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CONVERGENCE AND STABILITY OF THE RENORMALISATION GROUP 1
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Within the exact renormalisation group approach, it is shown that stability properties of the
flow are controlled by the choice for the regulator. Equally,the convergence of the flow is en-
hanced for specific optimised choices for the regularisation. As an illustration, we exemplify
our reasoning for3d scalar theories at criticality. Implications for other theories are discussed.

PACS: 11.10.Hi

1 Introduction

Renormalisation group techniques are important tools to describe how classical physics is modi-
fied by quantum fluctuations. Integrating-out all quantum fluctuations provides the link between
the classical theory and the full quantum effective theory [1]. A useful method is given by the
Exact Renormalisation Group (ERG) [2], which is based on theWilsonian idea of integrating-
out infinitesimal momentum shells. ERG flows have a simple one-loop structure. They admit
non-perturbative truncations and are not bound to weak coupling.

An application of the ERG requires some approximations likethe derivative expansion or
expansions in powers of the fields. It has been known since long that approximations induce a
spurious dependence on the regularisation [3, 4, 5, 6, 7]. This is somewhat similar to the scheme
dependence within perturbative QCD, or within truncated solutions of Schwinger-Dyson equa-
tions. While this scheme dependence should vanish at sufficiently high order in the expansion,
practical applications are always bound to a finite order, and hence to a non-vanishing scheme
dependence. A partial understanding of the interplay of approximations and scheme dependence
has been achieved previously. For scalar QED [8], the schemedependence in the region of first
order phase transition has been studied in [4, 5]. For3d scalar theories, the interplay between the
smoothness of the regulator and the resulting critical exponents has been addressed in [9] using
a minimum sensitivity condition. The weak scheme dependence found in these cases suggests
that higher order corrections remain small, thereby strengthening the results existing so far.

In this contribution, we review how the convergence and stability of ERG flows is optimised,
thereby providing improved results already to low orders within a given approximation [10, 11,
12, 13, 14]. This involves a discussion on the origin of the spurious scheme dependence, and its
link with convergence and stability properties of truncated ERG flows. We exemplify the basic
reasoning for the universality class ofO(N) symmetric scalar theories in three dimensions. It
is expected that insights gained from this investigation will also prove useful for applications to
more complex scalar theories, gauge theories [15] or gravity [16], which are more difficult to
handle.
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Fig. 1. Schematic diagram of a full (left panel) or truncated(right panel) renormalisation group flow con-
necting an initial effective action atk = Λ with the full (truncated) quantum effective action atk = 0.
The upper line corresponds to the space of all initial effective actions. The lower line corresponds to the
space of effective actions. Fork 6= 0, the flow trajectories depend on the regulatorRk. For the full flow, all
trajectories join atk = 0. For a truncated flow, the endpoint depends, in general, onRk.

2 Renormalisation group flows and truncations

ERG flows are based on the Wilsonian idea of integrating out momentum modes within a path
integral representation of quantum field theory. In its modern form, the ERG flow for an effective
actionΓk for bosonic fieldsφ is given by the simple one-loop expression [2]

∂tΓk[φ] =
1

2
Tr

(

δ2Γk

δφδφ
+ Rk

)−1

∂tRk (1)

Here,Γ(2)
k denotes the second functional derivative of the effective action, t ≡ ln k is the loga-

rithmic scale parameter, andRk(q2) is an infrared (IR) regulator at the momentum scalek. The
regulatorRk obeys a few restrictions, which have been discussed at length in the literature [2].
They ensure that the flow equation is well-defined, thereby interpolating between an initial action
in the UV and the full quantum effective action in the IR. In order to solve (1), we have to specify
an initial effective actionΓΛ at some ultraviolet (UV) scalek = Λ, and a regulatorRk. Clearly,
the flow trajectory of Eq. (1) in the space of all action functionals depends on the IR regulator
functionRk. For the full flow, this is of no relevance. Starting from an initial effective action
ΓΛ, the integrated full flow approaches the full quantum effective action, independently on the
choice forRk along the flow. Schematically, this is depicted in Fig. 1a.

