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tThe strati�ed stru
ture of the 
on�guration spa
e G
N = G×· · ·×G redu
ed withrespe
t to the a
tion of G by inner automorphisms is investigated for G = SU(3) .This is a �nite dimensional model 
oming from latti
e QCD. First, the strati�
ationis 
hara
terized algebrai
ally, for arbitrary N . Next, the full algebra of invariants isdis
ussed for the 
ases N = 1 and N = 2 . Finally, for N = 1 and N = 2 , the strati�edstru
ture is investigated in some detail, both in terms of invariants and relations andin more geometri
 terms. Moreover, the strata are 
hara
terized expli
itly using lo
al
ross se
tions.
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1 Introdu
tionIf one wants to analyze the non-perturbative stru
ture of gauge theories, one should startwith 
larifying basi
 stru
tures like that of the �eld algebra, the observable algebra andthe supersele
tion stru
ture of the Hilbert spa
e of physi
al states. It is 
lear that thestandard Dopli
her-Haag-Roberts theory [1, 2℄ for models, whi
h do not 
ontain masslessparti
les, does not apply here. Nonetheless, there are interesting partial results within theframework of general quantum �eld theory both for quantum ele
trodynami
s (QED) andfor non-abelian models, see [3, 4, 5, 6℄.To be rigorous, one 
an put the system on a �nite latti
e, leaving the (extremely 
om-pli
ated task) of 
onstru
ting the full 
ontinuum limit, for the time being, aside. Thisway, one gets rid of 
ompli
ated fun
tional analyti
al problems, but the gauge theoreti
alproblems one is interested in are still present within this setting. For basi
 notions 
on-
erning latti
e gauge theories (in
luding fermions) we refer to [7℄ and referen
es therein.Our approa
h is Hamiltonian, thus, we put the model on a �nite (regular) 
ubi
 latti
e. Inthis 
ontext, we have formulated (and in the meantime partially solved [8, 9, 10, 11, 12℄)the following programme:1. Des
ribe the �eld algebra AΛ in terms of generators and de�ning relations and endowit with an appropriate fun
tional analyti
al stru
ture2. Des
ribe the observable algebra OΛ (algebra of gauge invariant operators, ful�llingthe Gauss law) in terms of generators and relations3. Analyze the mathemati
al stru
ture of OΛ and endow it with an appropriate fun
-tional analyti
al stru
ture4. Classify all irredu
ible representations of OΛ5. Investigate dynami
s in terms of observablesFinally, of 
ourse, one wants to 
onstru
t the 
ontinuum limit. As already mentioned,in full generality, this is an extremely 
ompli
ated problem of 
onstru
tive �eld theory.However, the results obtained until now suggest that there is some hope to 
ontrol thethermodynami
al limit, see [8℄ for a heuristi
 dis
ussion. We also mention that for simpletoy models, these problems 
an be solved, see [14℄.In [12℄ we have started to investigate the stru
ture of the �eld and the observable algebraof latti
e QCD. In these papers we took the attitude of implementing the 
onstraints onthe quantum level. It is well known that there is another possibility: First, one redu
esthe 
lassi
al phase spa
e and then one formulates the quantum theory over this redu
edphase spa
e. Sin
e the a
tion of the gauge group 
an have several orbit types, the �rststep has to be done using singular Marsden-Weinstein redu
tion [19℄. Then the redu
edphase spa
e has the stru
ture of a strati�ed symple
ti
 spa
e. Quantization pro
eduresfor su
h spa
es have been worked out re
ently or are still under investigation [20℄. Asan important ingredient for both redu
tion and quantization, in this paper, we study the3



strati�ed stru
ture of the redu
ed 
lassi
al 
on�guration spa
e. For QCD on a �nite latti
e,this is given by the orbit spa
e of the a
tion of SU(3) on SU(3)N = SU(3) × · · · × SU(3)by inner automorphisms.Our paper is organized as follows: In Se
tion 2 we give a pre
ise formulation of theproblem and we dis
uss the basi
 tools used in this paper. In Se
tion 3, the strati�
ationof the redu
ed 
on�guration spa
e is 
hara
terized algebrai
ally for arbitrary N . Next, inSe
tion 4 the full algebra of invariants is dis
ussed for the 
ases N = 1 and N = 2 . Finally,in Se
tions 5 and 6 the strati�ed stru
ture is investigated for N = 1 and N = 2 in somedetail, both in terms of invariants and relations and in more geometri
 terms. Moreover,the strata are 
hara
terized expli
itly using lo
al 
ross se
tions.2 Basi
sWe 
onsider QCD on a �nite regular 
ubi
 latti
e Λ in the Hamiltonian framework. In this
ontext, the 
lassi
al gluoni
 potential is approximated by its parallel transporter:
Λ1 ∋ (x, y) → g(x,y) ∈ G ,where G = SU(3) and Λ1 denotes the set of 1-dimensional elements (links) of Λ . Thus,the 
lassi
al 
on�guration spa
e C(x,y) over a given link (x, y) is isomorphi
 to the groupmanifold G and the 
lassi
al phase spa
e over (x, y) is isomorphi
 to

