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Abstract. First, we review the basic mathematical structures and results concerning

the gauge orbit space stratification. This includes general properties of the gauge group

action, fibre bundle structures induced by this action, basic properties of the stratification

and the natural Riemannian structures of the strata. In the second part, we study the

stratification for theories with gauge group SU(n) in space time dimension 4. We develop

a general method for determining the orbit types and their partial ordering, based on

the 1-1 correspondence between orbit types and holonomy-induced Howe subbundles of

the underlying principal SU(n)-bundle. We show that the orbit types are classified by

certain cohomology elements of space time satisfying two relations and that the partial

ordering is characterized by a system of algebraic equations. Moreover, operations for

generating direct successors and direct predecessors are formulated, which allow one to

construct the set of orbit types, starting from the principal one. Finally, we discuss an

application to nodal configurations in Yang-Mills-Chern-Simons theory.
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1. Introduction

One of the basic principles of modern theoretical physics is the principle of local gauge

invariance. Its application to the theory of particle interactions gave rise to the standard

model, which proved to be a success from both theoretical and phenomenological points

of view. The most impressive results of the model were obtained within the perturbation

theory, which works well for high energy processes. On the other hand, the low energy

hadron physics, in particular, the quark confinement, turns out to be dominated by

nonperturbative effects, for which there is no rigorous theoretical explanation yet. To

study them, a variety of different concepts and mathematical methods has been developed.

In particular, for some aspects methods of differential geometry and algebraic topology

seem to be unavoidable. This is certainly true, if one wants to investigate the structure of

the configuration space of a gauge theory – the space of gauge group orbits. In general,

this space possesses not only orbits of the so called principal type, but also orbits of

other types, which may give rise to singularities. This stratified structure of the gauge

orbit space is believed to be of importance for both classical and quantum properties of

non-abelian gauge theories in the nonperturbative approach. Let us discuss some aspects

indicating its physical relevance.

First, studying the geometry and topology of the generic (principal) stratum, one

gets an intrinsic topological interpretation of the Gribov-ambiguity [40, 70]. We stress

that the problem of finding all Gribov copies has been discussed within specific models,

see e.g. [57]. For a detailed analysis in the case of 2-dimensional cylindrical space time

(including the Hamiltonian path integral) we refer to [69]. Investigating the topology

of the determinant line bundle over the generic stratum, one gets an understanding of

anomalies in terms of the family index theorem [3, 8], see also [22] for the Hamiltonian

approach. In particular, one gets anomalies of purely topological type [78], which cannot

be seen by perturbative quantum field theory. Moreover, there are partial results and

conjectures concerning the relevance of nongeneric strata. First, generally speaking,

nongeneric gauge orbits affect the classical motion on the orbit space due to boundary

conditions and, in this way, may produce nontrivial contributions to the path integral.

They may lead to localization of certain quantum states, as it was suggested by finite-

dimensional examples [29]. Further, the gauge field configurations belonging to nongeneric

orbits can possess a magnetic charge, i.e. they can be considered as a kind of magnetic

monopole configurations. Following t‘Hooft [74], these could be responsible for quark

confinement. The role of these configurations was investigated within the framework of

Schrödinger quantum mechanics on the gauge orbit space of topological Chern-Simons

theory in [4], see also [5] for an approach to 4-dimensional Yang-Mills theories with θ-

term. Within t‘Hooft‘s concept, the idea of abelian projection is of special importance and

has been discussed by many authors. Recently, this concept was studied within the setting
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of quantum field theory at finite temperature on the 4-torus [35, 36]. There, a hierarchy

of defects, which should be related to the gauge orbit space structure, was discovered.

Finally, let us also mention that the existence of additional anomalies corresponding to

non-generic strata was suggested, see [44].

Most of the problems mentioned here are still awaiting a systematic investigation.

For that purpose, a deeper insight into the structure of the gauge orbit space is necessary.

In a series of papers [65, 66, 67] we have made a new step in this direction. We have

given a complete solution to the problem of determining the strata that are present in the

gauge orbit space for SU(n) gauge theories in compact Euclidean space time of dimension

d = 2, 3, 4. Our analysis is based on the results of Kondracki and Rogulski [54], where

the general structure of the full gauge orbit space was investigated for the first time in

detail. In particular, it was shown that the gauge orbit space is a stratified topological

space. Moreover, these authors found the basic relation between orbit types and certain

bundle reductions, which we are using. We note that this relation was also observed in

[43].

We mention that there is an approach based upon parameterizing the full gauge

orbit space by a so called fundamental domain, characterized by the fact that, up to

identifications on the boundary, it is intersected by every gauge orbit exactly once, see

[26, 38, 76, 77, 79] and further references therein. However, for the study of the stratified

structure of the gauge orbit space, this concept seems not to be efficient.

Finally, we note that the stratification structure for gauge theories within the

Ashtekar approach has been also clarified, see [33].

This review is organized as follows. In the first part, the basic mathematical

structures and results concerning the gauge orbit space stratification are discussed. In

Section 2 we briefly recall the setup and sketch the basic properties of the gauge group

action, including a slice theorem and an approximation theorem. In Section 3, the fibre

bundle structures induced by this action are investigated. Next, in Section 4, basic

properties of the stratification are derived and, in Section 5, the natural Riemannian

structures of the strata are discussed. This concludes the general part of the review. In

the remaining part, we specify the gauge group to be SU(n) and space time to be of

dimension less than or equal to 4. Under these assumptions, the strata can be classified

by characteristic classes of certain reductions of the principal bundle the theory is defined

on. This will be explained in Section 6. In Section 7, we show how the natural partial

ordering of strata, which contains information on how the strata are linked, can be read

off from algebraic relations between the characteristic classes. Finally, we discuss the case

of gauge group SU(2) for some 4-manifolds in detail and present an application to nodal

configurations in topological Chern-Simons theory. For the convenience of the reader,

we have added two appendices on aspects of bundle theory and algebraic topology used

in the text, as well as an appendix in which we explain how to construct the Postnikov
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towers of the classifying spaces relevant for the classification of orbit types.

2. Basics

2.1. Setup

In what follows, we assume that the reader is familiar with the standard formulation of

gauge theories in terms of fibre bundles and connections [25, 28, 75]. Thus, let M be a

compact connected orientable Riemannian manifold, let G be a compact connected linear

Lie group with Lie algebra g and let P be a smooth locally trivial principal G-bundle over

M . In physical terms, M is a model of space time and G is the gauge group.

For any vector bundle E, let W k(E) denote the Hilbert space of cross sections of

E of Sobolev class k. For generalities on such spaces, see [61], for the application of

these techniques to gauge theories see [58]. Let C denote the subspace of W k(T∗P ⊗ g)

of connection forms on P of Sobolev class k and let G denote the closure of the group

of smooth G-space morphisms P → G in W k+1(P, gl(n,C)). Here n is chosen so that

G ⊆ gl(n,C). In physics, connection forms represent gauge potentials and C is the

configuration space of the theory. Elements of G represent local gauge transformations

acting on connections by

A(g) = Ad(g−1)A+ g−1dg . (1)

The space C is an affine separable Hilbert space with translational vector space

T = W k(T∗M ⊗ AdP ) ,

where AdP denotes the associated bundle P×G g. Throughout the review, we will assume

k > dim(M)/2 + 1. Then the Sobolev lemma ensures that multiplication of a W k+1-

function by a W l-function, dim(M)/2 < l ≤ k , yields a W l-function. It follows that G is

a group, acting via (1) on C. In fact, one can prove that G is a Hilbert-Lie group with Lie

algebra

LG = W k+1(AdP )

and exponential mapping

expG(ξ)(p) = expG(ξ(p)) , ∀ξ ∈ LG , p ∈ P , (2)

and that the action is smooth [59, 60, 70].

It should be noted that for both T and LG, identification of sections in associated

bundles with the corresponding G-equivariant horizontal forms on P is understood. We

will stick to this identification throughout the review. Also note that the elements of C

and G are C1 and C2, respectively. In particular, G may be viewed as consisting of vertical

automorphisms of P of class C2 or of sections of class C2 in the associated fibre bundle

P ×G G [32].
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The gauge orbit space is

M := C/G ,

which is, at this stage, just a topological quotient. It will be equipped with additional

structure later. Note that M is the space of classes of gauge equivalent potentials – the

’true’ configuration space.

The scalar products on the Hilbert spaces LG and T , respectively, are not intrinsic.

Their only purpose is to define the topology. The geometry of these spaces is defined by

L2-scalar products, induced from the Riemannian metric on M and an Ad(G)-invariant

scalar product 〈·, ·〉 on g as follows:

(ξ, η)0 :=

∫

M

〈ξ, ∗η〉 , ξ, η ∈ LG , (X, Y )0 :=

∫

M

〈X ∧ ∗Y 〉 , X, Y ∈ T ,

respectively. Here ∗ denotes the Hodge duality operator. Both of these scalar products

are invariant under the adjoint action of G.

Since C is affine with translational vector space T , we have

TC = C × T . (3)

In particular, any smooth assignment of a scalar product in T to the elements of C defines

a Riemannian metric on C. Examples are:

(i) The constant assignment A 7→ (·, ·)0 defines the natural (weak) L2-metric γ0. It

is invariant under the induced action of G on T , given by

X(g) = Ad(g−1)X .

(ii) The assignment A 7→ γk
A, induced from

γk
A(X, Y ) :=

k∑

l=0

(
[∇̃A]l X, [∇̃A]l Y

)
0
, X, Y ∈ C∞(T∗M ⊗ AdP ) , (4)

by prolongation to T , defines a natural metric γk. Here

∇̃A : C∞(T∗M⊗l ⊗ AdP ) → C∞(T∗M⊗(l+1) ⊗ AdP ) , α 7→ ∇LCα + [A, α] ,

where ∇LC is the Levi-Civita connection of the Riemannian metric on M and

[A, α](X0, X1, . . . , Xl) = [A(X0), α(X1, . . . , Xl)] .

The norm on T defined by the scalar products γk
A, A ∈ C, is equivalent to the W k-norm

[27]. Therefore, γk is a strong metric. Moreover, due to

(
∇̃A(g)

)l

= Ad(g−1)
(
∇̃A

)l

Ad(g) ,
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it is G-invariant, γk
A(g)(X

(g), Y (g)) = γk
A(X, Y ) .

(iii) Let us remark that one can construct further G-invariant metrics using the

Laplacian �A = ∇∗
A∇A + ∇A∇

∗
A as

ηk
A(X, Y ) = ((1 + �A)k/2X, (1 + �A)k/2Y )0 , (5)

where (1 + �A)k/2 is defined via functional calculus. For some specific examples, like the

principal SU(2)-bundle of second Chern class (’instanton number’) c2 = 1 over CP2, the

restriction of η2 to the moduli space of irreducible self-dual connections was studied in

detail, see [42] and references therein. We do not comment on this here.

Next, for A ∈ C, consider the operator of covariant derivative w.r.t. A,

∇A : W k+1(AdP ) → W k(T∗M ⊗ AdP ) .

Its formal adjoint w.r.t. the L2-scalar product is the bounded linear operator

∇∗
A : W k(T∗M ⊗ AdP ) →W k−1(AdP ) ,

defined by

(∇Aξ,X)0 = (ξ,∇∗
AX)0 , ∀ξ ∈ C∞(AdP ), X ∈ C∞(T∗M ⊗ AdP ) .

Composition then yields a bounded linear operator

∆A = ∇∗
A∇A : W k+1(AdP ) → W k−1(AdP ) .

In the following, instead of W l(AdP ) or W l(T∗M⊗AdP ) we shall often write W l, because

the bundle in which the sections are taken can be read off unambiguously from the

operators under consideration. Moreover, the pure symbols ∇A, ∇∗
A, ∆A always stand for

the maps ∇A|W
k+1, ∇∗

A|W
k, and ∆A|W

k+1 with k fixed, whereas, for example, ∇A|W
l+1

means that ∇A is viewed as an operator W l+1 → W l (where dim(M)/2 < l ≤ k).

Note that the maps

C → B(W k+1,W k) , A 7→ ∇A, C → B(W k,W k−1) , A 7→ ∇∗
A,

are continuous linear. Hence, the map

C → B(W k+1,W k−1) , A 7→ ∆A,

is continuous. Since it factorizes into continuous linear maps and composition of operators,

it is even smooth. Moreover, we note the following equivariance properties:

DA(g) = Ad(g−1)DA Ad(g) , ∀ A ∈ C, g ∈ G , (6)

where D stands for ∇, ∇∗ and ∆ , respectively.
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2.2. Stabilizers

Recall that the stabilizer (or isotropy subgroup) of A ∈ C w.r.t. the action of G is the

subgroup

GA := {g ∈ G : A(g) = A}

of G. It is determined by the holonomy of A . Indeed, g ∈ GA iff g is constant on any

curve horizontal with respect to A. Thus,

GA = {g ∈ G : g|PA,p0
= const} , (7)

where PA,p0 denotes the holonomy bundle of A based at p0 ∈ P . Note that PA,p0 is of

class C2, because A is C1.

Let ξ ∈ LG. We have

∇Aξ = 0 ⇔ ξ|PA,p0
= const ⇔ expG(ξ)|PA,p0

= const ,

where the second equivalence is due to (2). Thus,

expG(LG) ∩ GA = expG(ker(∇A)) .

Since ker(∇A) is a closed subspace of the Hilbert space LG, the r.h.s. is a submanifold of

G. Since the l.h.s. is a neighbourhood of e in GA, it follows that GA is a Lie subgroup of

G with Lie algebra

LGA = ker(∇A) = {ξ ∈ LG : ξ|PA,p0
= const} , (8)

see [14, §III.1.3]. Next, consider the natural group homomorphism

Φp0 : G → G , g 7→ g(p0)

(the value of g at a point is of course well defined). Since convergence in W k+1, by our

choice of k, implies pointwise convergence, Φp0 is continuous, hence smooth. Due to (7),

the restriction of Φp0 to the subgroup GA is injective, hence a Lie group isomorphism onto

its image. The image is

Φp0(GA) = CG(HA,p0) ,

where HA,p0 denotes the holonomy group of A based at p0. To see this, recall that HA,p0 is

the structure group of PA,p0. Thus, inclusion from left to right is due to equivariance of the

elements of G. For the converse inclusion it suffices to note that for any a ∈ CG(HA,p0),

the function on PA,p0 with constant value a is equivariant and, hence, can be equivariantly

prolonged to P , thus becoming an element of GA.

Let us summarize.

Theorem 2.1 (Stabilizer theorem). GA is a compact Lie subgroup of G with Lie

algebra given by (8). Through Φp0, GA is isomorphic to CG(HA,p0).
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As an immediate consequence of the fact that GA is an (embedded) Lie subgroup,

the projection G → G/GA defines a locally trivial principal bundle [14, §6.2.4].

In [60] it was shown that the map C × G → C × C , (A, g) 7→ (A,A(g)) , is closed. It

follows [16, III,§4]

Theorem 2.2. The action of G on C is proper.

Immediate consequences are

(i) The orbits of the action of G on C are closed.

(ii) The orbit space M is Hausdorff.

A different proof of Theorem 2.2 was given in [54]. By assigning to A ∈ C a W k-

Riemannian metric on P ,

hA(u, v) = hM (π∗u, π∗v) + 〈A(u), A(v)〉 , u, v ∈ TpP , p ∈ P ,

where hM is the Riemannian metric on M , a homeomorphism of C onto a closed

submanifold of the manifold Metk(P ) of W k-Riemannian metrics on P is constructed (it is

even a diffeomorphism into). Metk(P ) is acted upon by the topological group Diffk+1(P )

of W k+1-diffeomorphisms of P . Diffk+1(P ) is known to be a smooth manifold, but not

a Lie group. The action is known to be smooth and proper [17, 27, 31]. It is shown in

[54] that G is a closed topological subgroup of Diffk+1(P ) (it is even a submanifold) and

that the embedding C → Metk(P ) is equivariant. Thus, properness carries over from the

action of Diffk+1(P ) on Metk(P ) to that of G on C.

Note that compactness of stabilizers is not needed in the second proof. Rather, it is

a consequence of properness of the action.

2.3. Orbit types

According to GA(g) = g−1GAg , the stabilizers along an orbit x ∈ M form a conjugacy class

in G. This class is called the orbit type of x and is denoted by Type(x). The set of orbit

types carries a natural partial ordering: σ ≤ σ′ iff there exist representatives S of σ and

S ′ of σ′ such that S ⊇ S ′. Then for any pair of representatives S, S ′ there exists g ∈ G

such that S ⊇ aS ′a−1. One says that S ′ is subconjugate to S. Note that, although this

definition of the partial ordering of orbit types is the usual one [14, 19], it is not consistent

with [54], where the inverse partial ordering is used.

We are going to characterize orbit types in terms of certain bundle reductions of P ,

see also [43] for a similar approach. For that purpose, let us consider, for a moment,

smooth connections and smooth local gauge transformations. Recall that a subgroup of

G that can be written as a centralizer is usually called a Howe subgroup. This is due

to the fact that such a subgroup, together with its centralizer, forms a reductive dual

pair, a notion introduced by R. Howe [45, 46, 47]. According to that, let us call a bundle
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reduction of P to a Howe subgroup of G a Howe subbundle. (All bundle reductions

are assumed to be smooth.) As any subgroup H ⊆ G generates a Howe subgroup H̃

(containing H) by H̃ = C2
G(H), any bundle reduction Q of P to H generates a Howe

subbundle Q̃ (containing Q) by extending the structure group to H̃ ,

Q̃ = QH̃ .

In particular, a connection A generates a Howe subbundle P̃A,p0 through its holonomy

bundle. In [54], P̃A,p0 was called evolution bundle of A . Since an element of G that

commutes with HA,p0 still commutes with H̃A,p0, a gauge transformation that is constant

on PA,p0 is still constant on P̃A,p0. Thus,

GA = {g ∈ G : g|P̃A,p0
= const.} . (9)

We claim that P̃A,p0 consists of all p ∈ P obeying

g(p) = g(p0) , ∀g ∈ GA .

To see this, let p ∈ P with g(p) = g(p0), ∀g ∈ GA. There exist p′ ∈ PA,p0 and a ∈ G

such that p = p′a. Due to equivariance, g(p) = a−1g(p′)a, hence g(p0) = a−1g(p0)a,

∀g ∈ GA. Thus, a commutes with Φp0(GA). Now the stabilizer theorem yields that

a ∈ C2
G(HA,p0) ≡ H̃A,p0, hence p ∈ P̃A,p0.

