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Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for
a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in
the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
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Classical general relativity is acknowledged as the
theory of gravitational interactions for distances suffi-
ciently large compared to the Planck length. At smaller
length scales, quantum effects are expected to become
important. The quantisation of general relativity, how-
ever, still poses problems. It is known since long that
quantum gravity is perturbatively non-renormalisable,
meaning that an infinite number of parameters have
to be fixed to renormalise standard perturbation the-
ory. It has been suggested that Einstein gravity may
be non-perturbatively renormalisable, a scenario known
as asymptotic safety [1]. This requires the existence of
a non-trivial ultraviolet fixed point with at most a fi-
nite number of unstable directions. Then it would suf-
fice to adjust a finite number of parameters, ideally taken
from experiment, to make the theory asymptotically safe.
Non-perturbative renormalisability has already been es-
tablished for a number of field theories [2].

The search for fixed points in quantum field theory
calls for a renormalisation group study. A particularly
useful approach is given by the Exact Renormalisation
Group, based on the integrating-out of infinitesimal mo-
mentum shells within a path integral representation of
the theory [3]. The strength of the method is its flexibility
when it comes to approximations. Furthermore, general
optimisation procedures are available [4], increasing the
domain of validity and the convergence of the flow. Con-
cequently, the reliability of results based on optimised
flows is enhanced [5].

For Euclidean quantum gravity the Exact Renormal-
isation Group has been made accessible by Reuter [6].
Explicit flow equations have been constructed using back-
ground field techniques [6, 7, 8]. Diffeomorphism invari-
ance under local coordinate transformations is controlled
by modified Ward identities, similar to those known for
non-Abelian gauge theories [9]. In general, methods orig-
inally developed for gauge theories [10], with minor mod-
ifications, can now be applied to quantum gravity.

So far most studies have been concerned with the
Einstein-Hilbert truncation based on the operators

√
g

and
√

g R(g) in the effective action, where g is the de-
terminant of the metric tensor gµν and R(g) the Ricci
scalar. In four dimensions, the high energy behaviour of
quantum gravity is dominated by a non-trivial ultraviolet
fixed point [7, 11, 12], which is stable under the inclusion

of R2(g) interactions [8] or non-interacting matter fields
[13]. Further indications for the existence of a fixed point
are based on dimensionally reduced theories [14] and on
numerical studies within simplicial gravity [15]. For phe-
nomenological applications, see [16].

In this Letter, we study fixed points of quantum grav-
ity in the approach put forward in [6], amended by an
adequate optimisation [4, 5]. The main new result is the
existence of a non-trivial ultraviolet fixed point in the
Einstein-Hilbert truncation in dimensions higher than
four, a region which previously has not been accessible.
Analytical results for the flow and its fixed points are
given for arbitrary dimension. The optimisation ensures
the maximal reliability of the result in the present trun-
cation, thereby strengthening earlier findings in four di-
mensions. Implications of these results are discussed.

The Exact Renormalisation Group is based on a mo-
mentum cutoff for the propagating degrees of freedom
and describes the change of the scale-dependent effective
action Γk under an infinitesimal change of the cutoff scale
k. Thereby it interpolates between a microscopic action
in the ultraviolet and the full quantum effective action in
the infrared, where the cutoff is removed. In its modern
formulation, the renormalisation group flow of Γk with
the logarithmic scale parameter t = ln k is given by

∂tΓk = 1

2
Tr

(

Γ
(2)
k + R

)−1

∂tR . (1)

The trace stands for a sum over indices and a loop in-
tegration, and R (not be confused with the Ricci scalar)
is an appropriately defined momentum cutoff at the mo-
mentum scale q2 ≈ k2. For quantum gravity, we consider
the flow (1) for Γk[gµν ] in the Einstein-Hilbert trunca-
tion, retaining the volume element and the Ricci scalar
as independent operators. Apart from a classical gauge
fixing, the effective action is given by

Γk =
1

16πGk

∫

ddx
√

g
[

−R(g) + 2λ̄k

]

. (2)

In (2) we have introduced the gravitational coupling con-
stant G and the cosmological constant λ̄. The Ansatz (2)
differs from the Einstein-Hilbert action in d Euclidean
dimensions by the fact that the gravitational coupling
and the cosmological constant have turned into scale-
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dependent functions. This is a consequence of the mo-
mentum cutoff, expressed in (1). We introduce dimen-
sionless renormalised gravitational and cosmological con-
stants gk and λk as

gk = kd−2 Gk ≡ kd−2 Z−1
N,k Ḡ

λk = k−2 λ̄k

(3)

Ḡ and λ̄ denote the unrenormalised Newtonian coupling
and cosmological constant at some reference scale k =
Λ, and ZN,k denotes the wave function renormalisation
factor for the Newtonian coupling. Their flows follow
from (1) by an appropriate projection onto the operators
in (2). A scaling solution of the flow (1) in the truncation
(2) corresponds to fixed points for the couplings (3).