The situation changes once truncations have been made. Here, “truncations” mean that
some vertex functions are neglected in the Ansatz for the functional form ofΓtrunc

k entering
(1). Schematically, this scenario is depicted in Fig. 1b. Still, the flow trajectories in the space
of all action functionals depend onRk. However, it cannot be guaranteed that the endpoint
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of the integrated flow is independent onRk. In general, it is not. The origin of this spurious
scheme dependence is easily understood: while regulating the flow, the regulatorRk also mod-
ifies all vertex functions and their interactions atk 6= 0. Hence, the “missing” back-coupling
of neglected vertex functions is responsible for a spuriousscheme dependence. An immediate
consequence of this observation is that varying the regulator influences the physical content of
a given truncation. Hence, the scheme dependence within a given truncation, and convergence
properties of ERG flows are entangled [10].

3 Optimisation and stability

Next we turn to the stability of the flow (1), and a simple optimisation condition [10, 11]. The two
ingredients of (1) are the full regularised propagator(Γ

(2)
k + Rk)−1 -which contains the physical

information of the flow-, and the insertion∂tRk. Typically,∂tRk is peaked aroundq2 ≈ k2, and
decays exponentially for large momenta. For small momenta,the flow (1) is regularised due to
Rk in the full propagator. The regulator implies that the inverse propagator displays a gap,

min
q2≥0

(

δ2Γk[φ]

δφ δφ

∣

∣

∣

∣

φ=φ0

+ Rk

)

> C k2 (2)

with C > 0. The minimum is achieved forq2 ≈ k2. In general,C depends onRk and onφ0. The
flow (1) receives its dominant contributions from the regionin momentum space where∂tRk is
large and the inverse propagator is small. In consequence, the flow is more stable against small
changes inΓk the larger the full inverse propagator. This observation leads to a simple criterion
to optimise the stability of flows. To that end, let us consider a theory with a standard propagator
andΓ(2)(φ) = q2 + U ′′

k (φ). This corresponds to the leading order in a derivative expansion.
Inserting this expression into (2), we require the gap to be maximal w.r.t. the regularisation
scheme. Dropping irrelevant momentum-independent terms,the optimisation condition becomes

max
(RS)

[

min
q2≥0

(

q2 + Rk(q2)
)

]

⇒ Ropt (3)

for any fixedk. Eq. (3) states that an optimised regulator maximises the gap (2) w.r.t. the regu-
larisation scheme (RS) [10]. The condition is based only on properties of the flow (1), and not on
the specific theory under investigation. To leading order inthe derivative expansion, solutions to
the condition (3) are independent on the specific theory. In general, solutionsRopt to (3) are not
unique and depend on the class of regulators chosen for the optimisation. Still, it is worthwhile
noticing that (3) is a rather mild condition: it fixes only oneout of countable infinitely many
parameters describing a regulatorRk [10].

We stress that the present considerations are based on the structure of ERG flows of the form
(1). Similar considerations can be applied to other exact RGflows based upon momentum shell
integrations, like Wilsonian flows, the Polchinski RG, Wegner-Houghton flows, Hamiltonian
flows or generalised proper-time flows [17]. In contrast, an implementation is less transparent
for RG flows based upon reparametrisation invariance.

As an example, we consider a scalar theory to leading order inthe derivative expansion, using
a standard kinetic term. Higher order corrections can be treated as well. Then, a simple solution
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to the optimisation condition (3) is given by [11]

Ropt(q
2) = (k2 − q2)θ(k2 − q2) . (4)

For momentaq2 > k2, it leads to

Γ
(2)
k [φ] + Ropt(q

2) = q2 + U ′′
k (φ) (5)

Eq. (5) states that the regularisation is absent for large momenta. Forq2 < k2, we find

Γ
(2)
k [φ] + Ropt(q

2) = k2 + U ′′
k (φ) . (6)

