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Particle number in kinetic theory
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We provide a derivation for the particle number densities on phase space for scalar and fermionic
fields in terms of Wigner functions. Our expressions satisfy the desired properties: for bosons the
particle number is positive, for fermions it lies in the interval between zero and one, and both are
consistent with thermal field theory. As applications we consider the Bunch-Davies vacuum and
fermionic preheating after inflation.
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1. Introduction. The notion of particles is very intu-
itive, and at the classical level, in statistical physics, the
dynamics is very successfully described by the classical
Boltzmann equation for particle densities in phase space.
In quantum physics however, the uncertainty principle
seems to prohibit the use of phase space densities, and
they are replaced by their closest analogues, the Wigner
functions [1, 2]. Yet, strictly speaking they can neither
be interpreted as particle numbers nor as probability dis-
tributions on phase space, since they may aquire negative
values. Several attempts have been made to define parti-
cle number in relativistic quantum kinetic theory [3, 4],
but so far there exists no result that would be applicable
to general situations.

In spite of those difficulties, the dynamics of quantum
fields and particle numbers in the presence of temporally
varying background fields has been extensively studied
and is well understood [5, 6, 7]. The particle number
operator can be calculated by a Bogolyubov transforma-
tion rotating the Fock space to a new basis, which mixes
positive and negative frequency solutions.

In the analysis presented in this Letter we show that
the Wigner function, which we here take as an expecta-
tion value with respect to the ground state of the original
basis, provides the necessary information about the ro-
tated basis to calculate the particle number produced by
the coupling to time-dependent external fields.

2. Scalars. As the first model case we consider a mas-
sive scalar field minimally coupled to gravity, such that
in a conformal space-time, with the metric of the form
gµν = a2ηµν , the Lagrangean is given by

√−gLΦ =
1

2
a2ηµν(∂µΦ)(∂νΦ)− 1

2
a4m2Φ2, (1)

where, ηµν = diag[1,−1,−1,−1] is the Minkowski (flat)
metric, and a = a(η) is the scale factor. For example, in
inflation a = −1/(Hη) (η < 0), while in radiation-matter
era, a = arη + amη

2. Here η denotes conformal time, ar
and am are constants.

We quantize the theory (1) by promoting Φ(x) to an
operator,

Φ(x) ≡ ϕ

a
=

1

aV

∑

k

e−ik·x
(

ϕk(η)ak + ϕ∗
−k

(η)a†−k

)

,

where V denotes the comoving volume, and the mode
functions obey the Klein-Gordon equation

(

∂2
η + ω2 − a′′/a

)

ϕk = 0, (2)

where ′ ≡ d/dη, ω2 = k
2 + a2m2(η) defines the single

particle (comoving) energy, and we take for the Wron-
skian

ϕ∗
kϕ

′
k − ϕ∗

k

′ϕk = i. (3)

Throughout this Letter we assume that the modes ϕk =
ϕk (k ≡ |k|) are homogeneous, which is justified when
the mass is varying slowly in space, such that we can ig-
nore its gradients. The field ϕ = aΦ obeys the canonical
commutation relation,

[ϕ(x, η), ∂ηϕ(x′, η)] = iδ3(x− x
′), (4)

which implies [ak, a
†
k′

] = δk,k′.
The fundamental quantity of quantum kinetic theory is

the two-point Wightman function, which we here write
for the ground state |0〉 annihilated by ak, ak|0〉 = 0.
With the rescaling suitable for conformal space-times, it
reads

iḠ<(u, v) ≡ iG<(u, v)

a(u)a(v)
= 〈0|ϕ(v)ϕ(u)|0〉 , (5)

and its Wigner transform is defined as

iG<(x, k) =

∫

d4reik·riG<(x+ r/2, x− r/2).