T ∗G ∼= g∗ × G .Thus, the (gluoni
) latti
e 
on�guration spa
e is given by
CΛ =

∏

(x,y)∈Λ1

C(x,y) . (2.1)It is obviously isomorphi
 to the produ
t
GL := G × · · · × G︸ ︷︷ ︸

L

,with L denoting the number of latti
e links. The 
orresponding phase spa
e is a produ
tof phase spa
es of the above type. Gauge transformations a
t on parallel transporters by
g(x,y) 7→ g′

(x,y) = gx · g(x,y) · g−1
y ,with

Λ0 ∋ x 7→ gx ∈ Gand Λ0 denoting the set of 0-dimensional elements (sites) of Λ . These transformationsindu
e transformations of the phase spa
e over (x, y) . Thus, the latti
e gauge group isgiven by
GΛ =

∏

x∈Λ0

Gx , (2.2)4



with every Gx being a 
opy of G .The above symmetry 
an be easily redu
ed using the following te
hnique: We 
hoose alatti
e tree, whi
h 
onsists of a �xed latti
e point (root) x0 and a subset of Λ1 su
h that forevery latti
e site x there is a unique latti
e path from x to x0 . Now, we 
an �x the gaugeon every on�tree link and we 
an parallel transport every o�-tree 
on�guration variable tothe point x0. This 
an be viewed as a redu
tion with respe
t to the pointed latti
e gaugegroup
G0

Λ =
∏

x0 6=x∈Λ0

Gx . (2.3)We end up with a partially redu
ed 
on�guration spa
e being isomorphi
 to GN , with Ndenoting the number of o�-tree links. The 
orresponding phase spa
e is given by the 
otan-gent bundle T ∗GN . The redu
ed gauge group is Gx0 ≡ G, a
ting via inner automorphisms
G ∋ g 7→ Adg ∈ Aut(GN):

Adg(g1, . . . , gN) = (g · g1 · g−1, g · g2 · g−1, . . . , g · gN · g−1) .Thus, we have a �nite dimensional Hamiltonian system with symmetry group G. Sin
ethis a
tion has several orbit types, quantization turns out to be a 
ompli
ated task. Usually,the non-generi
 strata o

uring here are omitted. If one wants to in
lude them 
onsistently,one has to develop a quantum theory over a strati�ed set. One option to do this is toperform quantization after redu
tion, i.e., to quantize the redu
ed phase spa
e of GN .This is a strati�ed symple
ti
 spa
e whi
h is 
onstru
ted from T ∗GN by singular Marsden-Weinstein redu
tion [19℄. By properly implementing the tree gauge on the level of thephase spa
e, it 
an be shown that this spa
e is isomorphi
, as a strati�ed symple
ti
 spa
e,to the redu
ed phase spa
e of the full latti
e gauge theory [18℄. This 
ompletely justi�esthe use of the tree gauge in this approa
h. The redu
ed phase spa
e of GN is a bundleover the redu
ed 
on�guration spa
e
ĈΛ

∼= GN/AdG . (2.4)In this work, we investigate ĈΛ for N = 1 and 2.Our strategy is as follows:i) It is well-known that orbit types of the a
tion of a Lie group G on a manifold M are
lassi�ed by 
onjuga
y 
lasses of stabilizers [Gm], m ∈ M , of the group a
tion. Moreover,the orbit of an element m is di�eomorphi
 to G/Gm. Thus, in Se
tion 3, we list the orbittypes by 
al
ulating their stabilizers. This is done for arbitrary N . Moreover, all orbit typeswill be 
hara
terized algebrai
ally, in terms of properties of eigenve
tors and eigenvaluesof representatives.ii) Next, in order to investigate the geometri
 stru
ture of ĈΛ, we make use of basi
 fa
tsfrom invariant theory. A

ording to [16℄, if we have an a
tion of a Lie group G on amanifold M with a �nite number of orbit types, then the orbit spa
e of this a
tion 
an be
hara
terized as follows: Let (ρ1 . . . ρp) be a set of generators of the algebra of invariantpolynomials of the G-a
tion on M . They de�ne a mapping
ρ = (ρ1 . . . ρp) : M −→ R

p ,5



whi
h indu
es a homeomorphism of the orbit spa
e X := M/G onto the image of ρ in
Rp . Next, restri
ting our attention to the 
ase of G being an (n × n)-matrix group and
M = GN , we 
an use general results as developed in [15℄: The algebra of polynomials,whi
h are invariant under simultaneous 
onjugation of N matri
es is generated by tra
esof produ
ts of these matri
es,