Explicit momentum cutoffs have been provided for the
fluctuations in the metric field in Feynman gauge [6],
and for its component fields in a traceless transverse de-
composition in a harmonic background field gauge with
gauge fixing parameter α [7]. In either case the ten-
sor structure of the regulator is fixed, while the scalar
part is left free. Here, we employ the optimised cutoff
Ropt = (k2 − q2) θ(k2 − q2) for the scalar part [4, 5].
In the setup (1) – (3), we have computed the flow equa-
tion for arbitrary α and arbitrary dimension. To simplify
the notation, a factor 1/α is absorbed into the definition
(3). Below we present explicit formulæ only for the limit
α → ∞ where the results take their simplest form. The
general case is discussed elsewhere. The β-functions are

βλ ≡ ∂tλ =
P1

P2 + 4(d + 2)g

βg ≡ ∂tg = (d − 2 + η)g =
(d − 2) g P2

P2 + 4(d + 2)g

(4)

with polynomials P1,2(λ, g; d)

P1 =−16λ3 + 4λ2(4 − 10d g − 3d2 g + d3 g)

+4λ(10d g + d2 g − d3 g − 1)

+d(2 + d)(d − 16 g + 8d g − 3) g

P2 = 8(λ2 − λ − d g) + 2 .

A numerical factor cd = Γ( d

2
+ 2) (4π)d/2−1 originating

mainly from the momentum trace in (1), is scaled into the
gravitational coupling g → g/cd, unless indicated other-
wise. The graviton anomalous dimension is given by

η =
(d − 2)(d + 2) g

(d − 2)g − 2(λ − 1

2
)2

. (5)

It vanishes for vanishing gravitational coupling, in two
and minus two dimensions, or for diverging λ. On a non-
trivial fixed point the vanishing of βg implies η∗ = 2− d,
and reflects the fact that the gravitational coupling is
dimensionless in 2d. This behaviour leads to modifi-
cations of the graviton propagator at large momenta,
e.g. [7]. The flows (4) are finite except on the boundary

gbound(λ) ≡ (2λ − 1)2/(2d − 4) derived from 1/η = 0. It
signals a breakdown of the truncation (2). Some trajecto-
ries terminate at g ≈ gbound. The boundary is irrelevant
as soon as the couplings enter the domain of canonical
scaling: the limit of large |λ| implies that βλ = −2λ and
βg = (d − 2)g modulo subleading corrections. This en-
tails η = 0. Then the flow is trivially solved by gk =
gΛ(k/Λ)d−2 and λk = λΛ(k/Λ)−2, the canonical scaling
of the couplings as implied by (3). Here, Λ denotes the
momentum scale where the canonical scaling regime is
reached. In the infrared limit g/gbound(λ) ∼ (k/Λ)d+2

becomes increasingly small for any dimension.
In the remaining part, we discuss the fixed points of (4)

and their implications. A first understanding is achieved
in the limit of vanishing cosmological constant, where the
flow for the dimensionless gravitational coupling is

βg =
(1 − 4dg)(d − 2)g

1 + 2(2 − d)g
. (6)

The flow (6) displays two fixed points, the Gaussian one
at g = 0 and a non-Gaussian one at g∗ = 1/(4d). In
the vicinity of the non-trivial fixed point for large k, the
gravitational coupling behaves as Gk ≈ g∗/kd−2. This
behaviour is similar to asymptotic freedom in Yang-Mills
theories. The anomalous dimension of the graviton (5)
remains finite and ≤ 0 for all g between the infrared and
the ultraviolet fixed point, because gk ≤ g∗ < gbound(0)
for all d > −2 and gΛ ≤ g∗. At the fixed point, universal
observables are the eigenvalues of the stability matrix
at criticality, i.e. the critical exponents. The universal
eigenvalue θ is given by ∂βg/∂g|∗ = −θ. We find

