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Abstract

We study exact renormalisation group equations for the 3d Ising universality class.

At the Wilson-Fisher fixed point, symmetric and antisymmetric correction-to-scaling

exponents are computed with high accuracy for an optimised cutoff to leading order

in the derivative expansion. Further results are derived for other cutoffs including

smooth, sharp and background field cutoffs. An estimate for higher order corrections

is given as well. We establish that the leading antisymmetric corrections to scaling

are strongly subleading compared to the leading symmetric ones.
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1. Introduction

Many physical systems with short range interactions and a scalar order parameter

display Ising universal behaviour close to the critical point. Initially introduced for the

study of magnetic systems, the Ising model also describes the physics of the liquid-gas

phase transition, transitions in binary mixtures and in Coulombic systems [1]. In high

energy physics, Ising universal behaviour is expected in various theories including the QCD

phase transition with finite quark masses [2], the chiral phase transition of QCD [2, 3], and

the electro-weak phase transition [4].

The original Ising model has a global Z2 symmetry. However, many systems in the Ising

universality class like the liquid-gas and the electro-weak phase transition do not possess

the Z2 symmetry away from the critical point. The presence of operators odd under Z2 lead

to additional corrections-to-scaling exponents. In principle, deviations from Z2 symmetric

scaling are detectable experimentally. Antisymmetric corrections to scaling ∼ L−0.5 have

been revealed in a Monte-Carlo simulation of the electro-weak phase transition [4]. Previous

theoretical studies of antisymmetric corrections to scaling are based on the ǫ-expansion [5],

the scaling field method [6], and the Wegner-Houghton equation [7].

In this Letter, we study corrections to scaling for the 3d Ising universality class using

the Exact Renormalisation Group, which is based on the Wilsonian idea of successively

integrating out momentum modes (see [8] for reviews and references therein). This

approach is implemented through an infra-red cutoff which, within a few constraints,

can be chosen freely. The strengths of the method are its flexibility and its numerical

stability. Furthermore, a general optimisation procedure is available, enabling a choice

of the infra-red cutoff best suited for the problem at hand [9]. To leading order in a

derivative expansion, we employ an optimised cutoff and compute the first six subleading

corrections-to-scaling exponents with high accuracy. We also obtain results for smooth,

sharp and background field cutoffs, and estimate higher order corrections.

2. Renormalisation group and critical exponents

Renormalisation group methods have been used very successfully in the computation of

universal observables at second order phase transitions. A particularly useful approach is

the Exact Renormalisation Group (ERG), based on the Wilsonian idea of integrating out

momentum modes within a path integral representation of quantum field theory [8]. In its

modern form, the ERG flow for an effective action Γk for bosonic fields ϕ is given by the

simple one-loop expression

∂tΓk[ϕ] =
1

2
Tr
(

Γ
(2)
k + R

)−1
∂tR. (1)

Here, t ≡ ln k is the logarithmic scale parameter, the trace denotes a momentum trace and a

sum over indices, Γ(2)[ϕ](p, q) ≡ δ2Γ/δϕ(p)δϕ(q), and R is an infra-red momentum cutoff at

1



the momentum scale k. The flow (1) interpolates between an initial (microscopic) action in

the ultra-violet and the full quantum effective action in the infra-red. At every momentum

scale k, (1) receives its main contributions for momenta about p2 ≈ k2. The regulator can

be chosen freely and allows for an optimisation of the flow within general approximations

[9]. The optimisation entails improved convergence and stability properties of the flow.

In combination with the numerical stability of the flow, it provides the basis for reliable

predictions based on systematic approximations to (1). An important non-perturbative

approximation scheme is the derivative expansion [10]. To leading order, the local potential

approximation consists in the Ansatz

Γk =
∫

ddx
(

Uk(ϕ) +
1

2
∂µϕ∂µϕ

)

(2)

for the effective action. It implies that higher order corrections proportional to the anoma-

lous dimension η of the fields are neglected. For the Ising universality class, η is of the order

of a few percent. Inserting the Ansatz (2) into the flow equation (1) and evaluating it for

constant fields leads to the flow for the effective potential Uk. We introduce dimensionless

variables u(φ) = Uk/k
d and φ = ϕk1−d/2. Then, finding a fixed point amounts to solving

∂tu = 0. To that end we employ a polynomial truncation of the fixed point potential,

retaining vertex functions φn up to a maximum number ntrunc,

u(φ) =
ntrunc
∑

n=1

1
n! τn φn . (3)

