to employ the regulator Rb from (B.3) for the computation of critical exponents

in d = 3, the associated flows ℓ(ω) → ℓb(ω) have to be computed. In full analogy to the

preceding computation, we find in d = 3 (similar expressions are found for any d) for the

function ℓb(ω) and for b ≤ 1

ℓb(ω) = 2
3(1 − 2−3/2)(1 + ω)−1 +

b√
2(1 − b)



1 −
√

b + ω

1 − b
arctan

√

1 − b

b + ω



 . (B.9)

The region b > 1 is obtained by analytical continuation:

ℓb(ω) = 2
3(1 − 2−3/2)(1 + ω)−1 +

b√
2(1 − b)



1 −
√

b + ω

b − 1
arctanh

√

b − 1

b + ω



 . (B.10)

These flows have the following structure. They have poles on the negative ω-axis at ω = −1

due to the first term on the r.h.s. in (B.9) and (B.10). For large ω and b < ∞, both

expressions decay as ω−1. For b = ∞, the decay is only logarithmic. Let us consider the

three limiting cases a = 0, 1 and ∞. We find

ℓb=0(ω) = 2
3(1 − 2−3/2)(1 + ω)−1 (B.11)

ℓb=1(ω) = 2
3(1 + ω)−1 (B.12)

ℓb=∞(ω) = 2
3(1 − 2−3/2)(1 + ω)−1 − 1

2
√

2
ln(1 + ω) + const. (B.13)

For b = 0, the momentum regime q2 < 1
2k

2 does not contribute to the flow and the effective

gap for b = 0 is C0 = 1. This is seen directly from (B.9) and (B.11): the first term of
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(B.9) stems from the momentum interval 1
2k

2 ≤ q2 ≤ k2, which is the only term surviving

in (B.11). For b = 1, in (B.12), both terms of (B.9) combine to the known result discussed

earlier in [8]. Finally, we turn to the limit b → ∞. The resulting regulator is similar to the

standard sharp cut-off, with, however, an important difference. For the sharp cutoff, the

function y(1 + rb) has no plateau in the momentum regime 1
2k

2 ≤ q2 ≤ k2 (see Fig. 15),

which leads to ℓsharp(ω) = − ln(1 + ω). In (B.8), the sharp-cutoff-like logarithmic term is

clearly seen, and is due to the momentum integration with y ∈ [0, 1
2 ]. However, a decisive

difference is the additional term in (B.8). Notice also that the constant in (B.13) is actually

infinite, but field independent. Hence, it is irrelevant for a computation of critical exponents

(only the functions ∂ωℓb(ω) are needed).

3. Results

For Ra, we have computed the critical exponent ν for the Ising universality class using

the flow equation (2.7) with (B.5), (B.6) (see Tab. 3). We confirm that νa=∞ = νsharp and

that νa=1 = νopt. For all a > 1 (a < 1), νa is a monotonically increasing (decreasing)

function with increasing a, hence νa ≥ νopt. Notice that the smallest value for ν is obtained

for the largest value for the gap parameter.

a 10−2 10−1 1
2 1 2 10 102 103 104 ∞

Ca 10−2 10−1 1
2 1 2

3
10
19

100
199

1000
1999

10000
19999

1
2

νa .776 .677 .652 .650 .651 .665 .683 .688 .689 .690

Table 3: Critical exponents ν (Ising universality class) for the regulator Ra and various a.

b 0 1
2 1 10 100 ∞

νb .6495 .6518 .6495 .6594 .6675 .6699

Table 4: Critical exponents ν (Ising universality class) for the flows with Rb and various b.

For Rb, we have also computed the critical exponent ν for the Ising universality class

using the flow equation (2.7) with (B.9), (B.10). We find that νb=0 = νb=1 = νopt. For

b < 1, we have νb > νopt. However, for too small values of b, 1 ≫ b > 0, the regulator

leads to a very small gap and the polynomial approximation does no longer converge to a

definite result, which is an artifact of the regulator. For b > 1, νb is a monotonic function

of b with νb=∞ ≥ νb > νopt. It is interesting to discuss the case b = ∞ in more detail. Here,

νb=∞ = .6699 · · · which should be compared to νsharp = .6895 · · · and to νopt = .6495 · · ·.
From the structure of the flow, it is clear that the difference νsharp−νb=∞ has to be attributed

to momenta with y ∈ [12 , 1]. Hence, the “flattening” of the standard sharp cutoff reduces

27



the critical exponent by a few percent. On the technical level, this reduction is attributed

to the non-logarithmic term in (B.13). However, the smallest value for ν is obtained only

in case the logarithmic term is absent, as it happens in both (B.11) and (B.12).

C. CUTOFFS WITH INTRINSIC SCALING

In this appendix, we study regulators with additional intrinsic scale-dependent parame-

ters.