It follows that P̃A,p0 is determined by the subgroup GA rather than by A itself. Thus,

by assigning P̃A,p0 to GA we obtain a map from stabilizers to Howe subbundles. Since GA

can be recovered from P̃A,p0 via (9), the map is injective. What kind of Howe subbundles

arise in this way from stabilizers? Of course, all of them are generated by a connected

reduction of P . Howe subbundles with this property will be called holonomy-induced.

Conversely, let a holonomy-induced Howe subbundle Q̃ with generating connected bundle

reduction Q be given. As is well known [52], if dimM ≥ 2, there exist connections in P

which have holonomy bundle Q. Then Q̃ is the Howe subbundle assigned to the stabilizer

of any of these connections.

To summarize, we have found, within the C∞-setting, that stabilizers are in

1-1 correspondence with holonomy-induced Howe subbundles. To carry over this

characterization to the conjugacy classes, we note that, for gauge transformations g,

PA(g),p0
= (Θg(PA,p0)) g(p0)

−1 , (10)

where Θg denotes the vertical automorphism of P defined by g, i.e.,

Θg(p) = pg(p) , ∀p ∈ P .

Since (10) carries over to the corresponding Howe subbundles, we have to factorize

the holonomy-induced Howe subbundles by vertical automorphisms of P . Since any
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isomorphism of one bundle reduction of P onto another one can be extended to a vertical

automorphism of P , the factorization is actually by isomorphy. Moreover, in order to

make the construction independent of the chosen point p0, one must take Howe subbundles

modulo the principal action of G on P . Note that then the corresponding structure groups

are determined up to conjugacy in G.

Thus, we have found a characterization of the orbit types of the action of smooth

local gauge transformations on smooth connections. Finally, one can prove that the action

of G on C has exactly the same orbit types [65].

Let us summarize.

Theorem 2.3 (Reduction theorem). The orbit types of the action of G on C are in 1-

1 correspondence with smooth holonomy-induced Howe subbundles of P modulo isomorphy

and modulo the principal action of G on P . The correspondence is given by (9).

Note that it is obvious from (9) that the partial orderings of orbit types and bundle

reductions coincide. For later use, let us introduce the notation CS for the subset of

connections with stabilizer S, Cσ for the subset of connections of orbit type σ and Mσ

for the subset of orbits of type σ. Correspondingly, we define

C≤S :=
⋃

S′⊇S

CS′

, C≤σ :=
⋃

σ′≤σ

Cσ′

, M≤σ :=
⋃

σ′≤σ

Mσ′

,

and similarly C≥S, C≥σ, M≥σ.

2.4. Decomposition theorem

In what follows we will see that there exists a natural generalization of the Hodge-de

Rham decomposition theorem (w.r.t. the L2-metric γ0) to the covariant derivatives ∇A.

This has two important consequences. First, it ensures that the orbits of the G-action are

submanifolds. Second, it implies that the two distributions on C , defined by

VA = im (∇A) , HA = ker(∇∗
A) , A ∈ C , (11)

provide a natural orthogonal splitting of the tangent bundle,

TC = V ⊕ H . (12)

This splitting is fundamental for all constructions discussed within the rest of this and

the next three sections. In particular, it is basic for the construction of tubes and slices, it

ensures the (locally trivial) fibre bundle structure on each stratum and it induces natural

(weak) Riemannian metrics on each stratum of the gauge orbit space via a Kaluza-Klein

construction.

Using the theory of differential operators with W l-coefficients [21, 23], one can verify

that the following decompositions hold, see [63] for explicit proofs.
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Theorem 2.4 (Decomposition theorem). Let A ∈ C. Then

W k(T∗M ⊗ AdP ) = im (∇A) ⊕ ker(∇∗
A) , (13)

W k−1(AdP ) = im (∆A) ⊕ ker(∆A) , (14)

where the sums are orthogonal w.r.t. the corresponding L2-scalar products.

Remarks:

1. The decompositions still hold if one replaces ∇A, ∇∗
A, ∆A by ∇A|W

l+1, ∇∗
A|W

l,

∆A|W
l+1, respectively, with dim(M)/2 < l ≤ k.

2. As an immediate consequence of (13),

ker(∆A) = ker(∇A) , (15)

im (∆A) = im (∇∗
A) . (16)

3. In the decomposition (14), the subspace ker(∆A) of W k+1 is viewed as a subspace

of W k−1. Actually, there should occur ker(∆A|W
k−1) instead. However, by virtue of

point 1 above, formula (15) holds also in degree dim(M)/2 < l ≤ k. Since d is

elliptic, ker(∇A|W
l+1) = ker(∇A), for any dim(M)/2 < l ≤ k. Hence, (15) implies

ker(∆A|W
k−1) = ker(∆A).

As an important consequence of the decomposition theorem one has

Theorem 2.5. For any A ∈ C, the orbit of A under the action of G is a submanifold of

C, naturally diffeomorphic to G/GA.

This was proved in [54]. Since the orbits are closed due to properness of the action

and since the topology of C is second countable (recall that C is separable), it suffices to

show that the map

ιA : G → C , g 7→ A(g) , (17)

is a subimmersion [14, §5.12.5]. The map ιA factors through G/GA,

G → G/GA
ι̃A→ C .

Since the first mapping is the projection in a locally trivial principal bundle, it is a

submersion. We claim that ι̃A is a smooth immersion (so that (17) is a subimmersion,

indeed).

Smoothness follows from the fact that, due to local triviality of the principal bundle

G → G/GA, G/GA can be covered by smooth local sections G/GA ⊇ U → G. Namely,

locally, ι̃A factors through such a section and ιA.

To prove that ι̃A is an immersion, it suffices to show that it is an immersion at

[e] ∈ G/GA, the class of the identity of G. Given a closed subspace Y of LG complementary
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to LGA, one can find an appropriate local section (U, s) about [e] such that its tangent

map (s∗)[e] maps T[e]G/GA isomorphically onto Y . Then

(ι̃A∗)[e] ◦
(
(s∗)[e]

)−1
= (ιA∗)e|Y .

Since (s∗)[e] is an isomorphism, it suffices to show that the r.h.s. is injective and has closed

image. For that purpose, recall that the Killing field at A generated by ξ is

ιA∗ ξ = ∇Aξ . (18)

Now, injectivity is obvious from (8). Moreover, im ((ιA∗)e|Y) = im (∇A) and, due to the

decomposition theorem, the image is closed and admits a closed complement.

As a second important consequence of the decomposition theorem we note that the

tangent bundle splitting (12) holds and is orthogonal w.r.t. the L2-metric γ0 . Due to (6),

the distributions V and H are equivariant,

VA(g) = (VA)(g) , HA(g) = (HA)(g) . (19)

Geometrically, V consist of the subspaces tangent to the orbits. We stress that, in general,

neither V nor H are smooth or locally trivial. However, as we will see later, restrictions

to strata will be so.

Let us determine the projectors

v,h : TC → TC

onto V and H, respectively. They are given by maps

C → B(T ) , A 7→ vA,hA ,

where vA and hA denote the projectors associated to the decomposition (13). Since

ker(∆A) ⊆W k+1, the decomposition (14) implies

W k+1 = ker(∆A) ⊕ ker(∆A)⊥0 , (20)

where ker(∆A)⊥0 = W k+1∩im (∆A). Thus, by restriction, ∆A induces a bounded operator

ker(∆A)⊥0 → im (∆A) which is invertible, hence has bounded inverse by the open mapping

theorem. The inverse can be prolonged to a bounded operator

GA : W k−1(AdP ) →W k+1(AdP ) , (21)

the Green’s operator associated to ∆A, by setting GA| ker(∆A) = 0. Note that GA∆A :

W k+1 → W k+1 is the L2-orthogonal projector onto ker(∆A)⊥0. Hence,

∇AGA∆A = ∇A , ∆AGA∇
∗
A = ∇∗

A . (22)

Note, in particular, that GA is not the inverse of ∆A, unless GA is discrete, as in the case

of the principal stratum for semisimple structure group [60].
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Now consider the composition ∇AGA∇
∗
A, which is a bounded operator on T . Using

(22) one can check that it is a projector and that it acts trivially on HA and identically

on VA. Thus,

vA = ∇AGA∇
∗
A , hA = 1− vA . (23)

From (6) we infer

GA(g) = Ad(g−1) GA Ad(g) . (24)

It follows

vA(g) = Ad(g−1) vA Ad(g) , hA(g) = Ad(g−1) hA Ad(g) (25)

which is consistent with (19).

2.5. Slice theorem

We assume the reader to be familiar with the notions of tube and slice [19]. They are

generalizations of the notions of local trivialization and local section, respectively, which

apply to group actions with a single orbit type.

Following [54], the normal distribution H can be used to construct tubes and slices

for the action of G on C. For x ∈ M, the normal bundle of the orbit π−1(x) is given by

Nx := H|π−1(x) .

According to (19), Nx is equivariant. We claim that it is a smooth locally trivial vector

subbundle of TC|π−1(x). To see this, observe that for given A ∈ π−1(x), due to local

triviality of the principal bundle G → G/GA, there exists a neighbourhood UA of A in

π−1(x) and a smooth map θ : UA → G such that A′ = A(θ(A′)), for any A′ ∈ UA. The map

UA × T → TC|UA
, (A′, X) 7→ (A′, X(θ(A′))) ,

is easily seen to be a diffeomorphism. Due to equivariance of Nx, the pre-image of Nx|UA

under this map is UA × HA. This proves the assertion . Let us note that the argument

shows that any equivariant vector subbundle of TC|π−1(x) which has closed fibres is smooth

and locally trivial.

For ε > 0, define

HA,ε := {X ∈ HA :
√
γk

A(X,X) ≤ ε} ,

where the W k-metric γk was defined in (4). Consider the smooth subbundle

Nx,ε := {(A,X) ∈ Nx : X ∈ HA,ε}
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of Nx. Note that Nx,ε is not just the ε-disk bundle of Nx, because orthogonality and

length are taken w.r.t. different metrics. Due to G-invariance of γk, Nx,ε is equivariant.

As G-spaces, Nx and Nx,ε are equivariantly diffeomorphic through the rescaling map

̺ε : Nx → Nx,ε , (A,X) 7→

(
A,

ε√
γk

A(X,X) + 1
X

)
.

By restriction, the map

exp : TC → C , (A,X) 7→ A+X ,

which is in fact the exponential map w.r.t. the L2-metric γ0, defines a smooth G-

equivariant map Nx,ε → C. The image is

Ux,ε = {A+X : π(A) = x , X ∈ HA,ε} . (26)

It is an open invariant neighbourhood of π−1(x) in C (called ’tubular neighbourhood’).

Using that π−1(x) is a submanifold, one can show [54] that there exists ε > 0 such that

the restriction of exp to Nx,ε ⊆ TC is injective. Consequently, the composition

exp ◦̺ε : Nx → C , (27)

is an equivariant diffeomorphism onto Ux,ε, i.e., it is a tube. (Note that already exp |Nx,ε

alone is a tube.)

From (26) we can easily read off the slice about A ∈ π−1(x) associated to Ux,ε. It is

the subset

SA,ε := {A+X : X ∈ HA,ε}

of Ux,ε. By construction, SA,ε obeys the defining properties of a slice:

(i) Ux,ε = (SA,ε)
(G),

(ii) SA,ε is closed in Ux,ε,

(iii) SA,ε is invariant under the stabilizer GA,

(iv) For any g ∈ G, (SA,ε)
(g) ∩ SA,ε 6= ∅ implies g ∈ GA.

We conclude:

Theorem 2.6 (Slice theorem). For any x ∈ M there exists ε > 0 such that (27) is

a tube about x. For any A ∈ C there exists ε > 0 such that SA,ε is a slice about A. In

particular, the action of G on C admits a slice at any point.

In the following, whenever we write Ux,ε or SA,ε, it is understood that ε is small

enough to make the subset a tubular neighbourhood or a slice, respectively.

The authors of [54] actually prove more: they show that for any x ∈ M and any open

invariant neighbourhood U of x in C there exists ε > 0 such that Ux,ε ⊆ U and U \Ux,ε 6= ∅.

15



They call this the ’local slice theorem’. As a consequence, M is a regular topological space,

meaning that whenever one has a closed subset V and a point x /∈ V then there exists a

neighbourhood of x , whose closure in M does not intersect V . According to Urysohn’s

metrization theorem, regularity in combination with second countability (which is due to

separability of C) then implies that M is a metrizable space.

As an application, let us note an immediate consequence of the slice theorem.

Property (iv) of slices implies that for any x ∈ Mσ and any A ∈ CS,

Ux,ε ⊆ C≥σ , SA,ε ⊆ C≥S . (28)

It follows that for any stabilizer S and orbit type σ the following subsets are open:

CS in C≤S , Cσ in C≤σ , Mσ in M≤σ .

To see this, let A ∈ CS . Since Uπ(A),ε is a neighbourhood of A in C, its intersection with

C≤S is a neighbourhood of A in C≤S. Due to (28), the intersection is contained in

C≥S ∩ C≤S = CS .

The argument applies without change to Cσ. For Mσ it suffices to note that Ux,ε projects

to a neighbourhood of x in M.

2.6. Approximation theorem

It is well known that connections with trivial stabilizer under G-action are dense in C,

see [70]. More generally, the question arises, whether Cσ is dense in C≤σ, in other words,

whether a connection with nontrivial stabilizer can be approximated by connections with

a prescribed, strictly smaller stabilizer. In [54], the following is proved.

Theorem 2.7 (Approximation theorem). Assume dimM ≥ 2 . Let A ∈ C and let Q

be a connected bundle reduction of P to a (not necessarily closed) Lie subgroup. Assume

that Q contains a holonomy bundle of A. Then there exists X ∈ T such that all A+ tX,

t ∈ R \ {0}, have holonomy bundle Q.

By virtue of the characterization of stabilizers by bundle reductions of P , see (7), the

approximation theorem implies that the following subsets are dense:

CS ⊆ C≤S , Cσ ⊆ C≤σ , Mσ ⊆ M≤σ . (29)

Namely, let A ∈ C≤S. Then S ⊆ GA. Hence, according to (7), the bundle reduction

QS associated to S, based at some p0, contains the holonomy bundle of A, based at

p0. Of course, so does already the connected component QS,p0 ⊆ QS of p0. Thus,

Theorem 2.7 yields that A can be approximated by connections with holonomy bundle

QS,p0. By construction, such connections have stabilizer S. Hence, CS is dense in C≤S.

Then denseness of Cσ in C≤σ and of Mσ in M≤σ follows.
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One can combine openness, found above, and denseness by saying that CS, Cσ, Mσ

are generic sets in C≤S, C≤σ, and M≤σ, respectively.

Combining the approximation theorem with the slice theorem one arrives at the

following closure formulae: for any orbit type σ,

Cσ = C≤σ , Mσ = M≤σ (30)

Indeed, the inclusions from right to left are obvious from (29). The converse inclusions

follow from the slice theorem: let A ∈ Cσ. Consider UA,ε ∩ Cσ. Since this is a neighbour-

hood of A in Cσ, it contains some B ∈ Cσ. According to (28), then σ ≥ Type(A). Thus,

A ∈ C≤σ. The inclusion for Mσ then follows by noting that for saturated sets like Cσ,

closure and projection commute.

We remark that for stabilizers S one has a similar formula:

CS = C≤S . (31)

While ⊇ is again due to (29), ⊆ can be proved without the slice theorem by the following

simple argument. For any g ∈ C, consider the map

Φg : C → T , A 7→ A(g) −A .

As the Φg are continuous, the subsets Φ−1
g (0) are closed in C. Then C≤S =

⋂
g∈S Φ−1

g (0)

is closed. Hence, CS ⊆ C≤S.

3. Smooth fibre bundle structure of strata

In this section, we shall explain how the projections

πσ : Cσ → Mσ

induced from π : C → M can be equipped with the structure of smooth locally trivial

fibre bundles. As a result, in a sense, π fibres over the set of orbit types into such bundles.

3.1. Submanifold structure of the configuration space strata

To prove that Cσ is a submanifold of C, it suffices to show that for any x ∈ Mσ the subset

Uσ
x,ε := Ux,ε ∩ Cσ ,

which is a neighbourhood of the orbit π−1(x) in Cσ, is a submanifold of Ux,ε. For any

A ∈ Cσ, define

Sσ
A,ε := SA,ε ∩ Cσ ,

Hσ
A := {X ∈ HA : GX ⊇ GA} , (32)

Hσ
A,ε := HA,ε ∩ Hσ

A .
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Due to (28),

GA′ = GA , ∀A′ ∈ Sσ
A,ε . (33)

Hence, Sσ
A,ε = {A+X : X ∈ HA,ε , GA+X = GA} . Since GA+X = GA iff GX ⊇ GA,

Sσ
A,ε = {A+X : X ∈ Hσ

A,ε} . (34)

Then

Uσ
x,ε = {A +X : A ∈ π−1(x) , X ∈ Hσ

A,ε} .

Therefore, the pre-image of Uσ
x,ε under the equivariant diffeomorphism (27) is the vector

subbundle

Nσ
x :=

⋃

A∈π−1(x)

Hσ
A

of Nx. As we have argued in Subsection 2.5, since Nσ
x is equivariant and since its fibres

are closed subspaces of T , it is a smooth subbundle of TC|π−1(x), hence of Nx. It follows

that Uσ
x,ε is a smooth submanifold of Ux,ε, for any x ∈ Mσ, as asserted.

For later purposes, let us note that the vector subbundle Nσ
x is in fact trivial, where

a smooth trivialization is given by

G/GA × Hσ
A → Nσ

x , ([g], X) 7→ (A(g), X(g)) ,

for some A ∈ π−1(x). Note that this map is well defined precisely because GX ⊇ GA.

It follows that Uσ
x,ε also has a direct product structure. This can be made explicit by

introducing maps

χσ
A,ε : Sσ

A,ε × G/GA → Uσ
π(A),ε , (A′, [g]) 7→ A′(g)

, (35)

which are easily seen to be diffeomorphisms. Note that, for obvious reasons, the roles of

fibre and base have changed here. Also for later purposes, let us note that

TSσ
A,ε = Sσ

A,ε × Hσ
A , (36)

for any A ∈ Cσ, which is obvious from (34).

3.2. Manifold structure of the orbit space strata

We shall construct an atlas of the stratum Mσ using the partial slices Sσ
A,ε, A ∈ Cσ. For

any x ∈ Mσ, define

V σ
x,ε := π(Uσ

x,ε) .