The potential has been normalised as u(φ = 0) = 0. The Ansatz (3) leads to ntrunc ordinary

differential equations ∂tτi ≡ βi. In three Euclidean dimensions, the flow equation exhibits the

nontrivial Wilson-Fisher fixed point u∗ 6= 0. Universal critical exponents and corrections-

to-scaling exponents are obtained as the eigenvalues of the stability matrix at criticality

Mij = ∂βi/∂τj |∗. For convenience, we introduce the set of φ-even couplings λn = τ2n and φ-

odd couplings λ̄n = τ2n−1. Under reflection in field space the couplings and their β-functions

behave as

φ → −φ :

{

(λ, λ̄) → (λ,−λ̄)

(βλ, βλ̄) → (βλ,−βλ̄)
(4)

The scaling solution is symmetric under φ → −φ. Hence all φ-odd couplings λ̄∗ vanish

at the fixed point. The computation of critical exponents is simplified by observing that

βλ̄(λ, λ̄) = −βλ̄(λ,−λ̄) for all λ. This follows from (3) and (4). In particular, βλ̄ vanishes

identically at λ̄ = 0, where all derivatives of βλ̄ w.r.t. the symmetric couplings vanish at

the fixed point. Therefore, the stability matrix M at criticality simplifies and becomes

equivalent to the matrix
(

A B

0 C

)

(5)

with A ≡ ∂βλ/∂λ|∗, B ≡ ∂βλ/∂λ̄|∗ and C ≡ ∂βλ̄/∂λ̄|∗ . In consequence, the eigenvalues

of M reduce to those of the sub-matrices A and C. The matrix A carries the information
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Figure 1: The exponents ν, ω and ω2 from a polynomial

truncation to order ntrunc about vanishing field.

about the critical exponent ν and the symmetric corrections to scaling, while the matrix C

contains the information about antisymmetric corrections to scaling.

3. Results

In this section, we present our results for the universal eigenvalues of the stability matrix.

The fixed point is determined in truncations up to ntrunc = 40. The optimised regulator

Ropt = (k2 − q2)θ(k2 − q2) is employed to improve the convergence and stability of the flow

[9, 11, 12]. The stability matrix is evaluated with two different methods: an expansion in

powers of the field about vanishing field, and an expansion in Legendre polynomials. The

latter case involves an integration in field space.

Our numerical results are given in Tab. 1 and 2, and in Figs. 1-4. First, we discuss our

results for the φ-even corrections to scaling. In Fig. 1, the three leading eigenvalues of A are

displayed, ν−1, ω and ω2. Notice that the eigenvalues are identical for truncations (n, n+1),

if n is even. The reason for this is simple: increasing the truncation by a φ-odd coupling does

neither change the dimension of the matrix A, nor the numerical values of the fixed couplings

(because φ-odd couplings vanish at the fixed point). Hence, the φ-even eigenvalues remain

unchanged, as is clearly seen in Fig. 1. The numerical values for the φ-even eigenvalues are

identical to those which are found in a polynomial expansion in ρ = φ2/2.
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Figure 2: The exponent ω̄1 (see Fig.1).

φ-even φ-odd

yh − 2.5

ν 0.6495 yshift − 0.5

ω1 0.655 ω̄1 1.88

ω2 3.18 ω̄2 4.5

ω3 5.9 ω̄3 7

Table 1: φ-even and φ-odd eigenvalues (Ropt, ntrunc = 40).

Next, we turn to the φ-odd corrections to scaling (Figs. 2-4). We have computed the

eigenvalues of the matrix C for ntrunc up to ntrunc = 40. We find two eigenvalues yh = −5/2

and yshift = −1/2, related to redundant operators [6]. All other eigenvalues are positive. We

denote them as ω̄n. The leading non-trivial φ-odd correction-to-scaling exponent ω̄1 as a

function of the truncation is displayed in Fig. 2. (In the literature, ω̄1 is sometimes denoted

as ωA or ω5.) Our results for ω̄2 and ω̄3 are given in Fig. 3 and 4, respectively. Notice that

the pattern of the results, with increasing truncation, is similar to the pattern found in the φ-

even sector. The results for two subsequent truncations (n, n+1) for n odd are close to each

other for sufficiently large truncation. The reason for this is the following: increasing the

truncation by a φ-even coupling does not change the dimension of the matrix C. However,

it does change the numerical value of the fixed point, and hence the eigenvalues of C. With

increasing truncation, the numerical change within the φ-even couplings at the fixed point
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Figure 3: The exponent ω̄2 (see Fig.1). Figure 4: The exponent ω̄3 (see Fig.1).

is very small and eventually, the eigenvalues of C become insensitive to the addition of a

φ-even coupling. This is nicely observed in the results presented in Figs. 2-4. Comparing

the symmetric with the antisymmetric corrections to scaling, the general pattern we find is

that 0 < ω1 < ω̄1 < · · · < ωn < ω̄n < · · ·.