GN ∋ (g1, . . . , gN) 7→ tr (gi1gi2 · · · gik) ∈ C , (2.5)with k 6 2n − 1 . Moreover, for Gl(n, R), the full set of relations between generators isgiven by the so�
alled fundamental tra
e identity
∑

σ∈Sn+1

sgn(σ) ·
∏

(i1,...,ij)

tr(gi1 · · · gij ) = 0 , (2.6)where (i1, . . . , ij) ranges over the set of all 
y
les of the 
y
le de
omposition of the permu-tation σ . In the 
ase under 
onsideration, G = SU(n) , we have two additional relationsindu
ed from the two invariant tensors of SU(n), see [21℄,
tr(gg†) = n , (2.7)
det(g) = 1 . (2.8)Relations (2.7) and (2.8) imply the following form of the 
hara
teristi
 polynomial of

g ∈ G = SU(3):
χg(λ) = λ3 − tr(g)λ2 + tr(g)λ − 1 . (2.9)The above listed fa
ts enable us to 
hara
terize the 
on�guration spa
e in terms of invariantgenerators and relations. First, in Se
tion 4, we investigate the algebra of invariants andtheir relations. Next, in Se
tion 5 and Subse
tion 6.1 we study the mapping ρ in somedetail. For N = 1 we solve the problem 
ompletely, that means we �nd the range of ρ and
hara
terize ĈΛ as a 
ompa
t subset of R2 . For N = 2, we will �nd a unique 
hara
terizationof ea
h orbit type in terms of invariants. But to �nd the range of ρ, de�ned in termsof a number of inequalities between invariants, turns out to be a 
ompli
ated problem.Therefore, this will be dis
ussed in a separate paper, see [22℄. There, we will present a
omplete topologi
al 
hara
terization of ĈΛ for N = 2 as a CW-
omplex.iii) We present a somewhat detailed geometri
 
hara
terization of all o

uring strata interms of subsets and quotients of SU(3), see Subse
tion 6.2.iv) Using a prin
ipal bundle atlas of SU(3) , viewed as an SU(2)-bundle over S5 , we
onstru
t representatives of orbits for all o

uring strata, see Subse
tion 6.3.3 The Strati�
ation of the Con�guration Spa
eFirst, let us 
onsider the 
ase N = 1. 6



Theorem 3.1. The adjoint a
tion of SU(3) on G1 ≡ SU(3) has three orbit types, 
or-responding to three 
onjuga
y 
lasses of stabilizers of dimension 2, 4 and 8, respe
tively.The orbit spa
e G1/AdSU(3) de
omposes into three strata 
hara
terized by the following
onditions:1. If g has three di�erent eigenvalues then its stabilizer is U(1)×U(1) and g belongs tothe generi
 stratum.2. If g has two di�erent eigenvalues then its stabilizer is U(2).3. If g has only one eigenvalue then it belongs to the 
entre Z and its stabilizer is
G = SU(3).Proof: Up to 
onjuga
y, we may assume that g = diag(λ1, λ2, λ3). In 
ase 1, the λi arepairwise distin
t. Hen
e, the stabilizer of g is

Hg = {diag(α, β, γ) |α, β, γ ∈ U(1) , α · β · γ = 1} ∼= U(1) × U(1) . (3.1)In 
ase 2, up to 
onjuga
y, λ1 6= λ2 = λ3. Then the stabilizer of g is
Hg =

{[
(det V )−1

V

] ∣∣∣∣∣ V ∈ U(2)

}
∼= U(2) . (3.2)In 
ase 3, λ1 = λ2 = λ3, i.e., g is a multiple of the identity. Hen
e, its stabilizer is