θG = 2 − d , θNG = 2d
d − 2

d + 2
(7)

for the Gaussian (G) and the non-Gaussian (NG) fixed
point, respectively. The eigenvalues at criticality have
opposite signs, the Gaussian one being infrared attractive
and the non-Gaussian one being ultraviolet attractive.
They are degenerate in two dimensions. Away from the
fixed points, the flow (6) can be solved analytically for
arbitrary scales k. With initial condition gΛ at k = Λ,
the solution gk for any k is

(

gk

gΛ

)−1/θG
(

g∗ − gk

g∗ − gΛ

)−1/θNG

=
k

Λ
. (8)

and g∗, θG and θNG as given above. Fig. 1 shows
the crossover from the infrared to the ultraviolet fixed
point in the analytic solution (8) in four dimensions (and
with c4 in g reinserted). The corresponding crossover
momentum scale is associated with the Planck mass,
MPl = (G)−1/2. More generally, (8) is a solution at
λ = 0 for arbitrary gauge fixing parameter and regu-
lator. In these cases, the exponents θ and the fixed point
g∗ turn into functions of the latter. It is reassuring that
the eigenvalues only display a mild dependence on these
parameters.
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Fig. 1: Running of couplings according to (6), (8).

Now we proceed to the non-trivial fixed points implied
by the simultaneous vanishing of βg and βλ, given in (3).
A first consequence of P2 = 0 is g∗ = (λ∗− 1

2
)2/d, which,

when inserted into P1/g∗ = 0, reduces the fixed point
condition to a quadratic equation with two real solutions
(λ∗, g∗) 6= 0 as long as d ≥ d+, where d± = 1

2

(

1 ±
√

17
)

.
The two branches of fixed points are characterised by
λ∗ being larger or smaller 1

2
. The branch with λ∗ ≥ 1

2

displays an unphysical singularity at four dimensions and
is therefore discarded. Hence,

λ∗ =
d2 − d − 4 −

√

2d(d2 − d − 4)

2(d − 4)(d + 1)

g∗ =
2Γ( d

2
+ 2)(4π)d/2−1

d2 − d − 4
λ2
∗ .

(9)

In (9), we have reinserted the numerical factor cd. The
solutions (9) are continuous and well-defined for all d ≥
d+ ≈ 2.56 and become complex for lower dimensions.
The critical exponents associated to (9) are derived from
the stability matrix at criticality. In the most interesting
case d = 4, the two eigenvalues are a complex conjugate
pair θ± ≡ θ′ ± iθ′′ = (5 ± i

√
167)/3, or

θ′ = 1.667 , θ′′ = 4.308 . (10)

More generally, the eigenvalues remain complex for all
dimensions 2.56 < d < 21.4. In d = 4, and for gen-
eral gauge fixing parameter, the eigenvalues vary between
θ′ ≈ 1.5 − 2 and θ′′ ≈ 2.5 − 4.3. The range of variation
serves as an indicator for the self-consistency of (2). The
result (10) and the variation with α agree well with ear-
lier findings based on other regulators [7, 11]. In the
approximation (6), which does not admit complex eigen-
values, the ultraviolet eigenvalue reads θNG = 8/3 in 4d.
Both θNG and θ′ agree reasonably well with the criti-
cal eigenvalue θ ≈ 3 detected within a numerical study
of 4d simplicial gravity with fixed cosmological constant
[15]. In view of the conceptual differences between the
numerical analysis of [15] and the present approach, the
precise relationship between these findings requires fur-
ther clarification. Still, the qualitative agreement is very
encouraging.
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Fig. 2: The separatrix in four dimensions.