The Wigner function satisfies simultaneously the kinetic
and constraint equations [8, 9],

(

k0∂η + m̄2(η) sin
(1

2

←−
∂ η∂k0

)

)

iḠ< = 0 (6)

(1

4
∂2
η − k2 + m̄2(η) cos(

1

2

←−
∂ η∂k0)

)

iḠ< = 0, (7)
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where m̄2 = a2m2 − a′′/a. It is then useful to define the
n-th moments of the Wigner function,

fn(x,k) ≡
∫

dk0

2π
kn0 iḠ

<(x, k), (8)

such that the 1st and 0th moments of Eqs. (6-7) are [8, 9]

f ′
2 −

1

2
(m̄2)

′
f0 = 0 (9)

1

4
f ′′
0 − f2 + ω̄2f0 = 0, (10)

with ω̄2 = k
2 + m̄2. Eliminating f2 from (10) yields [9]

f ′′′
0 + 4ω̄2f ′

0 + 2(ω̄2)′f0 = 0. (11)

This can be integrated once to give

ω̄2f2
0 +

1

2
f0

′′f0 −
1

4
f ′
0
2

=
1

4
, (12)

where the integration constant is obtained by making
use of f0 = |ϕk|2 (cf. Eq. (17) below), Eq. (2) and the
Wronskian (3).

3. Bogolyubov transformation. The Hamiltonian den-
sity corresponding to the Lagrangean (1) reads

H =
1

2V

∑

k

{

Ωk(aka
†
k

+ a†
k
ak) + (Λkaka−k + h.c.)

}

Ωk = |ϕ′
k − (a′/a)ϕk|2 + ω2 |ϕk|2

Λk =
(

ϕ′
k −

a′

a
ϕk

)2

+ ω2ϕ2
k, (13)

and it can be diagonalised by the homogeneous Bo-
golyubov transformation,

(

âk
â†−k

)

=

(

αk β∗
k

βk α∗
k

) (

ak
a†−k

)

, (14)

where αk and βk are given by

1

2

(∣

∣

∣

∣

αk
βk

∣

∣

∣

∣

+

∣

∣

∣

∣

βk
αk

∣

∣

∣

∣

)

=
Ωk
|Λk|

, |αk|2 − |βk|2 = 1. (15)

Note that Eq. (15) permits solutions when Ωk ≥ |Λk|. In
terms of the new operators the Hamiltonian is simply

H =
1

2V

∑

k

ω(âkâ
†
k

+ â†
k
âk), [âk, â

†
k′

] = δk,k′,

and the particle number is then (cf. Refs. [5, 10] )

nk = 〈0|â†
k
âk|0〉 = |βk|2 =

Ωk
2ω
− 1

2
. (16)

In deriving these expressions we used Ω2
k − |Λ2

k| = ω2,
which can be obtained by making use of the Wron-
skian (3).

If at very early times, η → −∞, the system is in the
adiabatic regime, the mode functions can be written as

ϕk → (2ω)−1/2
(

α0e
−iωη + β0e

iωη
)

,

where |α0|2 − |β0|2 = 1, with α0 = αk(−∞), β0 =
βk(−∞). The particle number corresponding to this

state is n
(0)
k

= |β0|2.

4. Particle number in scalar kinetic theory. It is now a
simple matter to calculate the particle number in terms
of Wigner functions. Making use of (5) and (8) we find

|ϕk|2 = f0, |ϕ′
k|2 =

1

2
f ′′
0 + ω̄2f0, (17)

from which it follows

Ωk = 2

(

ω2f0 +
1

4
f ′′
0

)

− d

dη

(

a′

a
f0

)

. (18)

We then insert (18) into (16) to get

nk = ωf0 +
1

4ω
f ′′
0 −

1

2
− 1

2ω

d

dη

(

a′

a
f0

)

. (19)

This is our main result for scalars. The last term is of
course absent in a nonexpanding universe.

We now apply (19) to the Bunch-Davies vacuum [12],

ϕk =
1√
2k

(

1− i

kη

)

e−ikη, (20)

which corresponds to the mode functions of a minimally
coupled massless scalar field in de Sitter inflation, a =
−1/Hη (cf. Eq. (2)), for which f0 = (2k)−1

(

1+1/(kη)2
)

,
leading to the particle number (cf. Ref. [13])

nk =
1

4k2η2
= a2

(H

2k

)2

. (21)

Integration then gives the particle number per unit (phys-
ical) volume,

N

Vph
=

1

V a3

∑

k

a2
(H

2k

)2

=
H2

8π2

∫ aΛ dk

a
, (22)

where this is regularised by a constant ultraviolet phys-
ical cutoff kph ≡ k/a ≤ Λ, which corresponds to taking
the generation mechanism operative on scales kph ≤ Λ.
When Λ ≤MPl, the gravitational backreaction from the
Bunch-Davies vacuum can be absorbed by rescaling H .