G = SU(3). Finally, it is 
lear that 
ases 1�3 exhaust all possible values of the λi.Next, we deal with the general 
ase.Theorem 3.2. The adjoint a
tion of SU(3) on GN , N > 2, has �ve orbit types, 
orre-sponding to �ve 
onjuga
y 
lasses of stabilizers of dimension 0, 1, 2, 4 and 8, respe
tively.The orbit spa
e GN/AdSU(3) de
omposes into �ve strata 
hara
terized by the following 
on-ditions. Denote g := (g1, . . . , gN).1. If g1, . . . , gN have no 
ommon eigenspa
e then the stabilizer of g is Hg = Z and gbelongs to the generi
 stratum.2. If g1, . . . , gN have exa
tly one 
ommon 1-dimensional eigenspa
e then Hg
∼= U(1).3. If g1, . . . , gN have three (di�erent) 
ommon (1-dimensional) eigenspa
es then Hg

∼=
U(1) × U(1).4. If g1, . . . , gN have a 
ommon 2-dimensional eigenspa
e then Hg

∼= U(2).5. If g1, . . . , gN have a 3-dimensional 
ommon eigenspa
e, i.e., if they all are propor-tional to the identity then Hg = G = SU(3).7



Proof:If there are two eigenve
tors e1 and e2, 
ommon for all matri
es g1, . . . , gN , then alsotheir ve
tor produ
t e1 × e2 is a 
ommon eigenve
tor. If e1 and e2 are not orthogonal, thenthe 2-dimensional spa
e P spanned by them is a 
ommon eigenspa
e. This means that thepair (e1, e2) 
an be repla
ed by any orthonormal basis of P. This implies that if g is notof type 1 or 2, its elements 
an be jointly diagonalized. We 
on
lude that the above typesexhaust all possible 
ases.Next we 
al
ulate the stabilizer for ea
h 
ase.1. Assume that the stabilizer of g 
ontains an element s 6∈ Z. Then s has at least 2di�erent eigenvalues. One of these must be nondegenerate. Sin
e the 
orrespondingeigenspa
e is left invariant by all gi and sin
e it is 1-dimensional, it is an eigenspa
eof all gi, in 
ontradi
tion to the assumption.2. Sin
e the gi have a 
ommon eigenve
tor e1, up to 
onjuga
y, we may assume that
gi =

[
ai 0

0 Bi

]
,where Bi ∈ U(2). Then Hg 
ontains the subgroup

{[
α 0

0 β1

] ∣∣∣∣∣ α, β ∈ U(1) , β2 = α

}
∼= U(1) . (3.3)Conversely, let s ∈ Hg. Sin
e the 
ommon eigenspa
e of the gi is 1-dimensional, e1is also an eigenve
tor of s. Then

s =

[
α 0

0 A

]
,where A ∈ U(2). Again up to 
onjuga
y, we may assume that A = diag(β, γ). If

β 6= γ then the Bi must also be diagonal, be
ause they 
ommute with A. Then the gihave more than one 
ommon eigenspa
e, whi
h 
ontradi
ts the assumption. Hen
e
β = γ and Hg 
oin
ides with the subgroup (3.3).3. Choose a basis in C3, whi
h jointly diagonalizes all the matri
es g1, . . . , gN ,

gi =




ai 0 0
0 bi 0
0 0 ci


 .The non-existen
e of a 2-dimensional eigenspa
e means that none among the threeequations ai = bi, bi = ci and ci = ai, is ful�lled for all i. This implies that anymatrix whi
h 
ommutes with all matri
es g1, . . . , gN must be diagonal, too. When
e,the stabilizer Hg is of the form (3.1). 8



4. The orthogonal 
omplement of the 2-dimensional 
ommon eigenspa
e of the gi is aone-dimensional 
ommon eigenspa
e. Thus, up to 
onjuga
y,
gi =

[
ai 0

0 bi1

]and Hg 
ontains the subgroup (3.2). Conversely, let s ∈ Hg. The non-existen
e of a
3-dimensional eigenspa
e means that there is i0 su
h that ai0 6= bi0 . Then

s =

[
(det V )−1 0

0 V

]
,with V ∈ U(2). When
e, Hg 
oin
ides with the subgroup (3.2).5. In this 
ase, all matri
es g1, . . . , gN belong to Z, so the statement is obvious.Observe that types 1 and 3 may be uniquely 
hara
terized as follows:Corollary 3.3.1. The matri
es g1, . . . , gN have no 
ommon eigenve
tor if and only if there exists a pair