Next, we discuss the main characteristics of the phase
portrait defined through (4). Finiteness of the flow im-
plies that the line 1/η = 0 cannot be crossed. Slowness of
the flow implies that the line η = 0 can neither be crossed:
in its vicinity, the running of g is βg = (d − 2)g + O(g2),
and the gravitational coupling approaches g = 0 without
ever reaching (nor crossing) it for any scale k. Thus, dis-
connected regions of renormalisation group trajectories
are characterised by whether g is larger or smaller gbound

and by the sign of g. Since η changes sign only across
the lines η = 0 or 1/η = 0, we conclude that the graviton
anomalous dimension has the same sign along any tra-
jectory. In the physical domain which includes the ultra-
violet and the infrared fixed point, the gravitational cou-
pling is positive and the anomalous dimension negative.
In turn, the cosmological constant may change sign on
trajectories emmenating from the ultraviolet fixed point.
Some trajectories terminate at the boundary gbound(λ),
linked to the present truncation (cf. Fig. 2). The two
fixed points are connected by a separatrix. In Fig. 2,
it has been given explicitly in four dimensions (with the
factor c4 in g reinstalled). Integrating the flow starting in
the vicinity of the ultraviolet fixed point and fine-tuning
the initial condition leads to the trajectory which runs
into the Gaussian fixed point. The rotation of the separa-
trix about the ultraviolet fixed point reflects the complex
nature of the eigenvalues (10). At k ≈ MPl, the flow dis-
plays a crossover from ultraviolet dominated running to
infrared dominated running. For the running couplings
and η this behaviour is displayed in Fig. 3. The non-
vanishing cosmological constant modifies the flow mainly
in the crossover region rather than in the ultraviolet. A
similar behaviour is expected for operators beyond the
truncation (2). This is supported by the stability of the
fixed point under R2(g) corrections [8], and by the weak
dependence on the gauge fixing parameter. In the in-
frared limit, the separatrix leads to a vanishing cosmo-
logical constant λ̄k = λkk2 → 0. Therefore, it is inter-
preted as a phase transition boundary between cosmolo-
gies with positive or negative cosmological constant at
large distances. This picture agrees very well with nu-
merical results for a sharp cut-off flow [12], except for
the location of the line 1/η = 0 which is non-universal.
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Fig. 3: Running of couplings along the separatrix.

Finally, we note that the qualitative picture detailed
above persists in dimensions higher than four. Therefore
quantum gravity in higher dimensions may well be formu-
lated as a fundamental theory. This consideration is also
of interest for recent phenomenological scenarios based
on gravity in extra dimensions. In higher dimensions,
higher dimensional operators beyond the truncation (2)
are likely to be more relevant than in lower ones. Conse-
quently, the projection of the full flow onto the Einstein-
Hilbert truncation (2) and the respective domain of va-
lidity are more sensitive to the cutoff. A first analysis for
specific cutoffs in d > 4 has revealed that the fixed point
exists up to some finite dimension, where λ∗ reached the
boundary of the domain of validity [12]. No definite con-
clusion could be drawn for larger dimensions. Based on
an optimised flow, the main new result here is that a non-
trivial ultraviolet fixed point exists within the domain of
validity of (4) for arbitrary dimension. Furthermore, the

fixed point is smoothly connected to its 4d counterpart,
and shows only a weak dependence on the gauge fixing
parameter. In the limit of arbitrarily large dimensions,
this leads to λ∗ → 1/2 and g∗ → cd/(2d2) in the ex-
plicit solution (9). Similar results are obtained for arbi-
trary gauge fixing parameter. Note that λ∗ approaches
its boundary value very slowly, increasing from 1/4 to
0.4 for d ranging from 4 to 40. Using (9) and the defi-
nition for gbound, we derive gbound(λ∗)/g∗ = (2d)/(d− 2)
at the fixed point. Hence, g∗ stays clear by at least a
factor of two from the boundary where 1/η vanishes, and
the ultraviolet fixed point resides within the domain of
validity of (4) even in higher dimensions. This stabil-
ity of the fixed point also strengthens the result in lower
dimensions, including four.

In summary, we have found analytic results for the
flow and a non-trivial ultraviolet attractive fixed point of
quantum gravity. Maximal reliability of the present trun-
cation is guaranteed by the underlying optimisation. The
fixed point is remarkably stable with only a mild depen-
dence on the gauge fixing parameter. Furthermore, it ex-
tends to dimensions higher than four, a region which pre-
viously has not been accessible. The qualitative structure
of the phase diagram in the Einstein-Hilbert truncation
is equally robust. In four dimensions the results match
with earlier numerical findings based on different cutoffs.
Hence it is likely that the ultraviolet fixed point exists
in the full theory. We expect that the analytical form of
the flow, crucial for the present analysis, is equally useful
in extended truncations. If the above picture persists in
these cases, gravity is non-perturbatively renormalisable
in the sense of Weinberg’s asymptotic safety scenario.
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