φ-even φ-odd

yh − 2.5

ν 0.649562 yshift − 0.5

ω1 0.6557 ω̄1 1.886

ω2 3.180 ω̄2 4.524

ω3 5.912 ω̄3 7.33

Table 2: φ-even and φ-odd eigenvalues (Ropt, ntrunc = 22, φmax = 0.46).

We have also computed the critical exponents by using the approach of [7]. Expanding

the scaling potential and the eigenperturbations in terms of orthogonal polynomials

(Legendre polynomials) implies that the matrix elements of (5) involve an integration in

field space φ ∈ [−φmax, φmax]. The weak dependence on φmax is fixed by requiring that the

φ-even eigenvalues agree to high accuracy with the known values obtained in [12] using

an expansion in ρ = φ2/2 about the potential minimum ρ = ρ0. This procedure improves

the numerical convergence. Our results for the eigenvalues are given in Tab. 2. They are

consistent with and have a higher accuracy than those given in Tab. 1.
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Figure 5: The exponent ω̄1 from a polynomial expansion up to

order ntrunc, and in comparison for the sharp, the background

field (bg), the optimised (opt) and the quartic cutoff (see text).

Next we discuss our results based on other regularisations including the power law cutoff,

the sharp cutoff and a background field cutoff. Varying the momentum dependence of the

regulator R from “smooth” to “sharp” allows for an estimate of higher order corrections

due to operators neglected in the present approximation, e.g. [13]. We have computed the

φ-even and φ-odd eigenvalues for a smooth power-like regulator Rquartic = k2 · (q4/k4), for

the sharp cutoff Rsharp = lima→∞ a k2θ(k2 − q2), and for a background field cutoff Rbg.

Results are summarised in Fig. 5 and Tab. 3.

The power-law cutoff Rquartic is optimised in the sense of [9]. We find that the flow

based on Rquartic has similar stability and convergence properties as the flow with Ropt,

e.g. Fig. 5. Also, the numerical results as given in Tab. 3 are within 5% or less to each

other. The sharp cutoff does not lead to an optimised flow [9]. It displays instabilities

within a local polynomial expansion about vanishing field [12, 14]. This is confirmed in our

analysis. In Fig. 5, the φ-odd eigenvalue ω̄1 is displayed up to a truncation ntrunc = 30. The

local field expansion based on Rsharp oscillates in the eight-fold pattern (+ + + + −−−−)

about its mean value, reminiscent of the four-fold pattern in an expansion in φ2, [12]. The

expansion fails to converge at the present order. The asymptotic value for ω̄1 is indicated

by the dashed line. Moreover, the eigenvalues for ntrunc = 16, 17, 24 and 25 possess a small

imaginary part, which is not displayed in Fig. 5. These findings are a reflection of an

intrinsic instability of the sharp cutoff flow. Furthermore, the sharp cutoff value for the

leading critical exponent ν is ∼ 8% larger than the value for Ropt [11], and ∼ 10% larger
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than the physical value. These properties indicate that quantitative results from the sharp

cutoff flow within a given truncation, although qualitatively correct, are less reliable than

those by optimised cutoffs.

The instability in the stability matrix of the sharp cutoff flow is removed by expanding

the fixed point potential and the eigenperturbations in terms of Legendre polynomials. For

the eigenvalues, we adjust φmax as described above to improve the numerical convergence.

Our results are given in Tab. 3, and by the dashed line in Fig. 5. In the φ-even sector, our

results agree to all significant digits with those by Morris (quartic cutoff) [15], Comellas and

Travesset (sharp cutoff) [16] and Litim (optimised cutoff) [12]. This provides a non-trivial

consistency check, because the numerical methods employed in [15, 16], in [12], and here,

are all different. The main new results concern the eigenvalues in the φ-odd sector, where

we also confirm the first two eigenvalues by Tsypin (sharp cutoff) [7] (see also [17]).

φ-even Rsharp Rquartic Ropt Rbg φ-odd Rsharp Rquartic Ropt Rbg

ν 0.6895 0.6604 0.649562 0.625979

ω1 0.5952 0.6285 0.6557 0.762204 ω̄1 1.691 1.812 1.886 2.163

ω2 2.838 3.048 3.180 3.6845 ω̄2 3.998 4.32 4.524 5.313

ω3 5.18 5.63 5.912 7.038 ω̄3 6.38 6.96 7.33 8.85

Table 3: φ-even and φ-odd eigenvalues for the sharp, quartic, optimised and background

field cutoff, using φmax = 0.43, 0.45, 0.46, and 0.46, respectively (see text).