(gi, gj) or a triple (gi, gj, gk) of elements not possessing any 
ommon eigenve
tor.2. Suppose that g1, . . . , gN have three (di�erent) 
ommon (1-dimensional) eigenspa
es.There does not exist a 
ommon 2-dimensional eigenspa
e if and only if there existsan element gi with three di�erent eigenvalues or a pair (gi, gj) su
h that ea
h ofits elements has exa
tly two di�erent eigenvalues and non-degenerate eigenvalues
orrespond to di�erent eigenve
tors.Proof:1. If there exists a pair (gi, gj) or a triple (gi, gj, gk) having no 
ommon eigenve
tor then,obviously, there is no 
ommon eigenve
tor for all of them. Conversely, assume that everytriple (gi, gj, gk) has a 
ommon eigenve
tor. We prove that in this 
ase there exists a
ommon eigenve
tor for all matri
es g1, . . . , gN . First, observe that it is su�
ient to 
onsiderthe 
ase when none of the matri
es g1, . . . , gN is fully degenerate (i.e. gi /∈ Z). This meansthat every gi has at least two di�erent eigenvalues.The proof goes via indu
tion: for K ≥ 3 we show that if any subset of g of K elementshas a 
ommon eigenve
tor, then the same is true for any subset of K + 1 elements. Thus,take a subset (g1, . . . , gK+1). For ea
h i = 1, . . . , K + 1, skip gi and 
hoose a 
ommoneigenve
tor vi of the remaining set of K elements. If there exist i 6= j su
h that vi and
vj are parallel then they both are 
ommon eigenve
tors of g1, . . . , gK+1. Otherwise, thereexist i 6= j su
h that vi and vj are not orthogonal, be
ause there 
annot be more than 3mutually orthogonal ve
tors in C3. Suppose that vK and vK+1 is su
h a pair. It spans a
2-dimensional subspa
e P ⊂ C3. Sin
e vK , vK+1 are 
ommon, non-orthogonal eigenve
torsof g1, . . . , gK−1, P is a 
ommon eigenspa
e of these elements. Now 
onsider v1. Sin
e it9



is an eigenve
tor of g2 and sin
e, by assumption, g2 is not proportional to the identity, v1must either belong to P or be orthogonal to P. But in both 
ases it is also an eigenve
torof g1 and, therefore, a 
ommon eigenve
tor of g1, . . . , gK+1.2. In this 
ase all matri
es g1, . . . , gN 
an be jointly diagonalized. If one of them has 3di�erent eigenvalues (i.e., it has no 2-dimensional eigenspa
e), then there is no 
ommon 2-dimensional eigenspa
e P for all of them. Suppose that this is not the 
ase, i.e., that every
gi has a 2-dimensional eigenspa
e Pi. There will be no 
ommon 2-dimensional eigenspa
e ifand only if there exist i, j su
h that Pi 6= Pj. Then also the non-degenerate eigenspa
es Qiand Qj of gi and gj do not 
oin
ide, be
ause they are given by the orthogonal 
omplementsof Pi and Pj, respe
tively. Hen
e, the de
omposition of C3 into 
ommon eigenspa
es of giand gj is Qi ⊕ Qj ⊕ Pi ∩Pj .4 The Algebra of InvariantsIn this se
tion, we analyze the algebra of invariants for N = 1 and N = 2 . We start withinvariant monomials built from one matrix.Lemma 4.1. The invariants tr(gi) 
an be uniquely expressed in terms of tr(g) , for anyinteger i .Proof: Re
all formula 2.9 for the 
hara
teristi
 polynomial of g ∈ SU(3) :

χg(λ) = λ3 − tr(g)λ2 + tr(g)λ − 1.Thus, by the Cayley-Hamilton theorem, we have
g3 − tr(g)g2 + tr(g)g − 1 = 0 . (4.1)Multiplying both sides of (4.1) by g−1 we obtain:
g2 − tr(g)g + tr(g) − g−1 = 0. (4.2)Taking the tra
e of both sides we get

tr(g2) = (tr(g))2 − 2tr(g). (4.3)Analogously, multiplying (4.1) by gi, i > 1 and taking the tra
e one gets formulae for
tr(gi+2) in terms of tra
es of tr(gi+1), tr(gi) and tr(g). So by indu
tion tr(gi) is uniquelygiven by tr(g). For negative i , the statement now follows from 2.7.So in 
ase N = 1 , the algebra of invariant fun
tions has only one generator. The 
ase
N = 2 is more 
ompli
ated. Its 
hara
terization in terms of invariant generators will begiven in Theorem 4.4.Lemma 4.2. The invariants tr(gihj) 
an be uniquely expressed in terms of the followingset of independent invariants:

{
tr(g), tr(h), tr(gh), tr(g2h)