By restriction in domain and range, for any A ∈ π−1(x), π defines a map

πσ
A,ε : Sσ

A,ε → V σ
x,ε (37)

We prove:
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(i) πσ
A,ε is bijective: Due to (33) and property (iv) of slices, none of the elements of

Sσ
A,ε has a gauge copy in Sσ

A,ε.

(ii) πσ
A,ε is a homeomorphism onto V σ

x,ε: It suffices to check that π maps open subsets

of Sσ
A,ε to open subsets of V σ

x,ε. Let U ⊆ Sσ
A,ε be open. Then U = Sσ

A,ε ∩ U ′, where

U ′ ⊆ SA,ε is open. Using a local trivialization of the normal bundle Nx, one can show

that the saturation Ũ ′ = U ′(G) is open in C. Since Sσ
A,ε does not contain gauge copies,

U = Sσ
A,ε ∩ Ũ

′. Since Ũ ′ is saturated,

π(U) = π(Sσ
A,ε) ∩ π(Ũ ′) = V σ

x,ε ∩ π(Ũ ′) .

Here π(Ũ ′) is open in M. Hence, π(U) is open in V σ
x,ε.

(iii) V σ
x,ε is open in Mσ: obviously, V σ

x,ε = Mσ ∩ π(Uπ(A),ε), where Uπ(A),ε is open in

C.

Since the partial slices Sσ
A,ε are open subsets of closed affine subspaces of C, see

(34), the family (V σ
π(A),ε, (π

σ
A,ε)

−1), A ∈ Cσ, provides a covering of Mσ by local charts

(one can make this more explicit by further mapping Sσ
A,ε → Hσ

A,ε). We finally have to

check whether the transition maps between these charts are smooth. Due to (35), for

A1, A2 ∈ Cσ we have a diffeomorphism

Sσ
A1,ε1

∩ Uσ
π(A2),ε2

× G/GA1

χσ
A1,ε1−→ Uσ

π(A1),ε1
∩ Uσ

π(A2),ε2

(χσ
A2,ε2

)−1

−→ Sσ
A2,ε2

∩ Uσ
π(A1),ε1

× G/GA2 .

The transition map (πσ
A2,ε2

)−1 ◦ πσ
A1,ε1

is given by the composition of the embedding

A′ 7→ (A′, [e]), the above diffeomorphism, and projection to the first component. Hence,

it is smooth. Thus, the atlas we have constructed equips Mσ with the structure of a

smooth Hilbert manifold.

3.3. Smooth fibre bundle structure

Using the local diffeomorphisms χσ
A,ε, we obtain local diffeomorphisms

V σ
π(A),ε × G/GA

(πσ
A,ε)

−1×id
−→ Sσ

π(A),ε × G/GA

χσ
A,ε

−→ Uσ
π(A),ε

which provide a covering of Cσ by local trivializations of the projection πσ : Cσ → Mσ.

Thus, the latter is a smooth locally trivial fibre bundle with standard fibre G/GA, for some

A ∈ Cσ. In particular, πσ is a submersion, because locally it is the projection onto the

first component.

Let us consider, in particular, the principal orbit type σ = σp, which is the conjugacy

class consisting of the subgroup Z̃(G) of constant functions P → Z(G), where Z(G) denotes

the center of G. Since Z̃(G) is normal in G, the smooth locally trivial fibre bundle

πp : Cp → Mp (38)
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is in fact principal, with structure group G̃ := G/Z̃(G). This bundle has been studied

intensively [58, 59, 60, 70]. An important aspect is that nontriviality of this bundle is an

obstruction to the existence of smooth (or even continuous) gauges. An elegant argument

to show nontriviality, i.e., nonexistence of smooth gauges, is due to Singer [70]. Namely,

assume that the bundle were trivial, i.e., Cp ∼= Mp × G̃. Since Cp is contractible, then

the homotopy groups were πi(G̃) = 0, i ≥ 1. Since, in many cases this is not true,

one concludes that in these cases (38) is nontrivial. For G = SU(n) , examples of this

situation are: space time manifolds M = S3 and S4 [70], T4 and S2 × S2 [51] and others.

This explains the Gribov ambiguity [40] for the corresponding models.

Remark: For the other orbit types, representatives S are not normal in G. In order to

have a similar picture as in the case of the principal stratum, one would have to take the

submanifold CS of connections with stabilizer S. CS is acted upon freely by N/S, where

N denotes the normalizer of S in G. Provided one could show that N is a Lie subgroup of

G – a problem which, to our knowledge, is not settled yet – the projection πS : CS → Mσ

would be a smooth locally trivial principal fibre bundle and πσ : Cσ → Mσ would be

associated to this bundle via the action of N/S on G/S.

4. The stratification of the gauge orbit space M

A stratification of a topological space X is a countable disjoint decomposition into smooth

manifolds Xi, i ∈ I, (so-called strata) such that the ’frontier condition’ is satisfied:

Xi ∩Xi′ 6= ∅ ⇒ Xi ⊆ Xi′ , ∀i, i′ ∈ I .

As this notion is rather weak, one usually adds additional assumptions about the linking

between the strata, thus arriving at special types of stratification. According to [54], the

type of stratification appropriate for our purposes is called ’regular’ and is defined by the

property

Xi ∩Xi′ 6= ∅ ⇒ Xi closed in Xi ∪Xi′ , ∀i, i′ ∈ I .

The following is due to Kondracki and Rogulski [54].

Theorem 4.1 (Stratification theorem). The decomposition of M by orbit types is a

regular stratification.

To prove it, one has to check countability of orbit types and the frontier and regularity

conditions.

4.1. Countability of orbit types

Due to the reduction theorem, orbit types are in 1-1 correspondence with certain

reductions of P to Howe subgroups, modulo isomorphy of the reductions and modulo

conjugacy of the subgroups. We note the following facts:
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(i) Howe subgroups are closed.

(ii) There are at most countably many conjugacy classes of closed subgroups in a

compact group [52].

(iii) There are at most countably many isomorphism classes of principal bundles with

a given structure group over a compact manifold. The classes are in 1-1 correspondence

with arch-wise connected components of the space of continuous maps from the base space

of the bundle to the classifying space. General arguments ensure that there are at most

countably many such components.

It follows from (i)–(iii) that the number of orbit types is at most countable.

Let us note that the number of Howe subgroups in a compact Lie group is actually

finite. This follows from the fact that any centralizer in a compact Lie group is generated

by finitely many elements [14, ch. 9] and that a compact group action on a compact

manifold has a finite number of orbit types [19].

4.2. Frontier and regularity conditions

Let σ, σ′ be orbit types such that Mσ ∩Mσ′

6= ∅. According to the closure formula (30),

Mσ is a union of strata. If Mσ′

intersects the union, it must in fact coincide with one

of these strata. Then Mσ′

⊆ Mσ. Thus, the decomposition by orbit types satisfies the

frontier condition.

On the other hand, we know from the slice theorem that Mσ is open in M≤σ, hence

in Mσ. Then Mσ is open in Mσ ∪Mσ′

, because the latter is a subset of Mσ due to the

frontier condition. Then Mσ′

, being the complement, is closed. Hence, the decomposition

by orbit types is a regular stratification.

(This actually shows that if all strata are open in their closures, the frontier condition

implies regularity.)

Remarks:

1. Consider the relation

Mσ ≤ Mσ′

⇔ Mσ ∩Mσ′

6= ∅ .

For any stratification, this relation is reflexive and transitive, i.e., a quasi-ordering (the

’natural quasi-ordering’ of the stratification). If the stratification is regular, the relation

is also antisymmetric, hence a partial ordering. As for the stratification of M by orbit

types, (30) implies that the natural partial ordering of the strata is just inverse to that of

the corresponding orbit types.

2. Instead of using Sobolev techniques one can also stick to smooth connection forms

and gauge transformations. Then one obtains essentially analogous results about the

stratification of the corresponding gauge orbit space where, roughly speaking, one has to

replace ’Hilbert manifold’ and ’Hilbert Lie group’ by ’tame Fréchet manifold’ and ’tame

Fréchet Lie group’, see [1, 2].
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5. L2-Riemannian structure on strata

The L2-metric γ0 on C induces a weak Riemannian metric on each stratum Mσ. This

was discussed for the case of the principal stratum in [11, 71] and for the general case

in [12]. The basic idea consists in restricting the tangent bundle splitting (12) to strata.

This yields a smooth connection in each bundle which allows to lift tangent vectors, thus

projecting γ0 to a metric on each stratum.

5.1. A natural connection

By restriction, the distribution V, made up by the tangent spaces of the orbits, induces

a distribution Vσ on Cσ. Contrary to V, Vσ is smooth and locally trivial, because

Vσ = ker(πσ
∗) and πσ is a smooth submersion. Let Hσ denote the normal distribution

associated to Vσ w.r.t. the L2-metric γ0 . By construction,

Hσ := H ∩ TCσ .

Due to (12) and Vσ ⊆ TCσ ,

TCσ = Vσ ⊕ Hσ , (39)

where the sum is orthogonal w.r.t. γ0. Moreover, Hσ is G-equivariant,

Hσ
A(g) = (Hσ

A)(g) .

We draw the attention of the reader to the fact that we had already introduced the

notation Hσ
A for the subspace of HA consisting of elements invariant under GA, see (32).

This notation suggests that Hσ
A is in fact the fibre at A of the distribution Hσ. To see

that this holds indeed, recall that HA = TASA,ε. Hence, the fibre of Hσ is

TASA,ε ∩ TAC
σ = TAS

σ
A,ε .

According to (36), the r.h.s. is given by Hσ
A.

In the remaining part of this subsection we shall prove that the distribution Hσ is

smooth and locally trivial (viewed as a subbundle of TCσ). Note that, due to weakness

of γ0, this is not obvious from smoothness and local triviality of Vσ. It follows then that

Hσ is a smooth connection in the G-bundle πσ : Cσ → Mσ.

Smoothness of Hσ would follow from smoothness of either one of the corresponding

γ0-orthogonal projectors h|TCσ or v|TCσ which, in turn, would follow from smoothness of

the restrictions of h or v, respectively, to TC|Cσ . Recall from (23) that the restriction of

v is given by the map

Cσ → B(T ) , A 7→ ∇AGA∇
∗
A .
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This map decomposes as

Cσ diag
−→ Cσ×Cσ×Cσ ∇·×G·×∇∗

·−→ B(W k+1,W k)×B(W k−1,W k+1)×B(W k,W k−1)
comp.
−→ B(W k) .

Since diagonal embedding, ∇·, ∇
∗
· and composition of bounded operators are continuous

(multi-) linear maps, it suffices to prove smoothness of the map

Cσ → B(W k−1,W k+1) , A 7→ GA . (40)

Pulling it back with a local trivialization χσ
A0,ε, A0 ∈ Cσ, see (35), we obtain a map

Sσ
A0,ε × G/GA0 → B(W k−1,W k+1) , (A, [g]) 7→ GA(g) ,

which is well defined, because GA = GA0 , ∀A ∈ Sσ
A0,ε. Due to (24), this map is smooth

along G/GA0 . Thus, what we actually have to show is that the restrictions of the map

(40) to the partial slices Sσ
A0,ε, A0 ∈ Cσ, are smooth. For that purpose, recall that GA is

constructed from the (bounded) inverse of the operator

∆̃A : ker(∆A)⊥0 → im (∆A) (41)

induced by ∆A. Due to GA = GA0 , equation (15) and the decomposition theorem, we have

ker(∆A) = ker(∆A0) , im (∆A) = im (∆A0) . (42)

Hence, (41) reads

∆̃A : ker(∆A0)
⊥0 → im (∆A0) , ∀A ∈ Sσ

A0,ε .

Thus, the map under consideration decomposes into

Sσ
A0,ε

∆̃·−→ Inv
(
ker(∆A0)

⊥0 , im (∆A0)
) inv
−→ Inv

(
im (∆A0), ker(∆A0)

⊥0
)
,

followed by prolongation to a bounded operator W k−1 → W k+1. Here Inv(·, ·) ⊆ B(·, ·)

denotes the open subset of invertible bounded operators, whereas ’inv’ stands for the

inversion map, which is smooth. Since the first step factorizes into continuous linear

maps and composition of bounded operators, it is smooth, too.

This concludes the proof of smoothness of the projectors v|TCσ and h|TCσ and, hence,

of the distribution Hσ.

Next, let us construct local trivializations of Hσ. To this end, for A0 ∈ Cσ, consider

the distribution Dσ
A0,ε on Sσ

A0,ε ×G/GA0 , made up by the subspaces tangent to Sσ
A0,ε. Due

to (36), it is trivial. We claim that the map

Dσ
A0,ε → T(Sσ

A0,ε × G/GA0)
(χσ

A0,ε)∗
→ TUσ

π(A0),ε
h
→ Hσ|Uσ

A0,ε
(43)
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is a smooth vector bundle isomorphism and, thus, provides a local trivialization of Hσ.

To see this, note that (χσ
A0,ε)∗ maps Dσ

A0,ε isomorphically on the equivariant distribution

⋃

[g]∈G/GA0

TSσ

A
(g)
0 ,ε

.

Hence, due to equivariance of Hσ and h, it suffices to show that the map

TSσ
A0,ε

h
→ Hσ|Sσ

A0,ε
(44)

is a smooth vector bundle isomorphism. We shall construct a smooth inverse.

Recall that SA0,ε is transversal to any orbit it meets. Hence,

HA0 ∩ VA = ker(∇∗
A0

) ∩ im (∇A) = {0} , ∀A ∈ Sσ
A0,ε .

Then ∆A0A := ∇∗
A0
∇A has kernel ker(∇A) = ker(∆A) and image im (∇∗

A0
) = im (∆A0).

In particular, for any element A of the partial slice Sσ
A0,ε, ker(∆A0A) = ker(∆A0). Thus,

we can construct a partial inverse GA0A similar to GA0 and GA. By construction,

GA0A∆A0A = GA0∆A0 = GA∆A , ∆A0AGA0A = ∆A0GA0 = ∆AGA . (45)

Define hA0A := idT −∇AGA0A∇
∗
A. Using (22) and (45), one can check that

hA0AhA = hA0hA0A = hA0A , hA0AhA0 = hA0 , hAhA0A = hA , (46)

for any A ∈ Sσ
A0,ε. It follows that hA0A maps HA to HA0 . Since, due to (6),

h
A

(g)
0 A(g) = Ad(g−1) hA0A Ad(g) ,

hA0A maps Hσ
A onto Hσ

A0
. Formulae (46) imply

hA0AhA|H
σ
A0

= idHσ
A0
, hAhA0A|H

σ
A = idHσ

A
, ∀A ∈ Sσ

A0A .

Since the map Sσ
A0A → B(T ), A 7→ hA0A, is smooth, which can be shown in a similar way

as for the map A 7→ hA, it provides the desired inverse of (44), thus proving that (43) is

a local trivialization of Hσ.

We remark that the operators hA0A and vA0A := ∇AGA0A∇
∗
A0

, where A ∈ Sσ
A0A, A0 ∈

Cσ, are the projectors associated to the (not necessarily L2-orthogonal) decomposition

T = VA ⊕ HA0 .

This can be checked using (22) again.

Finally, we note that, with the above connection, there is associated an equivariant

differential form with values in LG , given by

ΩA(A,X) := GA∇
∗
AX , (47)
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for all (A,X) ∈ C × T = TC . For the principal stratum Mp , we have

ΩA(A,∇Aξ) = ξ , ∀ξ ∈ LG , (48)

showing that Ω is an ordinary connection form in the principal fibre bundle over Mp with

structure group G factorized by its center. For the other strata, however, ΩA maps the

Killing field generated by ξ to the projection of ξ onto the L2l-orthogonal complement of

LGA in LG . We further comment on this below.

5.2. The metric

The natural connection Hσ and the Riemannian metric γ0 induce a Riemannian metric

γ0,σ on Mσ as follows. Due to the open mapping theorem, restriction of πσ
∗ to a fibre Hσ

A,

A ∈ Cσ, induces a Banach space isomorphism onto Tπ(A)M
σ. This allows to lift tangent

vectors at x ∈ Mσ to horizontal tangent vectors at A ∈ π−1(x) and evaluate their scalar

product w.r.t. γ0. Due to equivariance of Hσ and invariance of γ0, the result does not

depend on the choice of the representative A. Due to smoothness of Hσ, the Riemannian

metric γ0,σ on Mσ so constructed is smooth.

Let us determine the local representatives of γ0,σ w.r.t. the charts (πσ
A0,ε)

−1, A0 ∈ Cσ,

see (37). Let A ∈ Sσ
A0,ε. For tangent vectors (A,Xi) ∈ TAS

σ
A0,ε = Sσ

A0,ε × Hσ
A0

, we have

(πσ
A0,ε)

∗γ0,σ((A,X1), (A,X2)) = γ0,σ
(
(πσ

A0,ε)∗(A,X1), (π
σ
A0,ε)∗(A,X2)

)
.

Horizontal lift of (πσ
A0,ε)∗(A,Xi) to A yields (A,hAXi). Hence,

(πσ
A0,ε)

∗γ0,σ((A,X1), (A,X2)) = (X1,hAX2)0 . (49)

where we have used h∗
A = hA and h2

A = hA. In this formula, we can replace hA by hA0hA.

Since the latter maps Hσ
A0

to itself, the operator which represents the scalar product (49)

on Hσ
A0

is

hA0hA|Hσ
A0
.

Thus, w.r.t. the charts (πσ
A0,ε)

−1, γ0,σ is given by the smooth map

Sσ
A0,ε → B(Hσ

A0
) , A 7→ hA0hA|Hσ

A0
.

Using (46), one can check that the inverse of hA0hA|Hσ
A0

is given by hA0Ah∗
A0A. In

particular, hσ
A0

hσ
A|Hσ

A0
is indeed a Banach space isomorphism.

Remarks: 1. It can be easily seen that the G-invariant L2-metric γ0 on the bundle space

Cσ is uniquely characterized by the triple (γ0,σ,Ω, (·, ·)0) , where (·, ·)0 denotes the L2-

scalar product on LG . This is a structure similar to that in Kaluza-Klein theory, where

G-invariant metrics η on a G-bundle Q with fibre G/H over space time M are in 1-1

correspondence with triples (ηM , ω, 〈·, ·〉) . Here ηM is a metric on M , ω is a connection
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form in the principal bundle P with structure group N/H associated with Q and 〈·, ·〉

is a Ad(G)- invariant scalar product on the Lie algebra of G . Moreover, N denotes the

normalizer of H in G . According to the remark at the end of Subsection 3.3, in our case

it is unclear whether the normalizer of a given stabilizer GA in G is a Lie subgroup. Thus,

we cannot construct the above associated principal bundle and give an interpretation of

Ω as a connection form in this bundle.