As a consistency check, we now apply (19) to thermal
equilibrium, where the Wigner function is (cf. Ref. [11])

iG< = 2πsign(k0)δ(k
2 −m2)

1

eβk0 − 1
,

which indeed implies the standard Bose-Einstein distri-
bution, nk = 1/(eβω − 1) .

5. Fermions. Provided the fields are rescaled as
a3/2ψ → ψ and the mass as am → m, the fermionic
Lagrangean reduces to the standard Minkowski form,

√−gLψ → ψ̄ i∂/ ψ − ψ̄(mR + iγ5mI)ψ,
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where, for notational simplicity, we omitted the rescaling
of the fields and absorbed the scale factor in the mass
term. Note that the complex mass term m = mR(η) +
imI(η) induces CP-violation (cf. Ref. [14]).

The fermionic Wigner function,

iS<(k, x) = −
∫

d4reik·r〈0|ψ̄(x− r/2)ψ(x+ r/2)|0〉,

satisfies the corresponding Dirac equation which, in the
Wigner representation, reads

(

k/ +
i

2
γ0∂t − (mR + iγ5mI)e

− i

2

←

∂t∂k0

)

iS< = 0, (23)

where (iγ0S<)† = iγ0S< is hermitian. The helicity oper-

ator in the Weyl representation ĥ = k̂ · γ0
γγ5 commutes

with the Dirac operator in (23), such that we can make
the helicity diagonal ansatz for the Wigner function (cf.
Ref. [14])

− iγ0S
<
h =

1

4

(1+ hk̂ · σ
)

⊗ ρagah, (24)

where k̂ = k/|k| and σa, ρa (a = 0, 1, 2, 3) are the Pauli
matrices. Taking the appropriate traces of the real part
of (23) and integrating over k0, yields the kinetic equa-
tions for the 0th moments of gah,

ḟ0h = 0 (25)

ḟ1h + 2h|k|f2h − 2mIf3h = 0

ḟ2h − 2h|k|f1h + 2mRf3h = 0

ḟ3h − 2mRf2h + 2mIf1h = 0. (26)

Eq. (25) expresses the conservation of the Noether vector
current. The moments fah can be related to the posi-
tive and negative frequency mode functions, uh(k, t) and
vh(k, t) = −iγ2(uh(k, t))

∗, respectively. They form a ba-
sis for the Dirac field,

ψ(x)=
1

V

∑

kh

e−ik·x
(

uhakh + vhb
†
−kh

)

, uh=

(

Lh
Rh

)

⊗ ξh,

where ξh is the helicity two-eigenspinor, ĥξh = hξh. The
Dirac equation then decomposes into

i∂0Lh − h|k|Lh = mRRh + imIRh

i∂0Rh + h|k|Rh = mRLh − imILh. (27)

Note that these equations incorporate CP-violation and
thus generalise the analysis of Refs. [6, 7, 15]. Now,
from (27) one can derive (25)-(26) by multiplying with
Lh and Rh and employing

f0h = |Lh|2 + |Rh|2, f3h = |Rh|2 − |Lh|2

f1h = −2ℜ(LhR
∗
h), f2h = 2ℑ(L∗

hRh). (28)

The Hamiltonian density reads

H=
1

V

∑

kh

{

Ωkh
(

a†
khakh+b†−khb−kh

)

+(Λkhb−khakh+h.c.)
}

where

Ωkh = hk
(

|Lh|2 − |Rh|2
)

+mL∗
hRh +m∗LhR

∗
h

Λkh = 2kLhRh − hm∗L2
h + hmR2

h, (29)

with {âkh, â†k′h′} = δh,h′δk,k′ , {b̂kh, b̂†k′h′} = δh,h′δk,k′ .
We now use the Bogolyubov transformation

(

âkh
b̂†−kh

)

=

(

αkh βkh
−β∗

kh α∗
kh

) (

akh
b†−kh

)

,

to diagonalise the Hamiltonian, where αkh and βkh are

1

2

(∣

∣

∣

∣

αk
βk

∣

∣

∣

∣

−
∣

∣

∣

∣

βk
αk

∣

∣

∣

∣

)

=
Ωk
|Λk|

, |αk|2 + |βk|2 = 1, (30)

leading to the particle number density on phase space,

nkh = |βkh|2 =
1

2
− Ωkh

2ω
. (31)

To construct the initial mode functions in the adiabatic
domain, η → −∞, we use the positive frequency solution
and its charge conjugate,

ψk →
(

α0L
+
h + β0L

−
h

α0R
+
h + β0R

−
h

)

, |α0|2 + |β0|2 = 1.