}
. (4.4)10



Proof: First, substituting g → gh in (4.2) and multiplying both sides by g−1 to the leftwe get:
hgh − tr(gh)h + tr(gh)g−1 − (ghg)−1 = 0. (4.5)Taking the tra
e of both sides yields:

tr(gh2) − tr(gh)tr(h) + tr(gh)tr(g) − tr(g2h) = 0. (4.6)Thus, from �ve tra
es o

urring in this equation only four are independent. In what follows,we express tr(gh2) in terms of the set
{
tr(g), tr(h), tr(gh), tr(g2h)

}
.Multiplying (4.1) by hgi and taking the tra
e we obtain

tr(hgi+3) − tr(g)tr(hgi+2) + tr(g)tr(hgi+1) − tr(hgi) = 0, (4.7)This equation enables us to express tr(hgi+3) in terms of tr(hgi+2), tr(hgi+1) and tr(hgi),so by indu
tion it 
an be expressed in terms of tr(hg2), tr(hg), tr(h) and tr(g).Starting now from an arbitrary invariant of the form tr(gihj) , we 
an use the abovepro
edure re
ursively. First, we lower the power i of g and then we lower the power j of
h. We end up with invariants of the form tr(hmgl), with k 6 2, l 6 2. So, to �nish theproof it is su�
ient to express tr(g2h2) in terms of the set (4.4). For that purpose, we usethe fundamental tra
e identity (2.6) for k = 4. Substituting g1 = g2 = g, g3 = g4 = h weobtain:

tr2(g)tr2(h) − 4tr(hg)tr(g)tr(h) − tr2(g)tr(h2) − tr(g2)tr2(h) + 2tr2(hg) (4.8)
+ 4tr(g)tr(h2g) + tr(h2)tr(g2) + 4tr(h)tr(hg2) − 2tr(hghg) − 4tr(h2g2) = 0.Using equation (4.3) we get

tr(hghg) = tr
(
(hg)2

)
= tr2(hg) − 2tr(hg).This way we obtain a formula for tr(h2g2) in terms of invariants (4.4).Lemma 4.3. The invariants tr(h2g2hg) and tr(h2ghg2) have the following properties:1. The sum tr(h2g2hg) + tr(h2ghg2) 
an be expressed as a polynomial in invariants oforder k 6 5,2. Re (tr(h2g2hg) − tr(h2ghg2)) = 0,3. tr(h2g2hg) − tr(h2ghg2) = 1

3
tr ((hg − gh)3) = det(hg − gh),4. The invariant (tr(h2g2hg) − tr(h2ghg2))

2 
an be expressed as a polynomial in theinvariants (4.4) and their 
omplex 
onjugates.11



Proof:1. Using the fundamental tra
e identity (2.6) for k = 4 and g1 = hgh, g2 = g, g3 = h,
g4 = g we obtain:
2tr(h2ghg2) + 2tr(h2g2hg) + 2tr(hghghg) (4.9)

= tr(h2g)tr(g)2tr(h) − 2tr(hghg)tr(g)tr(h) − 2tr(h2g)tr(g)tr(hg)

− tr(h2g)tr(h)tr(g2) − tr(h3g)tr(g)2 + 2tr(hghg)tr(hg) + 4tr(h2ghg)tr(g)

+ 2tr(h2g)tr(hg2) + tr(h3g)tr(g2) + 2tr(hghg2)tr(h) .On the left-hand-side of this equation there are invariants of order 6, and on theright-hand-side all the invariants are of lower order. By Lemma 4.1, we express
tr(hghghg) as follows

tr(hghghg) = tr((hg)3) = tr3(hg) − 3tr(hg)tr(hg) + 3.Moving it to the right-hand-side yields the statement.2. By substituting g → gh, h → hg in (4.5) we obtain:
tr(h2ghg2) − tr(h2g2)tr(hg) + tr(h2g2)tr(hg) − tr(h2g2hg) = 0.Taking the real part yields:

Re(tr(h2ghg2)) − Re(tr(h2g2hg)) = 0.3. The �rst equality is obtained by expanding the right-hand-side. The se
ond onefollows from the formula for the determinant of a 3 × 3-matrix A in terms of tra
es,
det(A) =

1

3
tr(A3) − 1

2
tr(A2)tr(A) +

1

6
tr(A)3 .Nevertheless, it 
an be 
he
ked by dire
t 
omputation.4. The expli
it formula expressing this invariant in terms of invariants (4.4) is lengthyand, therefore, we give it in Appendix B, in
luding some remarks how to derive it.Theorem 4.4. Any fun
tion on G2 = G×G invariant with respe
t to the adjoint a
tion of