2. In a similar way one can project W k-metrics, like γk, see (4), or ηk, see (5), to metrics

on the strata. To our knowledge this has not been investigated yet, see, however, [42] for

results on the restriction of η2 to some instanton spaces.

5.3. Curvature

The same tedious but straightforward computation as in the case of the principal stratum

[11] yields for the local representative of the Riemannian curvature tensor

R : Sσ
A0,ε → B(Hσ

A0
⊗ Hσ

A0
⊗ Hσ

A0
,Hσ

A0
) ,

RA(X, Y )Z = hσ
A0

(−2KZGAK∗
XY − KY GAK∗

XZ + KXGAK∗
YZ) , (50)

where X, Y, Z ∈ Hσ
A0

, A ∈ Sσ
A0,ε and KX : W k+1(AdP ) → W k(T∗M ⊗ AdP ) denotes

taking the commutator with X and K∗
X : W k(T∗M ⊗ AdP ) → W k(AdP ) its formal

adjoint.

From (50) one obtains for the local representative of the sectional curvature R of a

2-plane P ⊆ Hσ
A0

RA(P) = 3(K∗
XY,GAK∗

XY )0 ,

where X, Y ∈ Hσ
A0

are orthonormal vectors spanning P. We claim that the sectional

curvature is nonnegative, as in the case of the principal stratum [11, 71]. To see this,

denote ξ = K∗
XY . Since ξ ∈ W k−1(AdP ), one can decompose it according to the

decomposition theorem ξ = ξim + ξker . By construction of GA, ξim = ∆AGAξ and

im (GA) ⊥0 ker(∆A). It follows

(ξ,GAξ)0 = (ξim ,GAξ)0 = (∆AGAξ,GAξ)0 = (∇AGAξ,∇AGAξ)0 .

5.4. Formal volume element

For the case of the principal stratum Mp, a formal expression for the volume element of

the metric γ0,p was derived in [10]:

det
(
hA0hA|HA0

)1/2
=

det(∆A0A)

det(∆A0)
1/2 det(∆A)1/2

, A ∈ Sp
A0,ε, A0 ∈ Cp , (51)

(recall that H
p
A0

= HA0). The function A 7→ det(∆A0A) is known as the Faddeev-Popov

determinant in the background potential A0. It follows that the functional integral

derived by the Faddeev-Popov procedure [30], can be geometrically interpreted as the
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formal integral defined by the natural L2-Riemannian structure on Mp [10]. Schrödinger

quantum mechanics on the gauge orbit space has been discussed in this context, see e.g.

[39] and references therein.

It is easy to see that (51) extends to the other strata. Namely, for A0 ∈ Cσ and

A ∈ Sσ
A0,ε we have seen that ∆A, ∆A0 , and ∆A0A have common kernel ker(∆A0) and

image im (∆A0). By defining their determinant as that of the restricted operators

ker(∆A0)
⊥0 → im (∆A0)

(i.e., by ’removing zero modes’), one can establish (51) by essentially the same proof as

in the case of the principal stratum.

In particular, one can use (51) to formally define an integral for each stratum.

However, as for the physical interpretation, the mere sum of such integrals would certainly

not be a reasonable extension of the Faddeev-Popov procedure from the principal stratum

to the whole orbit space, because it does not take into account any ’interaction’ between

strata.

5.5. Geodesics

In [12], the following was proved.

Theorem 5.1. Let A ∈ Cσ and X ∈ Hσ
A. Let I denote the connected component of 0 in

{t ∈ R : A+ tX ∈ Cσ}. Then I is non-empty, open, and

I → Mσ , t 7→ πσ(A+ tX) ,

is a geodesic in Mσ. Conversely, any geodesic in Mσ is of this form.

Note that

∇∗
A+tXX = ∇∗

AX = 0 , ∀A ∈ C , X ∈ Hσ
A , t ∈ R , (52)

so that the straight line A+ tX is perpendicular to any orbit it meets. Thus, the theorem

says that the geodesics in Mσ are given by projections of segments of straight lines inside

Cσ which are perpendicular to orbits.

Note also that the theorem, in particular, shows that the charts (πσ
A0,ε)

−1 provide

normal coordinates.

In [12], the above characterization of orbits is used to prove that the principal stratum,

in general, is not geodesically complete. In fact, the argument given there can be extended

to prove

Theorem 5.2. Mσ is geodesically complete if and only if there does not exist σ′ such

that σ < σ′.
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Indeed, for A ∈ Cσ and X ∈ Hσ
A, we have GA+tX ⊇ GA ∩ GX = GA . Therefore,

A+ tX ∈ C≤σ , ∀t ∈ R . (53)

In particular, if there is no σ′ with σ < σ′, the geodesic associated to A and X is defined

for all values t ∈ R.

Now assume that σ < σ′ for some σ′. Choose x′ ∈ Mσ′

and a tube Ux′,ε about the

orbit π−1(x′). Since Ux′,ε is a neighbourhood of π−1(x′) in C, the denseness properties (29)

imply Ux′,ε ∩ Cσ 6= ∅ . Since Ux′,ε =
⋃

A′∈π−1(x′) S
σ′

A′,ε one finds A′ such that Sσ′

A′,ε ∩ Cσ 6= ∅.

Choose A from the intersection and let X ∈ T such that A′ = A + X. Since X ∈ Hσ′

A′ ,

(52) implies that ∇∗
AX = 0. Since A ∈ Sσ′

A′,ε, GA ⊆ GA′ . It follows that X ∈ Hσ
A. Thus, A

and X define a geodesic in Mσ that cannot be prolonged to values t ≥ 1.

The following theorem was stated for the principal stratum in [12].

Theorem 5.3. Let A ∈ Cσ, X ∈ Hσ
A. The set of values t ∈ R for which A + tX /∈ Cσ is

discrete.

To see this, denote C(t) = A+ tX. According to (53), C−1(Cσ) is open in R, because

Cσ is open in C≤σ. Hence, R \ C−1(Cσ) is closed in R.

Let t0 ∈ R \ C−1(Cσ). According to (52), X ∈ ker(∇∗
C(t0)), so that the slice theorem

implies C(t) = C(t0)+(t−t0)X ∈ SC(t0),ε for t close to t0. If t0 was an accumulation point

of R \C−1(Cσ), there would exist t1 6= t0 such that C(t1) ∈ SC(t0),ε ∩ Cσ′

for some σ′ > σ.

By the properties of the slice, GC(t1) ⊆ GC(t0). Since C(t1) = C(t0) + (t1 − t0)X, then

GX ⊇ GC(t1). Writing A = C(t1) − t1X one sees that then GA ⊆ GC(t1) (contradiction).

Hence, R \ C−1(Cσ) consists of isolated points. Due to closedness, it is then discrete.

6. Classification of gauge orbit types for G = SU(n)

Until now, complete classification results for the set of orbit types are known only for

gauge group SU(n) and base manifolds of dimension up to 4 [65, 66], see also [67] for the

discussion of a coarser stratification. In the following two sections these results will be

reviewed. According to the reduction theorem, to determine the set of orbit types one

has to work out the following programme:

1. Classification of Howe subgroups of SU(n) up to conjugacy,

2. Classification of Howe subbundles of P up to isomorphy,

3. Specification of Howe subbundles which are holonomy-induced,

4. Factorization by SU(n)-action,

5. Determination of the natural partial ordering of Howe subbundles.

6.1. Howe subgroups of SU(n)

General references for the determination of Howe subgroups of classical Lie groups are

[62, 68], see also [64] for the case of complex semisimple Lie algebras. For SU(n), however,
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it is not necessary to apply the general theory, because one can show, using the double

commutant theorem, that the Howe subgroups of SU(n) are in 1-1 correspondence to

unital ∗-subalgebras of Mn(C), the algebra of complex n × n matrices. The relation is

given by intersecting the subalgebras with SU(n).

The unital ∗-subalgebras of Mn(C) can be described as follows. Let K(n) denote the

set of pairs J = (k,m) of sequences k = (k1, . . . , kr), m = (m1, . . . , mr), r = 1, . . . , n,

consisting of positive integers such that

k · m =

r∑

i=1

kimi = n . (54)

Any J ∈ K(n) defines a decomposition

C
n =

r⊕

i=1

C
ki ⊗ C

mi (55)

and an embedding
r∏

i=1

Mki
(C) → Mn(C) , (D1, . . . , Dr) 7→

r⊕

i=1

Di ⊗ 1mi
. (56)

We denote the image of this embedding by MJ (C), its intersection with U(n) by U(J) and

its intersection with SU(n) by SU(J). By construction, MJ(C) is a unital ∗-subalgebra

of Mn(C). Conversely, it is not hard to show that any unital ∗-subalgebra of Mn(C) is

conjugate to MJ(C) for some J ∈ K(n). Hence, up to conjugacy, the Howe subgroups of

SU(n) are given by the subgroups SU(J), J ∈ K(n). Finally, it is evident that SU(J) and

SU(J ′) are conjugate iff J ′ can be obtained from J by a simultaneous permutation of k

and m.

Remark: U(J) is the image of the restriction of (56) to U(k1)×· · ·×U(kr). If we identify

Cki ⊗ Cmi ∼= Ckimi , (c1, . . . , cki
) ⊗ (d1, . . . , dmi

) 7→ (c1d1, . . . , cki
d1, . . . , c1dmi

, . . . , cki
dmi

),

the elements of U(J) are given by matrices



D̃1 0 · · · 0

0 D̃2 · · · 0
...

...
. . .

...

0 0 · · · D̃r


 , D̃i =




Di 0 · · · 0

0 Di · · · 0
...

...
. . .

...

0 0 · · · Di


 ,

where Di ∈ U(ki) and D̃i has dimension mi. Then SU(J) consists of all such matrices

which have determinant 1.

For later purposes, we introduce the following notation:

jJ : SU(J) −→ U(J) (embedding),

iJ : U(J) −→ U(n) (embedding),

prM
J,i : MJ(C) −→ Mki

(C) (projection onto the ith factor),

prU
J,i : U(J) −→ U(ki) (projection onto the ith factor).
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Let g denote the greatest common divisor of m and let m̃ = (m̃1, . . . , m̃r) be defined by

mi = gm̃i , ∀i. For any D ∈ U(J),

detU(n)(D) =
r∏

i=1

[
detU(ki)

(
prU

J,i(D)
)]mi

.

We can extract the g-th root of the determinant by defining the Lie group homomorphism

λU
J : U(J) −→ U(1) , D 7→

r∏

i=1

[
detU(ki)

(
prU

J,i(D)
)]m̃i

.

Then

detU(n)(D) =
[
λU

J (D)
]g
, ∀D ∈ U(J) .

Since λU
J (SU(J)) = Zg ⊆ U(1), λU

J induces a homomorphism λS
J : SU(J) → Zg. We have

the commutative diagram

SU(J)
jJ−−−→ U(J)

λS
J

y
yλU

J

Zg −−−→
jg

U(1)

(57)

where jg denotes natural embedding.

Below we shall need the low dimensional homotopy groups of SU(J). In dimension

k ≥ 1, they can be derived in a standard way from the corresponding homotopy

groups of U(J) ∼= U(k1) × · · · × U(kr) by means of the exact homotopy sequence of

the SU(J)-bundle detU(n) : U(J) → U(1). In dimension k = 0 we have, by definition,

π0(SU(J)) = SU(J)/SU(J)0, where SU(J)0 denotes the connected component of the

identity of SU(J). One can show SU(J)/SU(J)0
∼= Zg , with the isomorphism being

induced by λS
J , see [65, Lemma 5.2]. Thus,

πk(SU(J)) =





Zg | k = 0

Z⊕(r−1) | k = 1

πk(U(k1)) ⊕ · · · ⊕ πk(U(kr)) | k > 1 .

(58)

6.2. Howe subbundles of SU(n)-bundles

In this subsection, let J ∈ K(n) be arbitrary but fixed. We are going to derive

a classification, up to isomorphy, of principal SU(J)-bundles over M in terms of

appropriately chosen characteristic classes. Recall that we assume dim(M) ≤ 4. Then,

on the level of these classes, we shall obtain a characterization of those SU(J)-bundles

which are reductions of a given SU(n)-bundle P . In the following we use some facts from

bundle theory as well as from algebraic topology. For a brief account, see Appendices A

and B.
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Generally, each isomorphism class of principal SU(J)-bundles over M is in 1-1

correspondence to a homotopy class of maps from M to the classifying space BSU(J)

of SU(J), its so-called classifying map. As usual, we denote the set of all homotopy

classes by [M,BSU(J)]. Due to the potentially complicated structure of the space BSU(J),

[M,BSU(J)] is hardly tractable in full generality. However, we can use three major inputs

from algebraic topology to get control of it under our specific assumption dim(M) ≤ 4.

First, assume that we are able to find a simpler space BSU(J)n and a map fn :

BSU(J) → BSU(J)n such that the homomorphism induced by fn on homotopy groups

is an isomorphism in dimension k < n and surjective in dimension n. Then composition

with fn defines a bijection from [M,BSU(J)] onto [M,BSU(J)n] , see [20, Chapter VII].

We remark that BSU(J)n is called an n-equivalent approximation of BSU(J) and fn is

called an n-equivalence.

Second, algebraic topology provides a method to successively construct n-equivalent

approximations, starting from n = 1: the method of Postnikov tower. It renders BSU(J)n

as an n-stage fibration over a point, where the fibre at stage k is given by the Eilenberg-

MacLane space K(πk(BSU(J)), k). This space is defined as a CW complex, up to

homotopy equivalence, by the property that its only nonvanishing homotopy group is

πk(BSU(J)) in dimension k. Recall that πk(BSU(J)) ∼= πk−1(SU(J)) . For the precise

formulation of the method see Appendix B. For a detailed explanation as well as an

application to standard groups, we refer to [9].

Applying the method of Postnikov tower to BSU(J) up to stage 5 we obtain, see [65,

Theorem 5.4],

BSU(J)5 = K(Zg, 1) ×
r−1∏

j=1

K(Z, 2) ×
r∗∏

j=1

K(Z, 4) , (59)

where r∗ denotes the number of members ki > 1. For the convenience of the reader we

give the proof of (59) in Appendix C. We note that the successive fibrations mentioned

above turn out to be trivial here, i.e., they are just direct products. As a consequence,

we have a bijection

[M,BSU(J)] → [M,K(Zg, 1)] ×
r−1∏

i=1

[M,K(Z, 2)] ×
r∗∏

i=1

[M,K(Z, 4)]

f 7→
(
pr1 ◦ f5 ◦ f, {pr2i ◦ f5 ◦ f}

r−1
i=1 , {pr4i ◦ f5 ◦ f}

r∗

i=1

)
, (60)

where f5 : BSU(J) → BSU(J)5 is a 5-equivalence and the prij are the projections from

BSU(J)5 onto its factors.

To treat the factors on the rhs. we use a third input from algebraic topology. We will

explain it for [M,K(Zg, 1)]. Namely, the theory of Eilenberg-MacLane spaces provides

the following relation between homotopy and cohomology, see Appendix B. There exists
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γ1 ∈ H1(K(Zg, 1),Zg) (the first Zg-valued cohomology group) such that the assignment

[M,K(Zg, 1)] → H1(M,Zg) , pr1 ◦ f5 ◦ f 7→ (pr1 ◦ f5 ◦ f)∗γ1 , (61)

is a bijection. Here (pr1 ◦ f5 ◦ f)∗ denotes the homomorphisms induced in cohomology.

Writing (pr1 ◦ f5 ◦ f)∗γ1 = f ∗(pr1 ◦ f5)
∗γ1, we observe that the bijection (61) is

characterized by the image under f ∗ of the fixed element (pr1 ◦f5)
∗γ1 of H1(BSU(J),Zg).

Thus, if for given maps f, f ′ : M → BSU(J) the induced homomorphisms f ∗, f ′∗ :

H1(BSU(J),Zg) → H1(M,Zg) coincide then the maps pr1 ◦ f5 ◦ f and pr1 ◦ f5 ◦ f ′

are homotopic. Analogously, one finds for k = 2, 4 that if the induced homomorphisms

f ∗, f ′∗ : Hk(BSU(J),Z) → Hk(M,Z) coincide then prki ◦ f5 ◦ f and prki ◦ f5 ◦ f ′ are

homotopic, for all admissible i. Thus, using that (60) is a bijection, we arrive at the

following result: Two maps f, f ′ : M → BSU(J) are homotopic if they induce the

same homomorphisms on the cohomology groups H1(BSU(J),Zg), H
2(BSU(J),Z), and

H4(BSU(J),Z). Thus, to characterize homotopy classes of maps M → BSU(J), as usual,

we have to determine a set of generators for these cohomology groups and and to evaluate

f ∗ on them. In this way, a set of characteristic classes is associated to any element

of [M,BSU(J)], hence to any SU(J)-bundle through its classifying map. This set is

complete in the sense that coincidence of characteristic classes implies isomorphy of the

corresponding bundles.

To construct a set of generators, we use the commutative diagram (57), which on the

level of classifying spaces reads

BSU(J)
BjJ−−−→ BU(J)

BλS
J

y
yBλU

J

BZg −−−→
Bjg

BU(1)

(62)

First, consider the Z-valued cohomology. Recall that the cohomology algebra

H∗(BU(ki),Z) is generated freely over Z by elements γ
(2j)
U(ki)

∈ H2j(BU(ki),Z), j =

1, . . . , ki, see [13]. We denote

γU(ki) = 1 + γ
(2)
U(ki)

+ · · · + γ
(2ki)
U(ki)

. (63)

The generators γ
(2j)
U(ki)

define elements

γ̃
(2j)
J,i =

(
BprU

J,i

)∗
γ

(2j)
U(ki)

, (64)

γ
(2j)
J,i = (BjJ )∗ γ̃

(2j)
J,i (65)

of H2j(BU(J),Z) and H2j(BSU(J),Z), respectively. We denote

γ̃J,i = 1 + γ̃
(2)
J,i + · · ·+ γ̃

(2ki)
J,i , γ̃J = (γ̃J,1, . . . , γ̃J,r) , (66)

γJ,i = 1 + γ
(2)
J,i + · · ·+ γ

(2ki)
J,i , γJ = (γJ,1, . . . , γJ,r) . (67)
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It is a direct consequence of the Künneth Theorem for cohomology that the cohomology

algebra H∗(BU(J),Z) is freely generated over Z by the elements γ̃
(2j)
J,i , j = 1, . . . , ki,

i = 1, . . . , r. Moreover, using that BjJ : BSU(J) → BU(J) is a U(1)-bundle and,

therefore, induces a Gysin sequence one can show that (BjJ )∗ is surjective, see [65, Lemma

5.7]. Thus, the cohomology algebra H∗(BSU(J),Z) is generated over Z by the elements

γ
(2j)
J,i , j = 1, . . . , ki, i = 1, . . . , r. We remark that the generators γ

(2)
J,i of H∗(BSU(J),Z)

are subject to a relation, which is however irrelevant for our purposes, because it follows

from another relation to be derived below.