From the Dirac equation under adiabatic conditions it
follows

L+
h =

√

ω + hk

2ω
, L−

h = −i m|m|

√

ω − hk
2ω

R+
h =

m∗

√

2ω(ω + hk)
, R−

h = i
|m|

√

2ω(ω − hk)
.

These mode functions correspond to an initial particle

number n
(0)
k

= |β0|2.
We now make use of (28) to express Ωkh in terms of

the Wigner functions,

Ωkh = −(hkf3h +mRf1h +mIf2h), (32)

which implies our main result for fermions,

nkh =
1

2ω
(hkf3h +mRf1h +mIf2h) +

1

2
. (33)

Note that in the limit m→ 0, this expression reduces to
the phase space density of axial particles.

As an application of Eq. (33) we consider particle pro-
duction at preheating [10, 15], in which the fermionic
mass is generated by an oscillating inflaton condensate.
Assuming that the inflaton oscillates as a cosine function
results in a fermion production shown in figure 1. Ob-
serve that, even for a relatively small imaginary (pseu-
doscalar) mass term, particle production of the opposite
helicity states is completely different, implying a nonper-
turbative enhancement of a CP-violating particle density,
nk+−nk−, which may be of relevance for baryogenesis.

When applied to thermal equilibrium, where (cf. [11])

iS< = −(k/ +mR − iγ5mI)δ(k
2−|m|2)sign(k0)

2π

eβk0 + 1
,
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FIG. 1: The number of produced fermions as a function of
time with helicity h = + (solid ) and h = − (dotted ), mass
m/ωI = 10 + 15 cos(2τ ) − i sin(2τ ), |k| = ωI , τ = ωIt, where
ωI denotes the frequency of the inflaton oscillations.

Eq. (33) yields the Fermi-Dirac distribution, nkh =
1/(eβω + 1).

6. Discussion. We have derived general expressions
for the particle number densities on phase space for
scalars (19) and fermions (33) in terms of the appro-
priate Wigner functions. Both of these expressions are
strictly positive, and moreover, the number of fermions
is bounded from above by unity, as required by the Pauli
principle. In order to incorporate the effect of self-energy
into (19) and (33), one needs to include this correction
into the dispersion relation, ω = ω(k, x). When the sin-
gle particle picture breaks down it is not clear whether a
sensible definition of particle number can be constructed.
Our analysis can be extended to include gauge fields by
coupling them canonically to scalars and fermions.

In the derivation of our results, we considered pure
quantum states, yet showed explicitly their applicabil-
ity to thermal states. More generally, our definitions
are valid if one requires the density matrix ̺ to satisfy
〈akak〉̺ = 〈a†

k
a†
k
〉̺ = 0. These relations hold e.g. for

eigenstates of the particle number operator N̂k ≡ a†
k
ak,

and, as pointed out in Ref. [16], for random phase states,
a special case of which is the canonical ensemble. States
of this kind can be treated as a linear superposition of the
particle number eigenstates which we considered above.

While the fermionic particle number definition (33) is
generally applicable, the scalar one (19) fails however
when ω2 = k2 + m2 < 0, which can happen at phase
transitions. Then Ωk < |Λk| in (13), and the Bogolyubov
transformation (15) does not have a solution. Neverthe-
less, even in this case, the energy density on phase space
Ωk in Eq. (18) is well defined, and should be considered
as a fundamental quantity of kinetic theory. Another
important quantity is Λ∗

k = 〈k,−k|H |0〉, the transition
amplitude for particle pair creation with the momenta
{k,−k}; and likewise Λk is the transition amplitude for

pair annihilation. The appropriate description in this
case is in terms of squeezed states. For an account of the
inverted harmonic oscillator in terms of squeezed states
see eg. Ref. [17].

Our definition of particle number can be used for
studies of quantum-to-classical transition, decoherence
and entropy calculations of eg. cosmological perturba-
tions [17, 18, 19]. Moreover, when suitably normalised,
the particle density nk can be used to define a density
matrix on phase space, ̺k = nk/

∑

k′
nk′ .
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