1. Definition

Up to now, we have considered IR regulators R(q2) which depend on momenta only

through the combination q2/k2, cf. Eq. (2.5). In Eq. (2.5), the essential IR cutoff is provided

by the function r(q2/k2), which cuts off the momentum scale q2 in a way which is independent

of the particular theory studied. The k dependence of R(q2) is the trivial k dependence linked

to the dimensionality of R. The situation is different once further k-dependent functions

are introduced into the regulator. Typically, this is done by replacing

R(q2) → R(q2, {Zk, m
2
k, . . .}) . (C.1)

Here, the set {Zk, m
2
k, . . .} denotes scale-dependent parameters of the specific theory studied,

like the wave-function renormalisation Zk or mass parameters mk. It is expected that the

substitution (C.1) leads to an improved convergence and stability of the flow. A well-known

example for (C.1) is given by R(q2) → ZkR(q2) , which is often used beyond the leading

order in a derivative expansion. Here, the introduction of Zk in the regulator simplifies

the study of scaling solutions. In the context of non-Abelian gauge theories, regulators like

Eq. (C.1) have been used in [37] based on the replacement q2 → Γ̄
(2)
k [φ0] in the regulator,

and hence

R(q2) → R[Γ̄
(2)
k ] . (C.2)

Again, this type of regulator has been motivated to stabilise the flow and to encompass

possible poles in the flow due to mass terms for the gluonic fields [37]. Notice that Γ̄
(2)
k in

Eq. (C.2) cannot be the full field-dependent functional, because elsewise the flow equation

would no longer be the correct one. Instead, one has to evaluate it for some fixed background

field φ = φ0 (hence the bar on Γ̄
(2)
k ). In the present case, and to leading order in the derivative

expansion, we have

Γ̄
(2)
k [φ0] = q2 + U ′′

k (φ0) . (C.3)

Here, U ′′(φ0) corresponds to a scale-dependent effective mass term. Within the non-convex

part of the potential, or in a phase with spontaneous symmetry breaking, we have m2
k ≡
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U ′′(φ0) < 0. Hence the regulator Eq. (C.2) is a special case of Eq. (C.1). In the remainder,

the optimised regulator (2.12) is used to define a class of regulators of the form (C.1), namely

Rc(q
2) = (k2 − q2 − c m2

k) θ(k2 − q2 − c m2
k) . (C.4)

Hence, Rc(q
2) = Ropt(q

2 + c m2
k). Effectively, this corresponds to the replacement k2 →

k2
eff(k) = k2 + c m2

k. In terms of r(y) defined in Eq. (2.5), the regulator is given as

rc(y) = (1−c ω̄
y − 1) θ(1 − y − c ω̄) , (C.5)

and the dimensionless mass parameter is

ω̄ ≡ m2
k/k

2 . (C.6)

Below, we use m2
k ≡ U ′′(φ0 = 0). The regulator (C.4) can be seen as a ‘sliding’ cutoff,

because at any scale k, only the k-dependent momentum interval y ∈ [0, 1−c ω̄k] contributes

to the flow. For c = 0, the regulator reduces to (2.11), while for c = 1 it turns into a regulator

of the form (C.2) with (C.3). Due to the additional dependence on m2
k/k

2, the structure of

the flow equation is now different.

2. Flows

Let us compute the flow for the regulator Eq. (C.4). Inserting Eq. (C.4) into Eq. (2.8),

and after some straightforward algebra, we find

ℓc(ω) = 2
d(1 − c ω̄)d/2 1 − c ω̄ − c

2∂tω̄

1 − c ω̄ + ω
(C.7)

Notice that the function Eq. (C.7) depends now on ω̄ and on the flow of ω̄. This is generic

to regulators of the form (C.1) or (C.2), because the implicit scale dependence of m2
k leads

to an additional term ∼ ∂tm
2
k in the flow equation. The flow equation (2.7) with Eq. (C.7)

becomes

∂tu + du − (d − 2)ρu′ = (N − 1)(1 − c ω̄)d/2 1 − c ω̄ − c
2∂tω̄

1 − c ω̄ + u′

+ (1 − c ω̄)d/2 1 − c ω̄ − c
2∂tω̄

1 − c ω̄ + u′ + 2ρu′′ (C.8)

Here, in order to simplify the expressions, we have rescaled the irrelevant numerical factor
4
dvd into the fields and the potential. In order to find an explicit form of the flow, the running

mass term needs to be specified. We chose ω̄ = u′(ρ = 0). This choice is motivated by the

fact that the function u′, on the fixed point, reaches its most negative value at vanishing

field. For c = 0, the original flow may run into a pole at u′ = −1. The present choice shifts

the pole to u′(ρ) = −1+c u′(0). Since u′(ρ)−u′(0) ≥ 0 for a scaling solution, the right-hand

29



side of (C.8) has no longer an explicit pole for c = 1. This has been the motivation for the

structure of the regulator used in [37]. However, as we shall see, the full flow still has an

implicit pole due to the flow of ω̄ in (C.8). In terms of

λ0 ≡ u′(ρ = 0) , λ1 ≡ u′′(ρ = 0) , (C.9)

and after inserting Eq. (C.7) into Eq. (C.8) and collecting terms proportional to the flow of