Next, we have to consider H1(BSU(J),Zg) . We notice the following facts:

(i) The induced homomorphism
(
BλS

J

)∗
: H1(BZg,Zg) → H1(BSU(J),Zg) is an

isomorphism. This follows by virtue of the Hurewicz and universal coefficient theorems

from the obvious fact that λS
J induces an isomorphism of homotopy groups π0(SU(J)) →

π0(Zg).

(ii) From the (long) exact sequence induced by the short exact sequence of coefficient

groups 0 → Z → Z → Zg → 0 one can read off that the associated Bockstein

homomorphism βg : H1 (BZg,Zg) → H2 (BZg,Z) is an isomorphism.

(iii) The surjectivity of BjJ , mentioned above, implies, in particular, surjectivity of

the homomorphism (Bjg)
∗ : H2(BU(1),Z) → H2(BZg,Z) .

It follows that H1(BSU(J),Zg) is generated by the single element

δJ :=
(
BλS

J

)∗
β−1

g (Bjg)
∗ γ

(2)
U(1) . (68)

Finally, the commutative diagram (62) induces a relation between the generators γ
(2)
J,i and

δJ . To formulate it, we introduce the following notation. For any topological space X

and any sequence of nonnegative integers b = (b1, . . . , bs), define a polynomial function

Eb :
s∏

i=1

Heven(X,Z) → Heven(X,Z) , (α1, . . . , αs) 7→ αb1
1 . . . αbs

s . (69)

One can check the following formulae for the components of Eb in degree 2 and 4:

E
(2)
b

(α) =
s∑

i=1

biα
(2)
i , (70)

E
(4)
b

(α) =
s∑

i=1

biα
(4)
i +

s∑

i=1

bi(bi − 1)

2
α

(2)
i α

(2)
i +

s∑

i<j=2

bibjα
(2)
i α

(2)
j . (71)

A straightforward computation, see [65, Lemma 5.12], yields
(
BλU

J

)∗
γ

(2)
U(1) = E

(2)
m̃

(γ̃J) , (72)

Then the commutative diagram (62) implies

E
(2)
m̃

(γJ) = (BjJ )∗E
(2)
m̃

(γ̃J) = (BjJ )∗
(
BλU

J

)∗
γ

(2)
U(1) =

(
BλS

J

)∗
(Bjg)

∗ γ
(2)
U(1) .
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Thus, by definition of δJ , the relation is

E
(2)
m̃

(γJ) = βg(δJ) . (73)

The generators γ
(2j)
J,i , δJ constructed above define the following characteristic classes

for SU(J)-bundles Q over M :

ξJ(Q) := (fQ)∗ δJ .

α
(2j)
J,i (Q) := (fQ)∗ γ

(2j)
J,i , j = 1, . . . , ki , i = 1, . . . , r .

Here fQ denotes the classifying map of Q. We denote αJ,i = 1 + α
(2)
J,i + · · · + α

(2ki)
J,i and

αJ = (αJ,1, . . . , αJ,r). Due to (73), αJ and ξJ are subject to the relation

E
(2)
m̃

(αJ(Q)) = βg (ξJ(Q)) . (74)

By construction, the characteristic classes so defined have the following interpretation

in terms of ordinary characteristic classes of certain bundles naturally associated to Q.

First, by extending the structure group of Q to U(J) we obtain a U(J)-bundle Q̃. Since

U(J) ∼= U(k1) × · · · × U(kr), Q̃ decomposes into a Whitney product of U(ki)-bundles

Q̃i. Formally, Q̃i is given by the associated bundle Q×SU(J) U(ki), where SU(J) acts via

prU
J,i ◦ jJ by left multiplication on U(ki). Hence, its classifying map is BprU

J,i ◦ BjJ ◦ fQ,

see formula (A.3) in Appendix A. Using this, a standard calculation yields

αJ,i(Q) = c(Q̃i) , (75)

where c denotes the total Chern class. Second, factorizing Q by SU(J)0, the connected

component of the identity of SU(J), we obtain a Zg-bundleQ0. It is given by the associated

bundle Q ×SU(J) Zg, where SU(J) acts on Zg via the homomorphism λS
J . Then formula

(A.3) implies that Q0 has classifying map BλS
J ◦ fQ. This allows to calculate

ξJ(Q) = χg(Q0) , (76)

where χg is a (suitably chosen) generating characteristic class for Zg-bundles over M .

We remark that the commutative diagram (57) implies that extension of Q0 to

structure group U(1) and factorization of Q̃ by SU(J)0 yield isomorphic U(1)-bundles.

In this way, the relation (74) expresses itself on the level of the associated bundles.

So far, we have found that the classes αJ and ξJ assign to any SU(J)-bundle Q over

M an element of the set

K(M,J) =

{
(α, ξ) ∈

r∏

i=1

ki∏

j=1

H2j(M,Z) ×H1(M,Zg)
∣∣∣ E(2)

m̃
(α) = βg(ξ)

}
.

We already know that αJ(Q) = αJ(Q′) and ξJ(Q) = ξJ(Q′) imply Q ∼= Q′. Thus, for

K(M,J) to be a classifying set for SU(J)-bundles it remains to prove that for any of its

elements a bundle with the corresponding characteristic classes exists. Thus, let (α, ξ) be

given. There exist
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(i) U(ki)-bundles Q̃i such that c(Q̃i) = αi. Their Whitney product defines a UJ-

bundle Q̃.

(ii) a Zg-bundle Q0 such that χg(Q0) = ξ.

The defining relation of K(M,J) ensures that Q0 is a reduction of the quotient bundle

Q̃/SU(J)0, see [65, Lemma 5.15]. Then the pre-image Q of Q0 in Q̃ is an SU(J)-bundle.

By construction, (75) and (76) hold. Hence, we have αJ(Q) = α and ξJ(Q) = ξ.

We summarize.

Theorem 6.1. Let M be a manifold, dimM ≤ 4, and let J ∈ K(n). Then the

characteristic classes αJ and ξJ define a bijection from isomorphism classes of principal

SU(J)-bundles over M onto K(M,J).

Next, we have to characterize the SU(J)-bundles Q that are reductions of a given

SU(n)-bundle P . Evidently, Q ⊆ P iff P can be obtained from Q by extending the

structure group to SU(n), or iff the extensions of P and Q̃ to structure group U(n)

coincide. A standard calculation yields that the total Chern class of the extension of Q̃

is given by Em(αJ(Q)). Thus, using the notation

K(P, J) = {(α, ξ) ∈ K(M,J) | Em(α) = c(P )} ,

we have

Theorem 6.2. Let P be a principal SU(n)-bundle over a manifold M , dimM ≤ 4, and

let J ∈ K(n). Then the characteristic classes αJ , ξJ define a bijection from isomorphism

classes of reductions of P to the subgroup SU(J) onto K(P, J).

The equation Em(α) = c(P ) actually contains the two equations E
(2)
m (α) = 0 and

E
(4)
m (α) = c2(P ). However, under the assumption (α, ξ) ∈ K(M,J), the first one is

redundant, because due to (70), E
(2)
m (α) = g E

(2)
m̃

(α) = g βg(ξ) = 0. Thus, the relevant

equations are

E
(2)
m̃

(α) = βg(ξ) , (77)

E(4)
m

(α) = c2(P ) . (78)

The set of solutions of (77) yields K(M,J), the set of solutions of both equations (77)

and (78) yields K(P, J).

This concludes the classification of Howe subbundles of P , i.e., step 2 of our

programme. We have found that, up to the principal action of SU(n), the Howe

subbundles are given by triples (J ;α, ξ), where J ∈ K(n) and (α, ξ) ∈ K(P, J). For

further use, let us denote the set of all such triples by K(P ). It may be viewed as the

disjoint union of all K(P, J), J ∈ K(n). Moreover, for given L ∈ K(P ), L = (J ;α, ξ),

let QL denote the corresponding Howe subbundle. That is, QL is the reduction of P to

SU(J) which has characteristic classes αJ(QL) = α and ξJ(QL) = ξ. It is unique up to

isomorphy.
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6.3. Examples

We determine K(P, J) for several specific values of J and for base manifolds M =

S4, S2 × S2,T4, and L3
p × S1. Here L3

p denotes the 3-dimensional lens space which is

defined to be the quotient of the restriction of the natural action of U(1) on the sphere

S3 ⊂ C2 to the subgroup Zp. Note that L3
p is orientable.

Let us derive the respective Bockstein homomorphisms βg : H1(M,Zg) →

H2(M,Z). Since the Abelian group H1(M,Zg) has vanishing free part and since for

products of spheres the integer-valued second cohomology is free Abelian, the Bockstein

homomorphism is trivial here. For M = L3
p × S1, on the other hand, let γ

(1)

L3
p;Zg

and γ
(1)

S1 be

generators ofH1(L3
p,Zg) andH1(S1,Z), respectively. One hasH1(L3

p×S1,Zg) = Z〈p,g〉⊕Zg ,

where 〈p, g〉 denotes the greatest common divisor of p and g. Here the first factor is

generated by γ
(1)
L3

p;Zg
×1S1 and the second one by 1L3

p;Zg
×γ

(1)
S1 . In terms of these generators and

an appropriately chosen generator γ
(2)
L3

p;Z of H2(L3
p,Z) ∼= Zp, the Bockstein homomorphism

is

βg

(
γ

(1)

L3
p;Zg

×1S1

)
=

p

〈p, g〉
γ

(2)

L3
p;Z×1S1 , βg

(
1L3

p;Zg
×γ

(1)

S1

)
= 0 . (79)

Now we discuss specific J . We write them in the form J = (k1, . . . , kr|m1, . . . , mr).

Example 1. J = (1|n) ∈ K(n). Here SU(J) = Zn, the center of SU(n). Moreover,

g = n. Variables are ξ ∈ H1(M,Zn) and α = 1 + α(2), α(2) ∈ H2(M,Z). The system of

equations (77) and (78) reads

α(2) = βn(ξ) (80)

n(n− 1)

2
α(2)α(2) = c2(P ) . (81)

Equation (80) yields nα(2) = 0, so that equation (81) requires c2(P ) = 0. Thus, K(P, J)

is nonempty iff P is trivial and is then parametrized by ξ. This coincides with what is

known about Zn-reductions of SU(n)-bundles.

Example 2. J = (n|1) ∈ K(n). Here SU(J) = SU(n), the whole group. Due to g = 1,

the only variable is α = 1 + α(2) + α(4). Equations (77) and (78) read α(2) = 0 and

α(4) = c2(P ) , respectively. Thus, K(P, J) consists of P itself.

Example 3. J = (1, 1|2, 2) ∈ K(4). Here g = 2. One can check that SU(J) has connected

components {diag(z, z, z−1, z−1)|z ∈ U(1)} and {diag(z, z,−z−1,−z−1)|z ∈ U(1)} . It is

therefore isomorphic to U(1)×Z2. Variables are ξ ∈ H1(M,Z2) and αi = 1+α
(2)
i , i = 1, 2.

The system of equations under consideration is

α
(2)
1 + α

(2)
2 = β2(ξ) (82)
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(
α

(2)
1

)2

+
(
α

(2)
2

)2

+ 4α
(2)
1 α

(2)
2 = c2(P ) . (83)

We solve equation (82) w.r.t. α
(2)
2 and insert it into equation (83). Since, due to

compactness and orientability of M , H4(M,Z) is torsion-free, products including β2(ξ)

vanish. Thus, we obtain that ξ can be chosen arbitrarily, whereas α
(2)
1 must solve the

equation

− 2
(
α

(2)
1

)2

= c2(P ) . (84)

Let us discuss the result for the different base manifolds.

(i) M = S4: Due to H1(M,Z2) = 0 and H2(M,Z) = 0, K(P, J) is nonempty iff

c2(P ) = 0, in which case it contains the (necessarily trivial) U(1) × Z2-bundle over S4.

(ii) M = L3
p×S1: We have H1(M,Z2) ∼= Z〈2,p〉⊕Z2 andH2(M,Z) ∼= Zp. In particular,

(α
(2)
1 )2 = 0. Hence, if c2(P ) = 0, K(P, J) = (Z〈2,p〉 ⊕ Z2) × Zp. Otherwise, K(P, J) = ∅.

(iii) M = S2 × S2: We have H1(M,Z2) = 0 and H2(M,Z) ∼= Z ⊕ Z. The latter is

generated by γ
(2)

S2 ×1S2 and 1S2×γ
(2)

S2 , where γ
(2)

S2 is a generator of H2(S2,Z). Then H4(M,Z)

is generated by γ
(2)
S2 ×γ

(2)
S2 . Writing

α
(2)
1 = a γ

(2)

S2 ×1S2 + b 1S2×γ
(2)

S2 (85)

with a, b ∈ Z, equation (84) becomes

− 4ab γ
(2)

S2 ×γ
(2)

S2 = c2(P ) . (86)

If c2(P ) = 0, there are two series of solutions: a = 0 and b ∈ Z as well as a ∈ Z and

b = 0. Here K(P, J) is infinite. If c2(P ) = 4l γ
(2)

S2 ×γ
(2)

S2 , l 6= 0, then a = q and b = −l/q,

where q runs through the (positive and negative) divisors of l. Hence, in this case, the

cardinality of K(P, J) is twice the number of divisors of l. If c2(P ) is not divisible by 4

then K(P, J) = ∅.

(iv) M = T4: Here H1(M,Z2) ∼= Z
⊕4
2 and H2(M,Z) ∼= Z⊕6. The latter is generated

by elements γ
(2)

T4;ij, 1 ≤ i < j ≤ 4, where γ
(2)

T4;12 = γ
(1)

S1 × γ
(1)

S1 × 1S1 × 1S1 , γ
(2)

T4;13 =

γ
(1)
S1 ×1S1×γ

(1)
S1 ×1S1 etc. H4(M,Z) is generated by γ

(4)
T4 = γ

(1)
S1 ×γ

(1)
S1 ×γ

(1)
S1 ×γ

(1)
S1 . One can

check γ
(2)

T4;ijγ
(2)

T4;kl = ǫijkl γ
(4)

T4 , where ǫijkl denotes the totally antisymmetric tensor in 4

dimensions. Writing α
(2)
1 =

∑
1≤i<j≤4 aijγ

(2)

T4;ij , equation (84) becomes

−4 (a12a34 − a13a24 + a14a23) γ
(4)

T4 = c2(P ) .

Hence, again K(P, J) 6= ∅ iff c2(P ) is divisible by 4, in which case now it always has

infinitely many elements.

Example 4. J = (1, 1|2, 3) ∈ K(5). The subgroup SU(J) of SU(5) consists of matri-

ces of the form diag(z1, z1, z2, z2, z2), where z1, z2 ∈ U(1) such that z2
1z

3
2 = 1. We can
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parametrize z1 = z3, z2 = z−2, z ∈ U(1). Hence, SU(J) is isomorphic to U(1). Variables

are αi = 1 + α
(2)
i , i = 1, 2. The equations to be solved read

2α
(2)
1 + 3α

(2)
2 = 0 , (87)

(
α

(2)
1

)2

+ 3
(
α

(2)
2

)2

+ 6α
(2)
1 α

(2)
2 = c2(P ) . (88)

Equation (87) can be parametrized by α
(2)
1 = 3η, α

(2)
2 = −2η, where η ∈ H2(M,Z). Then

(88) becomes −15η2 = c2(P ). The discussion of this equation is analogous to that of equa-

tion (84) above. For example, in case M = S2×S2, K(P, J) 6= ∅ iff c2(P ) is divisible by 15.

Example 5. J = (2, 3|1, 1) ∈ K(5). Here SU(J) ∼= S[U(2)×U(3)]. This is the sym-

metry group of the standard model. In the grand unified SU(5)-model it is the subgroup

to which SU(5) is broken by the heavy Higgs field. Moreover, it is the centralizer of the

subgroup discussed in Example 4.

Since g = 1, variables are αi = 1 +α
(2)
i +α

(4)
i , i = 1, 2. Equations (77) and (78) read

α
(2)
1 + α

(2)
2 = 0 , (89)

α
(4)
1 + α

(4)
2 + α

(2)
1 α

(2)
2 = c2(P ) . (90)

Using (89) to replace α
(2)
2 in (90) we obtain for the latter α

(4)
2 = c2(P ) − α

(4)
1 +

(
α

(2)
1

)2

.

Thus, K(P, J) can be parametrized by α1 (or α2), i.e., by the Chern class of one of the

factors U(2) or U(3). This is well known [50].

Example 6. J = (2|2). We have g = 2. The subgroup SU(J) of SU(4) consists of

matrices D ⊕ D, where D ∈ U(2) such that (detD)2 = 1. Hence, it has connected

components {D ⊕ D|D ∈ SU(2)} and {(iD) ⊕ (iD)|D ∈ SU(2)}. One can check that

SU(J) ∼= (SU(2) × Z4)/Z2. Variables are ξ ∈ H1(M,Z2) and α = 1 + α(2) + α(4). The

equations under consideration are

α(2) = β2(ξ) , (91)
(
α(2)
)2

+ 2α(4) = c2(P ) . (92)

Equation (91) fixes α(2) in terms of ξ. For example, in case M = L3
p × S1, by expanding

ξ = ξL γ
(1)
L3

p;Z2
×1S1 + ξS 1L3

p;Z2
×γ

(1)
S1 , equations (79) and (91) imply

α(2) =

{
qξL γ

(2)
L3

p;Z×1S1 | p = 2q

0 | p = 2q + 1.