Now we proceed with the background field flow, where plain momenta q2 in the regulator

are replaced by Γ(2)[φ̄], the full inverse propagator evaluated at some background field φ̄

[18] (see also [19]). Identifying the background field with the physical mean leads to a

partial diagonalisation, which should further stabilise the flow. Background field flows

are closely related to the proper-time renormalisation group of Liao [20], to which they

reduce once an additional flow term proportional to ∂tΓ
(2) is dropped. Implicit to this

approach is that differences between fluctuation and background field are neglected — an

approximation, which in the present theory becomes exact in the infra-red limit. Hence,

as detailed in [18], we expect this approximation to be viable in the vicinity of a critical point.

Here, we use the flow ∂tΓk = Tr exp−Γ
(2)
k /k2 to leading order in a derivative expansion.

It is a background field flow in the proper-time approximation with regulator Rbg given

by (13), (14) of [18]. Amongst the proper-time flows, it has best stability properties [21]

(see also [11]). This is reflected by the very fast convergence of ω̄1 with the truncation

(Fig. 5). We also stress that the first two eigenvalues in the φ-even sector, which agree

with earlier results in [21, 22], are very close to the physical values. The further subleading

corrections-to-scaling exponents are increasingly larger than the values for Ropt. This trend

is indicative for the potential effect of higher order corrections.
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Finally we comment on the Polchinski renormalisation group [23]. It is related to the

flow (1) by a Legendre transform and additional field rescalings. In consequence, both

methods have inequivalent derivative expansions. To leading order, the Polchinski flow

is independent of the regularisation [24], in contradistinction to the present approach,

e.g. [12]. For Ropt, critical exponents in the φ-even sector agree to high precision with those

from the Polchinski flow. The numerical value for the φ-odd eigenvalue ω̄1 given in Tab. 2

for Ropt, also agrees with preliminary results from the Polchinski flow [25]. If these find-

ings persist, they confirm the deeper link between the two methods even for the φ-odd sector.

4. Discussion and conclusion

We have studied symmetric and antisymmetric corrections to scaling at criticality for

systems belonging to the 3d Ising universality class. The first six subleading universal

corrections-to-scaling exponents are obtained from an exact renormalisation group. Best

results are achieved for optimised flows, which have enhanced convergence and stability

properties. In addition, we have assessed the cutoff dependence for smooth, sharp and a

background field cutoff. This study also served as an indicator for higher order effects.

Results from the standard and the background field flows have to be seen on slightly

different footings due to qualitative differences in the approximations.

For the optimised flow, the leading symmetric and antisymmetric correction-to-scaling

exponents are ω = 0.6557 and ωA = 1.886. For different regularisations ranging from sharp

to optimised cutoffs and including (excluding) the background field flow, the exponents

vary between ω ≈ 0.60 − 0.76 (0.60 − 0.66) and ωA ≈ 1.7 − 2.2 (1.7 − 1.9). Higher order

corrections due to a non-vanishing anomalous dimension lead to ω ≈ 0.8, and similar

corrections are expected for ωA. Expressed in terms of the exponent ∆A = ωA ν, our results

are ∆A ≈ 1.22 for the optimised, ∆A ≈ 1.2 for the quartic, ∆A ≈ 1.17 for the sharp and

∆A ≈ 1.35 for the background field cutoff. This compares well with ∆A ≈ 1.3 which is often

assumed in the analysis of experimental data, e.g. [26]. The leading symmetric corrections

to scaling are ∆ = ω ν ≈ 0.42 − 0.48, increasing towards ∆ ≈ 0.52 once anomalous

dimensions are taken into account. This cutoff dependence indicates the expected size of

higher order effects. Our results for ωA are consistent with the estimate ωA > 1.5 based on

Padé resummation of the ǫ-expansion [5], and with ωA ≈ 2.4 from the scaling field method

[6]. We notice that all sharp cutoff eigenvalues are systematically smaller than those from

any other cutoff. This reflects, we believe, the notoriously poor convergence behaviour of

sharp cutoff flows.

In conclusion, we have established that the leading antisymmetric corrections to scaling

are consistently suppressed compared to the leading symmetric ones. Within the errors,

the exponent ωA is more than twice as big as ω. Hence, the scaling behaviour ∼ L−0.5 as

seen in a Monte-Carlo simulation of the electro-weak theory clearly dominates over both the

leading symmetric ∼ L−ω and antisymmetric ∼ L−ωA corrections to scaling and therefore

cannot be explained with the exponent ωA.
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