λ0, we find

∂tλ0 = −2λ0 + λ1(N + 2)(1 − c λ0)
1+d/2[1 + λ0(1 − c)]−2

1 − 1
2cλ1(N + 2)(1 − c λ0)d/2[1 + λ0(1 − c)]−2

. (C.10)

For the quartic coupling, and suppressing terms proportional to u′′′(0), we find

∂tλ1 = −λ1



4 − d − λ1
2(N + 8) (1 − c λ0)

d/2

[1 + (1 − c)λ0]
3



×


1 − c λ0 +
c

2

λ0 + λ1

2
(N + 2) (1 − c λ0)

1+d/2[1 + (1 − c) λ0]
−2

1 − cλ1

2
(N + 2) (1 − c λ0)

d/2[1 + (1 − c) λ0]
−2



 (C.11)

The structure of the flows (C.10) and (C.11) is easily understood. The denominator in

(C.10) stems from a resummation of the back coupling of ∂tλ0. The denominator becomes

trivial for c = 0. The numerator contains the usual scaling term and a modified threshold

behaviour, which depends now on c. A similar structure appears for the flow of the quartic

coupling. Simpler forms of the flow are obtained for c = 0 (no back-coupling of a running

mass term) or c = 1. For c = 0, we have

∂tλ0 = −2λ0 + λ1
N + 2

(1 + λ0)2
, (C.12)

∂tλ1 = −(4 − d)λ1 + λ2
1

2(N + 8)

(1 + λ0)3
, (C.13)

while for c = 1, the result is

∂tλ0 = −2λ0 + λ1(N + 2)(1 − λ0)
1+d/2

1 − 1
2λ1(N + 2)(1 − λ0)d/2

, (C.14)

∂tλ1 = −λ1(1 + λ0)
4 − d − λ1 2(N + 8) (1 − λ0)

d/2

1 − 1
2λ1(N + 2)(1 − λ0)d/2

. (C.15)

Hence, (C.12) and (C.13) have a putative pole at λ0 = −1. In turn, (C.14) and (C.15) have

a putative pole at (N + 2)λ1 = 2(1 − λ0)
−d/2. The putative pole is absent for N = −2.
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3. Results

From the explicit form of the function (C.7), and without having made yet the explicit

choice (C.9) for the mass term m2
k, we conclude that the non-universal fixed point solution

∂tu = 0 of (2.7) for either Ropt from (2.11), or the class of regulators Rc from (C.4) are

related by a simple rescaling of the fields. The reason is the following: on the fixed point

∂tu = 0, we also have ∂t(m
2
k/k

2) = 0. Hence, the functions Eq. (C.7) do no longer depend

on the flow of the mass term. Hence, Eq. (C.7) becomes ℓ(ω) = 2
dC

d/2+1/(C + ω), with

C ≡ 1 − c ω̄ = const on a fixed point. This function is equivalent to a flow derived from

Ropt. Hence, it suffices to rescale u → u/Cd/2 and ρ → ρ/Cd/2+1 in order to transform the

fixed point solution for arbitrary c onto the fixed point equation for c = 0.

Next, we check the c dependence of critical exponents. A priori, the critical exponents

are sensitive to the flow in the vicinity of the fixed point, and hence to the additional terms

∂tλ0 in the flow equation. We have solved the flow (C.8) with (C.10) numerically, within

the polynomial approximation defined in Eq. (3.1) up to ntrunc = 20. The eigenvalues at

criticality are found to be independent on the parameter c. The results correspond to the

lower full line in Fig. 12 (and x ≡ c). Furthermore, we found that the critical exponents for

different c agree for every single order in the truncation. Hence, for N = 1, the exponent

νtrunc as obtained from (C.8) with (C.10) are given by the line I in Fig. 10.

In summary, the introduction of scale-dependent parameters into the regulator has lead

to a significant change of the flow equations and their pole structure. Hence, the approach

to a fixed point solution, and stability properties of the flow are quite different. Here, we

studied the replacement Ropt(q
2) → Ropt(q

2 + c m2
k). Universal quantities are independent

of c, because the modified regulator is linked to the optimised one through the replacement

k2 → k2
eff(k) = k2 + c m2

k in the flow equation. This should be irrelevant for universal

observables at a fixed point, as has been confirmed explicitly. For the same reason, the

entire class of regulators Ra(q
2 + c m2

k) ≡ aRopt(q
2 + c m2

k) leads to c-independent critical

exponents. Still, the flows are completely different for different a. Therefore, c can be

used as a free parameter to stabilise the flow, without affecting the physical result. If the

substitution R(q2) → R(q2+c m2
k) cannot be rephrased as a redefinition of the infrared scale,

it is expected that also universal observables no longer remain insensitive to free parameters

like c. This case should be studied separately.
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