For general M , due to (91), equation (92) becomes 2α(4) = c2(P ). Thus, K(P, J) is

nonempty iff c2(P ) is even and is then parametrized by ξ ∈ H1(M,Z2).
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6.4. Holonomy-induced Howe subbundles and factorization by SU(n)-action

In this subsection, we will accomplish steps 3 and 4 of our programme.

In step 3, we have to specify those reductions Q ⊆ P to SU(J), J ∈ K(n), which are

holonomy-induced, i.e., which possess a connected reduction to some subgroup H such

that C2
SU(n)(H) = SU(J). Let Q be given and consider a connected component of Q.

This is a connected reduction of Q to some subgroup H ⊆ SU(J) which has the same

dimension as SU(J). Then so has the Howe subgroup H̃ := C2
SU(n)(H) generated by H ,

because H ⊆ H̃ ⊆ SU(J). Then the Howe subgroups C2
U(n)(H̃) and C2

U(n)(SU(J)) of U(n)

have the same dimension and obey C2
U(n)(H̃) ⊆ C2

U(n)(SU(J)). Since they are closed and

connected (recall that they are conjugate to U(J) for some J ∈ K(n)), they coincide.

It follows H̃ = SU(J). We conclude that any Howe subbundle of an SU(n)-bundle is

holonomy-induced, so that the condition is redundant here.

We remark that, in general, Howe subbundles exist which are not holonomy-induced.

A simple example is provided by the Howe subgroup H = {13, diag(−1,−1, 1)} of SO(3).

While the reduction Q = M × H ⊆ M × SO(3) is a Howe subbundle, any connected

reduction of Q has the center {13} as its structure group, hence is a Howe subbundle

itself. Thus, Q is not holonomy-induced.

In step 4, we have to factorize the set of Howe subbundles by the principal action of

SU(n). That is, we have to identify elements L,L′ of K(P ) for which D ∈ SU(n) exists

such that

QL′
∼= QL ·D . (93)

First, assume that such D exists. Then SU(J ′) = D−1 SU(J)D, hence MJ ′(C) =

D−1 MJ(C)D. It follows that r = r′ and there exists a permutation σ such that

k′ = σk , m′ = σm . (94)

A straightforward calculation, see [65, Lemma 7.1], yields

αJ ′(QL ·D) = σα , ξJ ′(QL ·D) = ξ . (95)

Hence, (93) implies

α′ = σα , ξ′ = ξ . (96)

Conversely, assume that r = r′ and that a permutation exists such that (94) and (96)

hold. Due to (94) one can construct D ∈ SU(n) such that conjugation of MJ(C) by D−1

yields MJ ′(C), where the factors are permuted according to σ, see [65, Lemma 4.2]. Then

(95) and (96) imply αJ ′(QL ·D) = α′ and ξJ ′(QL ·D) = ξ′. Hence, (93) holds. Note that

(93) is actually a special case of a more general situation discussed in Subsection 7.1.

Thus, on the level of K(P ), factorization by the principal SU(n)-action on Howe

subbundles amounts to the identification of elements which can be transformed to each

other by a simultaneous permutation of k, m, and α. The set of equivalence classes so

obtained will be denoted by K̂(P ) and its elements will be denoted by [L].
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6.5. Summary

Before we proceed, we summarize the results of this section. The set of Howe subbundles

of P modulo isomorphy and the principal SU(n)-action, which classifies the orbit types

of the action of G on C by virtue of the reduction theorem, can be described as follows.

Its elements are labelled by symbols [J ;α, ξ], where

(i) J = ((k1, . . . , kr), (m1, . . . , mr)) is a pair of sequences of positive integers obeying∑r
i=1 kimi = n ,

(ii) α = (α1, . . . , αr) is a sequence of cohomology elements αi ∈ H∗(M,Z), which are

admissible values of the total Chern class of U(ki)-bundles over M ,

(iii) ξ ∈ H1(M,Zg) with g being the greatest common divisor of (m1, . . . , mr).

The cohomology elements αi and ξ are subject to the relations
r∑

i=1

mi

g
α

(2)
i = βg(ξ) ,

αm1
1 . . . αmr

r = c(P ) ,

where βg : H1(M,Zg) → H2(M,Z) is the connecting homomorphism associated to the

short exact sequence 0 → Z → Z → Zg → 0 of coefficient groups in cohomology. For any

permutation σ of r elements, the symbols
[(

(k1, . . . , kr), (m1, . . . , mr)
)
; (α1, . . . , αr), ξ

]
,

[(
(kσ(1), . . . , kσ(r)), (mσ(1), . . . , mσ(r))

)
; (ασ(1), . . . , ασ(r)), ξ

]

have to be identified.

7. Partial ordering of gauge orbit types for G = SU(n)

7.1. Characterization of the partial ordering relation

In this subsection we are going to characterize the natural partial ordering of Howe

subbundles in terms of the classifying set K̂(P ). Thus, let L,L′ ∈ K(P ). By definition,

[L] ≤ [L′] iff D ∈ SU(n) exists such that QL ·D ⊆ QL′, where inclusion is understood up

to isomorphy. We say that QL is subconjugate to QL′.

First, we observe thatQL·D ⊆ QL′ impliesD−1 SU(J)D ⊆ SU(J ′), i.e., subconjugacy

of the structure groups. Then also D−1 MJ(C)D ⊆ MJ ′(C). We have an associated

embedding

hM
D : MJ(C) −→ MJ ′(C) , C 7→ D−1CD ,

and, derived from that, embeddings hU
D : U(J) −→ U(J ′) and hS

D : SU(J) −→ SU(J ′).

Since MJ(C) and MJ ′(C) are finite-dimensional unital C∗-algebras, the embedding hM
D

is characterized by a so-called inclusion matrix ∆. This is an (r′ × r)-matrix with
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nonnegative integer entries, defined as follows: ∆i′i is the number of fundamental

irreducible representations contained in the representation

Mki
(C) −→ MJ (C)

hM
D−→ MJ ′(C)

prM
J′,i′

−→ Mk′

i′
(C) .

Here the first map is the canonical embedding to the ith factor of MJ (C). Since the

embedding hM
D is unital,

∑
i ∆i′iki = k′i′, for all i′. Since conjugation of MJ (C) by D−1

preserves the total number of fundamental irreducible representations of the factor Mki
(C)

in Mn(C),
∑

i′ ∆i′im
′
i′ = mi, for all i. Thus, ∆ solves the system of equations

∆k = k′ (97)

m = m′∆ , (98)

where m and m′ are viewed as row vectors. Conversely, assume that a solution ∆ of

(97) and (98) is given. Then the decompositions (55) associated to J and J ′ admit

subdecompositions

C
n =

r⊕

i=1

C
ki ⊗

(
r′⊕

i′=1

C
∆i′i ⊗ C

m′

i′

)
,

C
n =

r′⊕

i′=1

(
r⊕

i=1

C
ki ⊗ C

∆i′i

)
⊗ C

m′

i′ ,

respectively, which differ by a permutation of the factors Cki ⊗ C∆i′i ⊗ C
m′

i′ . From this

permutation, D ∈ SU(n) can be constructed which obeys D−1 MJ(C)D ⊆ MJ ′(C) and

which has inclusion matrix ∆, see [66, Lemma 3.1]. It follows that SU(J) is subconjugate

to SU(J ′), or MJ(C) is subconjugate to MJ ′(C), iff the system of equations (97), (98) has

a solution ∆.

Second, let QD
L denote the extension of QL ·D to structure group SU(J ′). We observe

that QL ·D ⊆ QL′ implies QD
L
∼= QL′ . This provides a relation between the characteristic

classes α, ξ and α′, ξ′. To derive it, we have to compute the characteristic classes of QD
L .

Let us sketch how this can be done. For a detailed computation, purely on the level of

cohomology, we refer to [66, Lemma 3.2].

To compute αJ ′(QD
L ) we may form the extension Q̃D

L of QD
L to structure group U(J ′)

and compute the total Chern class of the Whitney factors. To do so, we use that Q̃D
L

coincides with the extension Q̃D
L of Q̃L ·D to structure group U(J ′). A close look at how

hU
D embeds the factors of U(J) into those of U(J)′ reveals that the i′th Whitney factor of

Q̃D
L contains the Whitney product (Q̃L)

∆i′1
1 × · · · × (Q̃L)

∆i′r
r as a subbundle. Hence, the

total Chern class of this factor is α
∆i′1
1 · · ·α

∆i′r
r . Using the notation

E∆(α) =
(
α∆11

1 · · ·α∆1r
r , . . . , α

∆r′1
1 · · ·α∆r′r

r

)
,
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which is a generalization of (69), we can write

αJ ′(QD
L ) = E∆(α) . (99)

To determine ξJ ′(QD
L ), we can compute the class χg′ of the quotient QD

L /SU(J ′)0.

The latter is given by the associated bundle QL ×SU(J) Zg′ , where SU(J) acts on Zg′ via

the homomorphism λS
J ′ ◦ hS

D. A straightforward computation yields λS
J ′ ◦ hS

D = ̺g′ ◦ λ
S
J ,

where ̺g′ denotes reduction modulo g′. Note that (98) implies that g′ divides g, hence ̺g′

is a well defined homomorphism. Moreover, one can check that the characteristic class of

the mod g′-reduction of a Zg-bundle is given by the mod g′-reduction of the characteristic

class of this bundle. Hence,

ξJ ′(QD
L ) = ̺g′(ξ) . (100)

Thus, QL ·D ⊆ QL′ implies

E∆(α) = α′ (101)

̺g′(ξ) = ξ′ . (102)

Let us introduce the following notation. If (102) holds, let N(L,L′) be the set of solutions

of the combined system of equations (97), (98), (101) in the indeterminate ∆. If (102) does

not hold, let N(L,L′) = ∅. So far, we have found that if QL is subconjugate to QL′ then

N(L,L′) 6= ∅. Now assume that, conversely, N(L,L′) contains an element ∆. We have seen

above that due to (97), (98) there exists D ∈ SU(n), obeying D−1 MJ(C)D ⊆ MJ ′(C),

which has inclusion matrix ∆. Consider QD
L , i.e., the extension ofQL·D to structure group

SU(J ′). Due to (99) and (101), αJ ′(QD
L ) = α′. Due to (100) and (102), ξJ ′(QD

L ) = ξ′. It

follows QD
L
∼= QL′, hence QL · D ⊆ QL′ . Thus, we have shown that QL is subconjugate

to QL′ iff N(L,L′) 6= ∅. Consequently, on the level of K̂(P ), the partial ordering of Howe

subbundles is given by

Theorem 7.1. Let L,L′ ∈ K(P ). Then [L] ≤ [L′] if and only if N(L,L′) 6= ∅.

Example: Let P = M × SU(4). Consider elements L, L′ with J = ((1, 1), (2, 2)) and

J ′ = ((2, 2), (1, 1)), respectively. Recall that SU(J) ∼= U(1) × Z2. The subgroup SU(J ′)

can be parametrized as follows:

SU(J ′) =

{(
zA 0

0 z−1B

)∣∣∣∣∣ z ∈ U(1), A,B ∈ SU(2)

}
.

It is therefore isomorphic to [U(1) × SU(2) × SU(2)] /Z2. To determine N(L,L′), we first

consider equations (97) and (98):

(
∆11 ∆12

∆21 ∆22

)(
1

1

)
=

(
2

2

)
,

(
1 1

) (
∆11 ∆12

∆21 ∆22

)
=

(
2 2

)
.
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The solutions are ∆a =

(
1 1

1 1

)
, ∆b =

(
2 0

0 2

)
, ∆c =

(
0 2

2 0

)
. For α = (α1, α2),

they yield E∆a(α) = (α1α2, α1α2), E∆b(α) = (α2
1, α

2
2), E∆c(α) = (α2

2, α
2
1) . Condition

(102) is trivially satisfied due to g′ = 1. Thus, N(L,L′) 6= ∅, i.e., QL is subconjugate to

QL′ or [L] ≤ [L′], precisely in one of the following cases: (a) α′
1 = α′

2 = α1α2, (b) α′
1 = α2

1,

α′
2 = α2

2, and (c) α′
1 = α2

2, α
′
2 = α2

1.

Remark: Any inclusion matrix can be visualized by a diagram consisting of a series

of upper vertices, labelled by i = 1, . . . , r, and a series of lower vertices, labelled by

i′ = 1, . . . , r′. For each combination of i and i′ the corresponding vertices are connected

by ∆i′i edges. For example, the matrices ∆a, ∆b, and ∆c in the above example give rise

to the following diagrams:

∆a:

q

q

i

i′

q

q

1

1

q

A
A
A
q

2

q

�
�

�
q

2
q

q

∆b:

q

q

i

i′

q

q

1

1

q

q

2

2

∆c:

q

A
A
A

A
A
A

q

i
q

�
�

�

�
�

�
q

i′

q

A
A
A

A
A
A

q

1

2

q

�
�

�

�
�

�
q

2

1

The diagrams associated in this way to the elements of N(J, J ′), J, J ′ ∈ K(n), are special

cases of so-called Bratteli diagrams [18]. The latter have, in general, several stages

picturing the subsequent inclusion matrices associated to an ascending sequence of finite

dimensional von-Neumann algebras A1 ⊆ A2 ⊆ A3 ⊆ · · · . For this reason, we refer to

the diagram associated to ∆ ∈ N(J, J ′) as the Bratteli diagram of ∆. We remark that,

due to equation (97), ∆ cannot have a zero row. Due to (98), it cannot have a zero column

either. Accordingly, each vertex of the Bratteli diagram of ∆ is cut by at least one edge.

Since equations (97), (98), (101) have an obvious reformulation on the level of Bratteli

diagrams, these diagrams can be used to simplify calculations. Furthermore, some of the

arguments in the sequel are easier to formulate on the level of Bratteli diagrams than on

the level of the corresponding matrices.

7.2. Direct successors

In this subsection we derive a characterization of direct successors. For a detailed

discussion we refer to [66, §5].

Let L,L′ ∈ K(P ) such that [L] ≤ [L′]. It is not hard to see that under this assumption

[L′] is a direct successor of [L] iff [SU(J)′] is a direct successor of [SU(J)] in the set of

conjugacy classes of Howe subgroups of SU(n), or iff [MJ ′(C)] is a direct successor of

[MJ (C)] in the set of conjugacy classes of unital ∗-subalgebras of Mn(C). It is known

by ’folklore’ – and can be proved using the notion of the level of an inclusion matrix,
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see [66] – that [MJ ′(C)] is a direct successor of [MJ(C)] iff the following holds: There

exists D ∈ SU(n) obeying D−1 MJ(C)D ⊆ MJ ′(C), where the Bratteli diagram of the

corresponding inclusion matrix has either one of the following shapes with arbitrary i0
and i1 < i2:

r

r

1

1

· · ·

· · ·

r

r

i1−1

i1−1

r

A
A
AA

r

i1

i1+1

· · ·

· · ·

r

A
A
AA

r

i0−1

i0

r

�
�

�
�

��
r

i0

i1

r

HHHHHHHH r

i2

r

r

i0+1

i0+1

· · ·

· · ·

r

r

i2−1

i2−1

r

A
A
AA

r

i2

i2+1

· · ·

· · ·

r

A
A
AA

r

r

r+1

(103)

r

r

1

1

· · ·

· · ·

r

r

i1−1

i1−1

r

Q
Q

Q
Q

QQ
r

i1

i0

r

�
�

��
r

i1+1

i1

· · ·

· · ·

r

�
�

��
r

i0

i0−1

r

r

i0+1

i0+1

· · ·

· · ·

r

r

i2−1

i2−1

r

��������r

i2
r

�
�

��
r

i2+1

i2

· · ·

· · ·

r

�
�

��
r

r

r−1

(104)

Thus, if [L′] is a direct successor of [L] then N(L,L′) contains an element with Bratteli

diagram (103) or (104). Conversely, if N(L,L′) contains such an element ∆ then [L] ≤ [L′].

As noted above, there exists D ∈ SU(n), obeying D−1 MJ (C)D ⊆ MJ ′(C), which has

inclusion matrix ∆. Since the Bratteli diagram of ∆ is of the form (103) or (104), [MJ ′(C)]

is a direct successor of [MJ(C)]. Thus, [L′] is a direct successor of [L]. It follows

Theorem 7.2. Let L,L′ ∈ K(P ). Then [L′] is a direct successor of [L] if and only if

N(L,L′) contains an element with Bratteli diagram (103) or (104) for some i0 and i1 < i2.

7.3. Generation of direct successors and direct predecessors

In this subsection, we sketch how to derive operations to create the direct successors and

the direct predecessors of a given element of K̂(P ). Again, for a detailed discussion we

refer to [66], Sections 5 and 6.

In view of Theorem 7.2, to determine all direct successors of a given element [L] of

K̂(P ), we have to go through all the diagrams (103) and (104) and find all L′ that obey

(102) as well as the system of equations (97), (98), (101) with L being some representative

of [L] and ∆ being given by the corresponding diagram. Of course, the amount of work

can be reduced by observing that

(i) consideration of one representative L is sufficient,

(ii) diagrams that differ only by a permutation of the lower vertices yield equivalent

L′, hence identical direct successors.
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It follows that the diagrams to be considered are

r

r

1

1

· · ·

· · ·

r

r

i0−1

i0−1

r

r

i0

i0

r

A
A
AA

r

i0+1

r

A
A
AA

r

i0+1

i0+2

· · ·

· · ·

r

A
A
AA

r

r

r+1

(105)

r

r

1

1

· · ·

· · ·

r

r

i1−1

i1−1

r

r

i1

i1

r

r

i1+1

i1+1

· · ·

· · ·

r

r

i2−1

i2−1

r

��������r

i2
r

�
�

��
r

i2+1

i2

· · ·

· · ·

r

�
�

��
r

r

r−1

(106)

for arbitrary i0 and i1 < i2, respectively. Taking this into account it can be easily seen

that all necessary L′ are generated from L by the following two kinds of operations:

Splitting: Choose i0 such that mi0 6= 1. Choose a decomposition mi0 = mi0,1 +mi0,2 with

strictly positive integers mi0,1, mi0,2. Define J ′ = (k′,m′) and α′ by

k′ = (k1, . . . , ki0−1, ki0, ki0, ki0+1, . . . , kr) ,

m′ = (m1, . . . , mi0−1, mi0,1, mi0,2, mi0+1, . . . , mr) ,

α′ = (α1, . . . , αi0−1, αi0 , αi0, αi0+1, . . . , αr) .

Since the greatest common divisor g′ of m′ divides g, we can furthermore define ξ′ = ̺g′(ξ).