In this region, the inverse propagator (6) is “flat”,i.e. independent of momenta. Hence, all IR
modes are treated equally. The regulator (4) has a number of interesting properties [11]. It leads
to the fastest decoupling of heavy modes, it disentangles the contribution of quantum and thermal
fluctuations along the flow, it leads to a factorisation of a homogeneous wave function renormal-
isation, it leads to a smooth approach to convexity for a theory in the phase with spontaneous
symmetry breaking, and it improves the convergence of the derivative expansion [13]. The link
to a minimum sensitivity condition has been established as well [12]. Finally, the choice (4) is
also useful from a technical point of view, because it leads to a simple analytic flow.

More generally, (most of) these properties hold as well for other optimised flows, different
from (4), as long as (6) holds approximately in the momentum region where the flow receives its
dominant contributions. We restricted the discussion to bosonic fields. Extensions to fermions
and gauge fields have been considered as well [11].

4 Stability and convergence

In the remaining part, we apply our reasoning forO(N)-symmetric real scalar theories at the
Wilson-Fisher fixed point ind = 3 Euclidean dimensions. The universality class is characterised
by the critical exponentνphys, given by the inverse of the negative eigenvalue of the stability
matrix at criticality, andηphys, the anomalous dimension. It is known from experiment that
ηphys is at most of the order of a few percent. Hence, it is believed that the derivative expansion
is a good approximation for a reliable computation of universal critical exponents. Within the
derivative expansion, the physical critical exponents at the scaling solution are computed as the
series

νphys = ν0(RS) +ν1(RS) + ν2(RS) + · · · (7)

Here, the index corresponds to the order of the derivative expansion. The anomalous dimension
η vanishes to leading order. Notice that every single order inthe expansion — due to the ap-
proximations employed — depends on the regularisation scheme. The independence of physical
observables on the regulator scheme (RS) can only be guaranteed in the limit whereall operators
of the effective action are retained during the flow. In turn,the physical valueνphys is indepen-
dent of the precise form of the infrared regulator. Hence, the infinite sum on the right-hand side
adds up in a way such that the physical values are scheme independent. The convergence of the
expansion (7) is best if a regulator is found such that the main physical information is contained
in a few leading order terms.
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Fig. 2. The critical indexν for the Ising universality class. Results are given for an expansion about
ρ = 0 (left panel) andρ = ρ0 (right panel), and for the sharp cutoff (upper curves) the quartic regulator
(middle curves) and the optimised regulator (lower curves). The stability is largely improved by replacing
the non-optimised sharp cutoff by optimised ones.

In Fig. 2, we have computedν for the Ising universality class within a polynomial approxi-
mation for the scaling potential, using a sharp cutoffRsharp (upper curves), the quartic regulator
Rquart = k4/q2 (middle curves), andRopt (lower curves) [13, 14]. BothRquart andRopt are
optimised regulators [solutions to (3)], whileRsharp is not. For the left panel, we have expanded
the scaling potential in polynomials ofρ ≡ φ2/k around vanishing field up to orderntrunc. For
the right panel, the expansion has been performed around thelocal minimumρ = ρ0. A few
lessons can be learnt from Fig. 2:

First, it is seen that the convergence and stability of the sharp cutoff flow is poor. The expan-
sion depends strongly on the expansion point. For an expansion about vanishing fields, it does
not even converge beyond a certain accuracy [18, 19]. In contrast, the polynomial approximation
converges rapidly for bothRquart andRopt. Also, the convergence depends only weakly on the
expansion point. This picture holds true for anyN . These findings confirm that optimised flows
are more stable. In this light, the non-convergence of the sharp cut-off flow within an expansion
about vanishing field is considered as a deficiency of the sharp cut-off regularisation, and not of
the expansion.