G 
an be expressed as a polynomial in the following invariants and their 
omplex 
onjugates:
T1(g, h) := tr(g),

T2(g, h) := tr(h),

T3(g, h) := tr(hg),

T4(g, h) := tr(hg2),

T5(g, h) := tr(h2g2hg) − tr(h2ghg2). (4.10)Moreover, for given values of T1, . . . , T4, there are at most two possible values of T5.12



Proof: First we observe that using equation (4.2) we 
an express g−1 in terms of positivepowers of g and tr(g). This implies that every invariant 
an be expressed as a polynomialin tra
es of produ
ts of only positive powers of matri
es g and h.From the general theory [15℄ we know that we 
an restri
t ourselves to invariants oforder k 6 2n − 1 = 7. By Lemmas 4.1 and 4.2, all invariants of the type tr(gk), tr(hk),
tr(higj) 
an be expressed in terms of T1, T2, T3, T4. Observe that all invariants of order
k 6 3 are of this type. In what follows we list invariants of order k 6 7 whi
h are not ofthis type, and for ea
h order k we present the method of expressing it in terms of invariantsof lower order and Ti.

• k = 4: tr(hghg). By Lemma 4.1, we have tr(hghg) = tr((hg)2) = tr2(hg) − 2tr(hg).
• k = 5: tr(hghg2), tr(h2ghg). Substituting h → hg in (4.6) we obtain:

tr(g2hgh) = tr(g · hg · hg) = tr(g · hg)tr(hg) − tr(g · hg)tr(g) + tr(g2 · hg).Analogously we deal with tr(h2ghg).
• k = 6: tr(h3ghg), tr(g3hgh), tr(h2g2hg), tr(h2ghg2), tr(hghghg). The invariant

tr(hghghg) = tr((hg)3) 
an be expressed in terms of tr(hg) by Lemma 4.1. Next,by Lemma 4.2, we 
an redu
e the power in tr(h3 · ghg) and express it in termsof tr(h2 · ghg) and other invariants of lower order. (More pre
isely, we substitute
h → ghg into equation (4.7) for i = 0). We deal with tr(g3hgh) analogously. Next,we rewrite tr(h2g2gh) and tr(h2ghg2) in the following way:

tr(h2g2gh) =
1

2

(
tr(h2g2gh) + tr(h2ghg2)

)
+

1

2

(
(tr(h2g2hg) − tr(h2ghg2)

)
=

=
1

2

(
tr(h2g2hg) + tr(h2ghg2)

)
+

1

2
T5(g, h) ,

tr(h2ghg2) =
1

2

(
tr(h2g2hg) + tr(h2ghg2)

)
− 1

2
T5(g, h) .By Lemma 4.3 the sum tr(h2g2hg) + tr(h2ghg2) 
an be expressed as a polynomial ininvariants of lower order.

• k = 7: There are two types of nontrivial invariants in this 
ase:1. tr(higjhlgm), i + j + l + m = 7. If one of the powers i, j, l, m, is equal to 3or more, we 
an de
rease the order by an appropriate substitution in equation(4.7). Next, we observe that there are only two possible 
ases when all powers
i, j, l, m are smaller than 3, namely tr(h2g2h2g) and tr(h2g2hg2). Substituting
h → h2g into equation (4.6) we obtain:
tr(h2g2h2g) = tr(g ·h2g ·h2g) = tr(g ·h2g)tr(h2g)− tr(g · h2g)tr(g)+tr(g2 · h2g).Analogously we deal with tr(h2g2hg2).13



2. tr(h2ghghg), tr(g2hghgh). By Lemma 4.2 we 
an express tr(h2ghghg) = tr(h ·
(hg)3) in terms of tr(h · (hg)2), tr(h · (hg)), tr(h) and tr(hg). For tr(g2hghgh) ,we get an analogous expression.Finally, by Lemma 4.3, T5(g, h) is purely imaginary and (T5(hg))2 
an be expressed as apolynomial in T1, T2, T3, T4, so only the sign of T5 remains undetermined.5 The Con�guration Spa
e for N = 1Applying the theory outlined above is trivial for N = 1 : From Lemma 4.1 we immediatelyget that the orbit spa
e is uniquely 
hara
terized by the tra
e fun
tion, be
ause it generatesthe algebra of invariants. Here, we will expli
itly �nd the image of the Hilbert mapping