We have to check whether L′ = (J ′;α′, ξ′) so defined is an element of K(P ). This can be

done either by a direct computation or by the following argument. Due to k′ · m′ = n,

J ′ ∈ K(n). Moreover, L′ solves the system of equations (97), (98), (101) with ∆ being

given by the Bratteli diagram (105). Thus, SU(J) is subconjugate to SU(J ′) by some

D ∈ SU(n) with this inclusion matrix, and α′ and ξ′ are the characteristic classes of the

extension QD
L of QL to structure group SU(J ′). Hence, L′ ∈ K(P ). We say that L′ arises

from L by a splitting of the i0th member.

Merging: Choose i1 < i2 such that mi1 = mi2 . Define J ′ = (k′,m′) and α′ by

k′ = (k1, . . . , ki1−1, ki1 + ki2, ki1+1, . . . , k̂i2, . . . , kr) ,

m′ = (m1, . . . , mi1−1, mi1 , mi1+1, . . . , m̂i2 , . . . , mr) ,

α′ = (α1, . . . , αi1−1, αi1αi2 , αi1+1, . . . , α̂i2, . . . , αr) ,

where ̂ indicates that the entry is omitted, as well as ξ′ = ξ. To check that

L′ = (J ′;α′, ξ′) ∈ K(P ) we proceed analogously to the case of splitting. We say that

L′ arises from L by merging the i1th and the i2th member.
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We remark that it may happen that for certain elements of K(P ) no splittings

or no mergings can be applied. Amongst these elements are, for example, those with

m1 = · · · = mr = 1 (no splitting) and those having pairwise distinct mi (no merging).

Next, we derive operations to create the direct predecessors of [L]. Direct predecessors

are necessary to construct K̂(P ) from the unique maximal element (which is given by P

itself). Note that predecessors correspond to strata of higher symmetry. Similar to the

situation above, in view of Theorem 7.2, we have to go through all the diagrams (103)

and (104) and find all L′ ∈ K(P ) that obey (102) and the system of equations (97), (98),

(101) – where L and L′ have to be interchanged – with L being a representative of [L] and

∆ being given by the corresponding diagram. Again, we can reduce this work by noting

that it suffices to consider a fixed representative L and by ignoring permutations, now of

the upper vertices. The remaining diagrams to be considered are

r

r

1

1

· · ·

· · ·

r

r

i1−1

i1−1

r

r

i1

i1

r

HHHHHHHH r

i2

r

r

i1+1

i1+1

· · ·

· · ·

r

r

i2−1

i2−1

r

A
A
AA

r

i2

i2+1

· · ·

· · ·

r

A
A
AA

r

r

r+1

(107)

r

r

1

1

· · ·

· · ·

r

r

i0−1

i0−1

r

r

i0

i0

r

�
�

��
r

i0+1
r

�
�

��
r

i0+2

i0+1

· · ·

· · ·

r

�
�

��
r

r

r−1

(108)

with arbitrary i1 < i2 and i0, respectively. One can check that all necessary L′ are

obtained by the following two kinds of operations, applied to L:

Inverse splitting: Choose i1 < i2 such that ki1 = ki2 and αi1 = αi2 . Define J ′ = (k′,m′)

and α′ by

k′ = (k1, . . . , ki1−1, ki1, ki1+1, . . . , k̂i2, . . . , kr) ,

m′ = (m1, . . . , mi1−1, mi1 +mi2 , mi1+1, . . . , m̂i2 , . . . , mr) ,

α′ = (α1, . . . , αi1−1, αi1, αi1+1, . . . , α̂i2, . . . , αr) .

Then g divides the greatest common divisor g′ of m′, so that ̺g is well-defined. Choose

ξ′ ∈ H1(M,Zg′) such that ξ = ̺g(ξ
′) and βg′(ξ

′) = E
(2)
m̃′ (α′). By construction,

L′ = (J ′;α′, ξ′) is an element of K(P ). We say that it arises from L by an inverse

splitting of the i1th and the i2th member.

Inverse Merging: Choose i0 such that ki0 6= 1. Choose a decomposition ki0 = ki0,1 + ki0,2

with strictly positive integers ki0,1, ki0,2. Choose cohomology elements αi0,1, αi0,2 ∈
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Heven(M,Z) such that α
(2j)
i0,l = 0 for j > ki0,l, l = 1, 2, and αi0,1αi0,2 = αi0 . Define

J ′ = (k′,m′) and α′ by

k′ = (k1, . . . , ki0−1, ki0,1, ki0,2, ki0+1, . . . , kr) ,

m′ = (m1, . . . , mi0−1, mi0 , mi0 , mi0+1, . . . , mr) ,

α′ = (α1, . . . , αi0−1, αi0,1, αi0,2, αi0+1, . . . , αr) ,

and ξ′ = ξ. Again, by construction, L′ = (J ′;α′, ξ′) ∈ K(P ). We say that L′ arises from

L by an inverse merging of the i0th member.

Let us summarize.

Theorem 7.3. Let [L] ∈ K̂(P ) and let L be a representative. The direct successors

(predecessors) of [L] are obtained by applying all possible splittings and mergings (inverse

splittings and inverse mergings) to L and passing to equivalence classes.

7.4. Examples

In this subsection, let P be a principal SU(4)-bundle.

Example 1. Direct successors of [L] for J = (1, 1|2, 2). (Recall the notation from

Subsection 6.3.) Note that α has components αi = 1 + α
(2)
i , i = 1, 2. Let us start with

splitting operations. For i0 = 1, the only possible splitting is given by the decomposition

m1 = 2 = 1 + 1. It yields L′
a = (J ′

a;α
′
a, ξ

′
a), where J ′

a = (1, 1, 1|1, 1, 2), α′
a = (α1, α1, α2),

and ξ′a = 0. The passage from L to L′
a can very easily performed on the level of a Bratteli

diagram whose vertices are labelled by the respective quantities ki, mi and αi (rather than

by the mere number i):

q

q

L

L′

a

q

q

α1

1, 2

1, 1
α1

q

@
@

@@
q

1, 1
α1

q

@
@

@@
q

α2

1, 2

1, 2
α2

q

@
@

@@
q

ξ

ξ′a = 0

For i0 = 2, a similar splitting operation creates L′
b, given by the labelled Bratteli diagram

q

q

L

L′

b

q

q

α1

1, 2

1, 2
α1

q

q

α2

1, 2

1, 1
α2

q

@
@

@@
q

1, 1
α2

q

@
@

@@
q

ξ

ξ′b = 0
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As for merging operations, the only choice for i1, i2 is i1 = 1, i2 = 2. This yields L′
c:

q

q

L

L′

c

q

q

α1

1, 2

2, 2
α1α2

q

�
�

��
q

α2

1, 2
q

�
�

��
q

ξ

ξ′c = ξ

Next, we have to pass to equivalence classes. Generically, L′
a, L

′
b, L

′
c generate their own

classes. However, while L′
c can never be equivalent to L′

a or L′
b, the latter are equivalent

iff α1 = α2. In order to see for which bundle classes P this can happen, consider equations

(77) and (78). The first one requires α
(2)
1 = α

(2)
2 to be a torsion element. Then, due to

α
(4)
1 = α

(4)
2 = 0, the second one implies c2(P ) = 0. Thus, L′

a and L′
b can be (occasionally)

equivalent only if P is trivial.

Example 2. Direct predecessors of [L] for J = (1, 1|2, 2). Inverse splittings can be applied

only if α1 = α2. In this case, for any solution ξ ∈ H1(M,Z4) of the system of equations

ξ′ mod 2 = ξ , (109)

β4(ξ
′) = α

(2)
1 , (110)

we obtain an element L′ = (J ′;α′, ξ′), where J ′ = (1|4) and α′ = α1 = α2. The passage

from L to L′ can be summarized in the labelled Bratteli diagram

q

q

L′

L

q

q

α1

1, 4

1, 2
α1

q

@
@

@@
q

1, 2
α1

q

@
@

@@
q

ξ′

ξ

that has to be read upwards. Each L′ generates its own equivalence class. Due to

k1 = k2 = 1, inverse mergings cannot be applied to L. Thus, in the case α1 = α2 the

direct predecessors of the equivalence class of L are labelled by the solutions of equations

(109) and (110), whereas in the case α1 6= α2 direct predecessors do not exist. Recall that

the first case can only occur if P is trivial.

Example 3. Direct predecessors of [L] for J = (2|2). Here α = 1 + α(2) + α(4). Inverse

mergings can be applied and yield elements L′ as follows:
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q

q

L′

L

q

q

α′

1
1, 2

2, 2
α

q

�
�

��
q

α′

2
1, 2
q

�
�

��
q

ξ′ = ξ

ξ

Here α′
i = 1 + α′

i
(2), i = 1, 2, such that α′

1α
′
2 = α. When passing to equivalence classes,

elements L′ with (α′
1, α

′
2) and (α′

2, α
′
1) have to be identified. Since L does not allow for

inverse splittings, there are no more direct predecessors.

8. Application

8.1. The stratification for SU(2)

In Subsection 6.3 we have discussed particular examples of orbit types. In the present

section we explain how to construct the Hasse diagram of the whole set of orbit types,

starting from its maximal element. We restrict our attention to the simplest nontrivial

case, the gauge group SU(2). We start with simple examples of base manifolds, for which

the orbit types are known and proceed to more complicated ones, like lens spaces. This is

intended to illustrate the technique. On the other hand, the means provided in Subsection

7.3 enable us to construct the Hasse diagram for any SU(n) . For SU(4) , this was partially

demonstrated in Subsection 7.4. However, to present full Hasse diagrams for SU(4) , or

any other SU(n) , in a transparent way needs some special graphical effort.

Let Lp denote the unique representative of the maximal element of K̂(P ). Since

QLp = P , Lp is given by Jp = (2|1), αp = c(P ), and ξp = 0. Inverse mergings yield

elements L:

q

q

L

Lp

q

q

α1

1, 1

2, 1
c(P )

q

�
�

��
q

α2

1, 1
q

�
�

��
q

ξ = 0

ξp = 0

where αi = 1 + α
(2)
i such that α1α2 = c(P ). Sorting by degree yields the equations

α
(2)
1 + α

(2)
2 = 0 and α

(2)
1 α

(2)
2 = c2(P ). We obtain α

(2)
2 = −α

(2)
1 and

−
(
α

(2)
1

)2

= c2(P ) . (111)

The solutions α
(2)
1 and −α

(2)
1 yield equivalent direct predecessors. We note that the Howe

subgroup labelled by J = (1, 1|1, 1) is the toral subgroup U(1) of SU(2) and that α
(2)
1 is just
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the first Chern class of the corresponding reduction of P . By virtue of this transliteration,

equation (111) is consistent with the literature [50].

Next, we determine the direct predecessors of the classes generated by L. Inverse

mergings cannot be applied. Inverse splittings can be applied provided α1 = α2, i.e.,

2α
(2)
1 = 0. Then, for any solution ξ′ ∈ H1(M,Z2) of the equation

β2 (ξ′) = α
(2)
1 , (112)

inverse merging yields an element L′ by

q

q

L′

L

q

q

α1

1, 2

1, 1
α1

q

@
@

@@
q

1, 1
α1

q

@
@

@@
q

ξ′

ξ = 0

Each of these elements generates its own equivalence class. Recall that J = (1|2) labels the

center Z2 of SU(2) and that ξ′ is the natural characteristic class for principal Z2-bundles

over M .

Now let us draw Hasse diagrams of K̂(P ) for base manifolds M = S4, S2×S2, L3
2p×S1.

In the following, vertices stand for the elements of K̂(P ) and edges indicate the relation

’left vertex ≤ right vertex’. When viewing the elements of K̂(P ) as Howe subbundles,

the vertex on the rhs. represents the class corresponding to P itself, the vertices in the

middle and on the lhs. represent reductions of P to the Howe subgroups U(1) and Z2,

respectively. When viewing the elements of K̂(P ) as orbit types, or strata of the gauge

orbit space, the vertex on the rhs. represents the generic stratum, whereas the vertices in

the middle and on the lhs. represent U(1)-strata and SU(2)-strata (the names refer to the

isomorphy type of the corresponding stabilizer).

Example 1. M = S4. If c2(P ) = 0, equation (111) is trivially satisfied by α
(2)
1 = 0. Then

equation (112) is trivially satisfied by ξ′ = 0. Due to H1(M,Z2) = 0 and H2(M,Z) = 0,

there are no more solutions for either one. Thus, in the case where P is trivial, the Hasse

diagram of K̂(P ) is

q q q

If P is nontrivial, K̂(P ) is trivial, i.e., it consists only of the class corresponding to P

itself.

On the level of strata, the result means that in the sector of vanishing topological

charge the gauge orbit space decomposes into the generic stratum, a U(1)-stratum, and
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a SU(2)-stratum. If, on the other hand, a topological charge is present, only the generic

stratum survives.

Example 2. M = S2 × S2. Using the notation introduced in Example 3 (iii) of Sub-

section 6.3, equation (111) becomes −2ab γ
(2)

S2 ×γ
(2)

S2 = c2(P ) . The discussion is similar

to that of equation (86). Due to H1(M,Z2) = 0, only the solution a = b = 0 has a direct

predecessor itself. Thus, in the case c2(P ) = 0 the Hasse diagram of K̂(P ) is

q

p
p
p
p
p
p
p
p
p

p
p
p

q

HHHH

(2, 0)

qXXX
(1, 0)

q
(0, 0)

q���(0, 1)

q�
���

(0, 2)

p
p
p p
p
p
p
p
p
p
p
p
q

The vertices in the middle are labelled by the corresponding values of (a, b). Note that

passage to equivalence classes requires identification of solutions (a, b) and (−a,−b). In

the case c2(P ) = 2l γ
(2)

S2 ×γ
(2)

S2 , the Hasse diagram is

q

HHHH

(1, −l)

p p p p p p p p p
p
p
p

q(q, −l/q)

p
p
p
p p p

p p p
p p p

q�
���

(l,−1)

q

where, due to the identification (a, b) ∼ (−a,−b), q runs through the positive divisors of

l only. Finally, in the case c2(P ) = (2l + 1) γ
(2)

S2 × γ
(2)

S2 , K̂(P ) is trivial.

The interpretation of the result in terms of strata of the gauge orbit space is similar

to that for space time manifold M = S4 above.

Example 3. M = L3
2p × S1. Recall the notation from Subsection 6.3. We write

α
(2)
1 = a γ

(2)

L3
2p;Z

× 1S1 . (113)

Due to H2(L3
2p,Z) ∼= Z2p, (α

(2)
1 )2 = 0. Hence, equation (111) is solvable iff c2(P ) = 0, in

which case the solutions are given by a ∈ Z2p. Since when passing to equivalence classes

we have to identify solutions a and −a, the direct predecessors are labelled by elements

of Zp.

Next, decomposing ξ′ = ξ′L γ
(1)

L3
2p;Z2

× 1S1 + ξ′S 1L3
2p;Z2

× γ
(1)
S1 and using (79), equation

(112) becomes p ξ′L = a . Thus, only the elements labelled by a = 0 and a = p have

direct predecessors. These are given by the values ξ′L = 0, ξ′S = 0, 1 and ξ′L = 1, ξ′S = 0, 1,

respectively. As a result, in the case c2(P ) = 0, the Hasse diagram of K̂(P ) is
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q(0, 0)

q���
(0, 1)

qXXX
(1, 0)

q(1, 1)

q

HHHH

0

qXXX
1

p
p
p
p p p p p p p p p

q���
p − 1

q�
���

p

q

Here the vertices on the lhs. are labelled by (ξ′L, ξ
′
S), whereas those in the middle are

labelled by a. In the case c2(P ) 6= 0, K̂(P ) is trivial. Again, the interpretation in terms

of strata of the gauge orbit space goes along the lines of Example 1 above.

8.2. Kinematical quantum nodes in Yang-Mills-Chern-Simons theory

Following [7], we consider gauge theory on the trivial bundle P̃ = (Σ×R)×SU(n), where

Σ is a Riemann surface, in the Hamiltonian approach. The action functional consists of

the Yang-Mills and the Chern-Simons term,

S(Ã) =
1

2

∫

Σ×R

tr
(
F̃Ã ∧ ∗F̃Ã

)
+

λ

8π

∫

Σ×R

tr

(
Ã ∧ F̃Ã −

2

3
Ã ∧ Ã ∧ Ã

)

where Ã ∈ C̃, the space of W k-connections in P̃ , and F̃Ã denotes the curvature of Ã. The

coupling λ takes integer values. By separating the time variable, we get the following

Lagrangian

L(A,A0, Ȧ, Ȧ0) =
1

2

(
Ȧ−∇AA0 , Ȧ−∇AA0

)
0
−

1

2
(FA, FA)0

+
λ

4π

{
2 (A0, ∗FA)0 +

(
A, ∗Ȧ

)
0

}
.

Here, A0 ∈ W k(M, su(n)) , A is a W k-connection form in the trivial bundle P = Σ×SU(n)

and (·, ·)0 denotes the L2-scalar product of su(n)-valued forms on M . As usual, we denote

the space of W k-connections in P by C . Constraint analysis yields the Gauß law

∇∗
AΠ −

λ

4π
∗ dA = 0 ,

where Π denotes the momentum conjugate to A. Performing canonical quantization one

finds that physical states are given by functions ψ : C → C that are contained in the

kernel of the Gauß law operator

∇∗
Â

δ

δA
−
iλ

4π
∗ dÂ , (114)

where Â means the multiplication operator, i.e., (Âψ)(A′) = A′ψ(A′), ∀A′ ∈ C. On the

physical states, the Hamiltonian is given by

H = −
1

2

(
δ

δA
+ i

λ

4π
∗ A,

δ

δA
+ i

λ

4π
∗ A

)

0

+
1

2
(FA, FA)0 .
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Let us consider connections A ∈ C that can be reduced to some subbundle of P with

nontrivial first Chern class. That is, in physics language, A carries a nontrivial magnetic

charge. Thus, it may be viewed as monopole-like, although it is not assumed to be a

solution of the field equations. In [4] it was shown that if the Chern-Simons term is

present, i.e., λ 6= 0, then ψ(A) = 0 for any such A and any physical state ψ. Therefore,

such A are called kinematical quantum nodes. Note that by geometric reasons there

also exist dynamical nodes which differ from state to state. Due to their monopole-like

character, kinematical quantum nodes are expected to play a role in the confinement

mechanism. In the following we shall show that being a node is a property of strata. For

that purpose, we reformulate the result of [4] in our language.