Second, we notice that the numerical values for the criticalexponentν depends on the reg-
ulator. In particular, the values obtained from optimised flows are closer to the physical value.
This holds true for allN ≥ 0 [13, 14]. Based on an investigation of a large class of regula-
tor functions, it has even been argued that the valueνopt as obtained from (4) corresponds to a
minimum [14],

νlarge−N ≥ ν
ERG

≥ νopt > νphys . (8)

Here, the upper bound denotes the large-N limit, for all N . The result (8) shows that the regulator
(4) correponds to a solution of a minimum sensitivity condition [12].
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Fig. 3. Ising universality class. Convergence ofνtrunc towardsνopt with increasing truncation. Points
whereνtrunc is larger (smaller) thanνopt are denoted by o (•).

Third, it is interesting to note thatνopt agrees to all published digits with the results obtained
from the Polchinski RG [3, 20]. This is remarkable insofar asthe two flows, ERG and Polchinski
RG, are related by a Legendre transform and appropriate fieldrescalings. Hence, their derivative
expansions are not equivalent. Also, to leading order, the result from a Polchinski flow is scheme
independent, in marked contrast to what has been found within the ERG. The agreement between
the Polchinski RG result and the ERG result based on (4) suggests that the optimisation has
removed a redundant scheme dependence from the ERG flow.

Next, we emphasize that the numerical convergence ofνtrunc from the optimised flow to-
wardsνopt is very fast (Fig. 3): typically, increasingntrunc by 2 − 2.5 increases the numerical
accuracy by one decimal point. Given that the accuracy ofν cannot be better than a few percent
(contributions∼ η are suppressed to leading order in the derivative expansion), it suffices to
retainνtrunc = 4(6) independent couplings in the Ansatz for the effective potential, in order to
achieve an accuracy forνtrunc below1% (0.1%). This efficiency is remarkable.

Finally, we discuss in Fig. 4 the relative improvement due toan optimised regulator for all
N [13]. For comparison, we again took the sharp and the quarticcutoff. It is interesting to
note that both the large-N limit and the caseN = −2 lead to universal leading-order results
for ν [21, 22]. For intermediate values, the results deviate significantly from the best one, up
to nearly9 − 10% for the sharp cutoff, and2 − 3% for the quartic one. An improvement by
up to 10% is very important, given that the physical value lies a few percent below the values
found for νopt (for all N of physical relevance). Hence, for flows based on the sharp cutoff
or similar regulators, one expects that a higher order in thederivative expansion is required to
achieve the same accuracy in comparison to optimised flows. For a more detailed discussion of
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Fig. 4. The relative improvement ofν
ERG

in comparison withνopt (various regulators).

the link between the convergence of the derivative expansion, and the optimisation, we refer to
the discussion in [13].

5 Conclusions

Within the framework of the ERG, we have studied the link between stability and convergence
properties of ERG flows, and their dependence on the regularisation. This understanding is a
prerequisite for reliable applications of the formalism. In this context, the exactness of the flow
(1) plays an important role. These considerations have leadto a simple optimisation condition
for ERG flows. When applied to scalar theories at criticalityin 3d, we have shown explicitly that
the optimisation leads to improved results already to leading order in the derivative expansion.
This understanding of the spurious scheme dependence has reduced the ambiguity inν to a small
range aboutνopt.

Some of our results are based on the particularly simple choice (4) for the regulator. However,
many more optimised regulators are available, and other choices may even be more appropriate
depending on the order of the truncation, or on the physical problem under investigation. This
can be seen already from the present results. To leading order in the derivative expansion, and as
a function of the regularisation, the critical indexν is very flat [14]. Higher order corrections∼ η
are subleading. However, it is expected that the (nearly) flat region forν is resolved to higher
order in the derivative expansion, onceη 6= 0.

Based on the understanding achieved so far, we expect that optimised flows should be useful
for applications to higher in the derivative expansion, or for applications to quantum gravity
[16], to more complex scalar theories [23], to fermionic ones [24], or to non-Abelian gauge
theories [25, 26, 27]. In all these cases, an implementationof the ERG is technically much more
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demanding, and approximations are often bound to lower orders as compared to (simpler) scalar
theories. Therefore, it may be most helpful to apply optimised flows and to achieve improved
results already to lower orders in the truncation.
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