Theorem 8.1. Let A ∈ C have orbit type [(J ;α, ξ)] ∈ K̂(P ). If α
(2)
i 6= 0 for some i then

A is a kinematical quantum node, i.e., ψ(A) = 0 for all physical states ψ.

We outline the proof, following [4]. Let L = (J ;α, ξ). Since Σ is a compact orientable

2-manifold, H2(Σ,Z) = Z. Let γ(2) be a generator. Then α
(2)
i = ciγ

(2) for certain ci ∈ Z.

Consider the following element of u(n):

φ̃ := i

[(
c1
k1

1k1 ⊗ 1m1

)
⊕ · · · ⊕

(
cr
kr

1kr ⊗ 1mr

)]
.

Due to (α, ξ) ∈ K(P, J), (m1c1 + · · · + mrcr)γ
(2) = E

(2)
m (α) = 0 . It follows tr(φ̃) = 0,

hence φ̃ ∈ su(n). By construction, φ̃ is invariant under the adjoint action of the subgroup

SU(J) ⊆ SU(n). Thus, we can define an equivariant function φ : P → su(n) by assigning

to any q ∈ QL the constant value φ̃ and extending equivariantly to P . By construction,

∇Aφ = 0. Consequently, for any state ψ : C → C,

(
φ,

(
∇∗

Â

δ

δA
ψ

)
(A)

)

0

=

(
φ,∇∗

A

{(
δ

δA
ψ

)
(A)

})

0

= 0 .

For physical states, the Gauss law implies
(
φ,
(
∗dÂψ

)
(A)
)

0
= (φ, ∗dA)0 ψ(A) = 0 . (115)

Using ∇Aφ = 0 and the structure equation FA = dA+ 1
2
[A,A], we obtain

(φ, ∗dA)0 ψ(A) = 2 (φ, ∗FA)0 ψ(A) (116)

Since A is reducible to QL (recall that QL contains a holonomy bundle of A), FA has

block structure ((FA)1 ⊗ 1m1) ⊕ · · · ⊕ ((FA)r ⊗ 1mr) with (FA)j being (kj × kj)-matrices.

Thus, by construction of φ,

(φ, ∗FA)0 =

∫

Σ

Tr (φFA) = i

r∑

j=1

mj

kj
cj

∫

Σ

Tr((FA)j) . (117)
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Since cj are the first Chern classes of the Whitney factors of the extension of QL to

structure group U(J) ∼= U(k1)×· · ·×U(kr), the integrals on the r.h.s. give −2πicj . Thus,

equations (115)–(117) imply
r∑

j=1

mj

kj
c2j ψ(A) = 0 . (118)

It follows that if one of the cj is nonzero then ψ(A) = 0, for all physical states ψ.

Remark: Let us compare (118) with formula (6) in [4]. Define k′i = kimi and m′
i = 1.

Then J ′ = (k′,m′) ∈ K(n) and U(J) ⊆ U(J ′). Let Q′
L denote the extension of QL to

structure group U(J ′). It is not hard to see that the Whitney factors of this subbundle

have first Chern classes c′i = mici. Inserting k′i, m
′
i, and c′i into (118) one obtains formula

(6) in [4]. In fact, the authors of [4] use that A is reducible to Q′
L, rather than that it is

even reducible to QL.

As a consequence of Theorem 8.1, the property of being a kinematical node is actually

a property of strata. It can be read off directly from the labels L ∈ K(P ). As an example,

we present the Hasse diagram of K̂(P ) for SU(2) (which can be derived analogously to

the 4-dimensional case explained in Subsection 8.1), with the nodal strata marked by an

additional circle:

q

HHHH

(0, . . . , 0)

p p p p p p p p p
p
p
p

q(1, . . . , 1)

p
p
p
p
p
p
p
p
p

p
p
p

q

HHHH

2
qXXX

1
q

0

c

c

q

The U(1)-strata are labelled by the moduli of the first Chern classes of the corresponding

QL. The Z2-strata are labelled by elements of Z2s
2 , where s is the genus of Σ. Thus,

all but one U1-strata are kinematical nodes. The non-nodal stratum is that with zero

topological charge. It is the only one which itself has singularities, where the singularities

are all non-nodal.

9. Outlook

In the present review we have given a survey on the stratified structure of the gauge

orbit space. Based on the results presented, a lot of points deserve a detailed study, for

example,

- the topology of strata, in particular w.r.t. potential anomalies [44],

- the geometric properties of strata w.r.t. the L2-metric, in particular in the vicinity

of singularities,

- the study of other metrics, like the strong metrics γk or ηk, defined in Subsection 2

or the (potentially degenerate) information metric [37, 41].
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From the viewpoint of physics, however, the most important question related to the

stratified structure of the gauge orbit space is: what is the physical relevance of the

nongeneric strata, i.e., what physical effects do they produce? To study this question

systematically, one needs a quantization in which all strata are included on an equal

footing and in which the stratification is explicitly encoded. To achieve this, we propose

to view the gauge theory as an infinite dimensional Hamiltonian system with symmetry

and to work out the following programme:

1. Try to carry over the procedure of singular Marsden-Weinstein reduction,

established in finite dimensions by Sjamaar and Lerman [72] to the infinite dimensional

Hamiltonian system under consideration (for an exposition of the method see [24,

Appendix B5] or [56, §IV.1.11]). Singular Marsden-Weinstein reduction equips the

reduced phase space with the structure of a stratified symplectic space (’singular Marsden-

Weinstein quotient’). A stratified symplectic space is a Poisson space X together with a

stratification X = ∪iXi (of some given type) into symplectic manifolds Xi such that the

embeddings Xi → X are Poisson space morphisms.

2. Develop a geometric quantization of the reduced phase space so obtained. The

generalization of methods of geometric quantization to stratified symplectic spaces is a

field of active research. Besides the discussion of specific examples, until now the following

notions have been established in finite dimensions:

- prequantization of Poisson spaces [48] (applies to X),

- prequantization of symplectic manifolds (standard, applies to the Xi),

- polarization of stratified symplectic spaces [49].

Thus, to realize the concept of geometric quantization of a stratified symplectic space, the

first problem to be solved consists in clarifying the relation between the prequantization of

the Poisson space X and the prequantizations of its symplectic strata Xi . Next, using the

above mentioned polarization concept, one can try to construct the full quantum theory.

Then, it is still a big challenge to extend these methods to the infinite dimensional case.
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Appendix A. Some basic facts from bundle theory

Classifying spaces and classifying maps. Let G be a Lie group. A principal G-bundle

E → B is called universal for G , iff E is contractible. It can be shown that, for any Lie

group G , there exists a universal bundle

G →֒ EG
πG→ BG

with the following property: For any CW-complex (hence, in particular, any manifold) X

the assignment

[X,BG] −→ Bun(X,G) , f 7→ f ∗EG , (A.1)

is a bijection. Here, [·, ·] denotes the set of homotopy classes of maps, Bun(X,G) is

the set of isomorphism classes of principal G-bundles over X (where bundle morphisms

are assumed to project to the identical mapping on X) and f ∗ denotes the pull-back of

bundles: f ∗EG = {(x, ǫ) ∈ X × EG : f(x) = πG(ǫ)} . BG is called the classifying space

of G and the homotopy class of maps X → BG associated to P ∈ Bun(X,G) by virtue of

(A.1) is called the classifying map of P . In this appendix, we will denote it by fP . Since

the total space of EG is contractible, the exact homotopy sequence of fibre spaces implies

πi(G) ∼= πi+1(BG) , i = 0, 1, 2, . . . . (A.2)

Associated principal bundles defined by homomorphisms. Let ϕ : G→ G′ be a Lie group

homomorphism and let P ∈ Bun(X,G). By virtue of the action

G′ ×G→ G′ , (a′, a) 7→ ϕ(a−1)a′ ,

G′ becomes a right G-space and we have an associated bundle P ×G G
′. To indicate that

this bundle is completely given by ϕ, we denote it by P [ϕ ]. By setting [(p, a′)] · b′ :=

[(p, a′b′)], ∀p ∈ P , a′, b′ ∈ G′, a right G′-action on P [ϕ ] is defined, thus making it a

principal G′-bundle over X.

In the main text of the review, two special cases of associated principal bundles occur:

(i) ϕ is a Lie subgroup embedding. Here P [ϕ ] represents the extension of P to

structure group G′.

(ii) ϕ is factorization by a normal Lie subgroup N . Here P [ϕ ] represents the quotient

bundle P/N .

Thus, the construction of associated principal bundle provides a unifying viewpoint

on the operations of extending the structure group and factorizing by a normal subgroup.

In particular, it allows to determine the classifying map of both extensions and quotients.

Namely, one has

fP [ ϕ ] = Bϕ ◦ fP , (A.3)
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where Bϕ : BG → BG′ is the map of classifying spaces associated to ϕ. It is defined

as the classifying map of the associated principal G′-bundle (EG)[ ϕ ]. Note the following

(covariant) functorial property: For ϕ : G→ G′ and ϕ′ : G′ → G′′ there holds

B(ψ ◦ ϕ) = Bψ ◦ Bϕ .

Appendix B. Eilenberg-MacLane spaces and Postnikov tower

Eilenberg-MacLane Spaces. Let π be a group and n a positive integer. An arcwise

connected CW-complex X is called an Eilenberg-MacLane space of type K(π, n) iff

πn(X) = π and πi(X) = 0 for i 6= n. Eilenberg-MacLane spaces exist for any choice

of π and n, provided π is commutative for n ≥ 2. They are unique up to homotopy

equivalence.

The simplest example of an Eilenberg-MacLane space is the 1-sphere S1, which is

of type K(Z, 1). Two further examples, K(Z, 2) and K(Zg, 1), are briefly discussed in

Appendix C. Apart from very special examples, Eilenberg-MacLane spaces are infinite

dimensional. Up to homotopy equivalence one has

K(π1 × π2, n) = K(π1, n) ×K(π2, n) .

Now assume π to be commutative also in the case n = 1. Due to the Hurewicz and

the universal coefficient theorems, Hn(K(π, n), π) = Hom (Hn(K(π, n)), π). Moreover,

Hn(K(π, n)) ∼= πn(K(π, n)) = π. It follows that Hn(K(π, n), π) contains elements which

correspond to isomorphisms Hn(K(π, n)) → π. Such elements are called characteristic.

If γ ∈ Hn(K(π, n), π) is characteristic then for any CW-complex X, the map

[X,K(π, n)] → Hn(X, π) , f 7→ f ∗γ , (B.1)

is a bijection [20, §VII.12]. In this sense, Eilenberg-MacLane spaces provide a link between

homotopy properties and cohomology.

Next, consider the path-loop fibration over K(π, n),

Ω(K(π, n)) →֒ P (K(π, n)) −→ K(π, n) ,

where Ω(K(π, n)) and P (K(π, n)) denote the loop space and the path space of K(π, n),

respectively (both based at some point x0). Since P (K(π, n)) is contractible, the exact

homotopy sequence induced by the path-loop fibration implies πi (Ω(K(π, n + 1))) =

πi+1 (K(π, n+ 1)) Hence, Ω(K(π, n + 1)) = K(π, n), ∀n, and the path-loop fibration

over K(π, n+ 1) reads

K(π, n) →֒ P (K(π, n+ 1)) −→ K(π, n+ 1) . (B.2)

57



Postnikov Tower. A map f : X → X ′ of topological spaces is called an n-equivalence iff

the homomorphism induced on homotopy groups f∗ : πi(X) → πi(X
′) is an isomorphism

for i < n and surjective for i = n. One also defines the notion of an ∞-equivalence, which

is often called weak homotopy equivalence.

Let f : X → X ′ be an n-equivalence and let Y be a CW-complex. Then the map

[Y,X] → [Y,X ′], g 7→ f ◦ g, is bijective for dimY < n and surjective for dimY = n [20,

Ch. VII, Cor. 11.13].

A CW-complex Y is called n-simple iff it is arcwise connected and the action of π1(Y )

on πi(Y ) is trivial for 1 ≤ i ≤ n. It is called simple iff it is n-simple for all n.

The following theorem describes how a simple CW-complex can be approximated by

n-equivalent spaces constructed from Eilenberg-MacLane spaces.

Theorem B.1. Let Y be a simple CW-complex. There exist

(i) a sequence of CW-complexes Yn and principal fibrations

K(πn(Y ), n) →֒ Yn+1
qn
−→ Yn , n = 1, 2, 3, . . . ,

given as the pull-back of the path-loop fibration (B.2) over K(πn(Y ), n+ 1) by some map

θn : Yn → K (πn(Y ), n+ 1),

(ii) a sequence of n-equivalences yn : Y → Yn, n = 1, 2, 3, . . .,

such that Y1 = ∗ (one point space) and qn ◦ yn+1 = yn for all n.

The sequence of spaces and maps (Yn, yn, qn), n = 1, 2, 3, . . ., is called Postnikov tower

(or Postnikov decomposition) of Y .

We remark that the theorem follows from a more general theorem about simple maps

[20, Ch. VII, Thm. 13.7] by noting that the assumption that Y be a simple CW-complex

implies that the constant map Y → ∗ is a simple map. See [20, Ch. VII, Def. 13.4] for a

definition of the latter.

Appendix C. Construction of BSU(J)5

In this appendix, let J ∈ K(n) and consider the classifying space BSU(J) of the Howe

subgroup SU(J). We are going to prove that BSU(J)5, i.e., the 5th stage of the Postnikov

tower of BSU(J) is given by formula (59).

Preparation. First, in order to be able to apply Theorem B.1, we have to check that

BSU(J) is a simple space. To see this, note that any inner automorphism of SU(J) is

generated by an element of SU(J)0, hence is homotopic to the identity automorphism.

Consequently, the natural action of π0(SU(J)) on πi−1(SU(J)), i = 1, 2, 3, . . . , induced

by inner automorphisms, is trivial. Since the natural isomorphisms πi−1(SU(J)) ∼=
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πi(BSU(J)) transform this action into that of π1(BSU(J)) on πi(BSU(J)), the latter

is trivial, too. Thus, BSU(J) is a simple space, as asserted.

Second, we note the relevant homotopy groups of BSU(J). According to (58) and

(A.2), these are

π1 = Zg , π2 = Z
⊕(r−1) , π3 = 0 , π4 = Z

⊕r∗ , (C.1)

where r∗ denotes the number of ki > 1.

Third, we will need information about the integer-valued cohomology groups of the

Eilenberg-MacLane spaces K(Zg, 1) and K(Z, 2).

(i) K(Z, 2): Consider the natural free action of U(1) on the sphere S∞ (induced

from U(1)-action on S2n−1 ⊆ Cn). The orbit space of this action is known as the infinite

dimensional complex projective space CP∞. Due to πi(S
∞) = 0, the exact homotopy

sequence of the principal bundle U(1) →֒ S∞ → CP∞ implies πi(CP∞) = πi−1(U(1)) = Z ,

for i = 2 and 0 otherwise. Thus, CP∞ is a model for K(Z, 2). It follows, see [20, Ch. VI,

Prop. 10.2],

H i(K(Z, 2),Z) =

{
Z | i even,

0 | i odd. ,
(C.2)

(ii) K(Zg, 1): Consider the restriction of the above action to the subgroup Zg ⊆ U(1).

The resulting orbit space is the infinite dimensional lens space L∞
g . The exact homotopy

sequence of the corresponding principal bundle implies πi(L
∞
g ) = πi−1(Zg) = Zg , for i = 1

and 0 otherwise. Hence, L∞
g is a model for K(Zg, 1). Consequently, see [34, §24, p. 176],

H i(K(Zg, 1),Z) =





Z | i = 0,

Zg | i 6= 0, even,

0 | i 6= 0, odd. ,

(C.3)

(Note that the vanishing of all homotopy groups of S∞ also implies that CP∞ and L∞
g are

models for the classifying spaces BU(1) and BZg, respectively.)

Construction. We start with BSU(J)1 = ∗. Then BSU(J)2 must coincide with the fibre

which is K(Zg, 1), see (C.1). Next, according to (C.1), BSU(J)3 is the total space of a

fibration

K(Z⊕(r−1), 2) →֒ BSU(J)3

q2
−→ K(Zg, 1) (C.4)

given by the pull-back of the path-loop fibration over K(Z⊕(r−1), 3) by some map

θ2 : K(Zg, 1) → K(Z⊕(r−1), 3). Since K(Z⊕(r−1), n) =
∏r−1

j=1 K(Z, n), ∀n, (B.1) yields

for the set of homotopy classes

[K(Zg, 1), K(Z⊕(r−1), 3)] =

r−1∏

i=1

H3(K(Zg, 1),Z) .
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Due to (C.3), the r.h.s. is trivial. Hence, θ2 is homotopic to a constant map, so that the

fibration (C.4) is trivial. Thus,

BSU(J)3 = K(Zg, 1) ×
r−1∏

j=1

K(Z, 2) .

Then, in view of (C.1), BSU(J)4 is given by a fibration over BSU(J)3 with fibre

K(0, 3) = ∗. Hence, it just coincides with the base space. Finally, BSU(J)5 is the

total space of a fibration

K
(
Z
⊕r∗ , 4

)
→֒ BSU(J)5

q4
−→ K (Zg, 1) ×

r−1∏

j=1

K(Z, 2) , (C.5)

which is induced by a map θ4 from the base to K
(
Z⊕r∗ , 5

)
. We have

[
K(Zg, 1) ×

r−1∏

j=1

K(Z, 2), K
(
Z
⊕r∗ , 5

)
]

=
r∗∏

i=1

H5

(
K(Zg, 1) ×

r−1∏

j=1

K(Z, 2),Z

)
.

Since H∗(K(Z, 2),Z) is torsion-free, see (C.2), we can apply the Künneth Theorem for

cohomology to obtain

H5

(
K(Zg, 1) ×

r−1∏

j=1

K(Z, 2),Z

)

∼=
⊕

Hj(K(Zg, 1),Z) ⊗Hj1(K(Z, 2),Z) ⊗ · · · ⊗Hjr−1(K(Z, 2),Z) ,

with the direct sum running over all decompositions of 5 into a sum of r nonnegative

integers j, j1, . . . , jr−1. Each summand of the rhs. is trivial, because it contains tensor

factors of odd degree, which are trivial due to (C.2) and (C.3). Hence, θ4 is again

homotopic a constant map and the fibration (C.5) is trivial. This proves formula (59),

used in the main text.
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