ρ : SU(3)/AdSU(3) → C ∼= R
2 ,whi
h is simply given by the tra
e fun
tion, ρ = tr.First, observe that the set of possible values of tr(g), is given by the sum of the eigen-values of g:

tr(g) ≡ T (α, β) = eiα + eiβ + e−i(α+β), α, β ∈ [0, 2π[. (5.1)If g belongs to a non-generi
 orbit of type 2 or 3 in Theorem 3.1, then at least twoeigenvalues are equal. Thus, setting α = β we obtain a 
urve,
[0, 2π[∋ α 7→ T (α) = 2 eiα + e−2iα ∈ C , (5.2)whi
h turns out to be a hypo
y
loid, see Figure 1. We de�ne D as the 
ompa
t regionen
losed by this 
urve. We will show that D 
oin
ides with the image of the Hilbertmapping ρ. For this purpose we �rst prove the followingLemma 5.1. Any 
omplex number T ∈ C 
an be presented in the following form:

T = s eiθ + e−2iθ, (5.3)where s ∈ R, θ ∈ [0, π[.Proof:It is su�
ient to show that the mapping
R × [0, π[∋ (s, θ) 7→ φ(s, θ) := s eiθ + e−2iθ ∈ Cis surje
tive. Denoting T = t1 + it2 we have:






t1 = s cos θ + cos 2θ

t2 = s sin θ − sin 2θ
(5.4)14
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Figure 1: Hypo
y
loid.We show that for given t2, t1 runs over the whole real axis. For t2 6= 0 (sin θ 6= 0), weobtain from the se
ond equation in (5.4):
s =

t2 + sin 2θ

sin θ
.Substituting this into the �rst equation of (5.4), we get t1 as a fun
tion of θ:

t1(θ) =
t2 + sin 2θ

sin θ
cos θ + cos 2θ.The limits at the boundaries are:

lim
θ→0+

t1(θ) = sgn(t2) · ∞ ,

lim
θ→π−

t1(θ) = −sgn(t2) · ∞.The fun
tion θ → t1(θ) is 
ontinuous over the interval ]0, π[, so it takes all mean values.This means that for given t2 6= 0, t1 ( ]0, π[ ) = R.For t2 = 0 we have θ = 0. Then, the �rst of equations (5.4) yields t1 = s + 1.Observe that by substituting (α, β) → (θ + φ, θ − φ) formula (5.1) 
an be rewritten inthe form
T (φ, θ) = ei(θ+φ) + ei(θ−φ) + e−2iθ ,yielding

T (φ, θ) = ( eiφ + e−iφ) eiθ + e−2iθ = 2 cosφ eiθ + e−2iθ = s eiθ + e−2iθ,15



where we have denoted s := 2 cosφ. Thus, in the parametrization (5.3) we have
D =

{
T (s, θ) = s eiθ + e−2iθ ∈ C : (s, θ) ∈ [−2, 2] × [0, π[

}and
∂D =

{
T (s, θ) = s eiθ + e−2iθ ∈ C : θ ∈ [0, π[ , s = 2 or s = −2

}
.But

T (−2, θ) = −2 eiθ + e−2iθ = 2 ei(θ+π) + e−2i(θ+π) = T (2, θ + π) ,and, when
e, ∂D 
oin
ides with the hypo
y
loid de�ned above,
∂D =

{
T (θ) = 2 eiθ + e−2iθ ∈ C : θ ∈ [0, 2π[

}
.One easily 
he
ks that in terms of x = ℜ(T ) and y = ℑ(T ), D is given by:

D =
{
x + iy ∈ C : 27 − x4 − 2x2y2 − y4 + 8x3 − 24xy2 − 18x2 − 18y2

> 0
}

. (5.5)Theorem 5.2. Let T ∈ C and 
onsider the equation
λ3 − Tλ2 + T̄ λ − 1 = 0 . (5.6)Its roots λ1, λ2, λ3 obey

|λ1| = |λ2| = |λ3| = 1 , λ1 + λ2 + λ3 = T , λ1λ2λ3 = 1 , (5.7)if and only if T ∈ D . Consequently, tr(SU(3)) = D.Proof: Using Lemma 5.1 we 
an substitute T (s, θ) = s eiθ + e−2iθ into equation (5.6):
λ3 − (s eiθ + e−2iθ)λ2 + (s e−iθ + e2iθ)λ − 1 = 0 .It is easy to 
he
k that λ1 = e−2iθ is a root of this equation. Thus, we 
an rewrite it inthe form:

(λ − e−2iθ)(λ2 − s eiθλ + e2iθ) = 0.Let us �nd the two remaining solutions. For |s| 6 2 (T ∈ D) we obtain:
λ2,3 =

s ± i
√

4 − s2

2
eiθ, (5.8)

|λ2,3|2 =
s2 + 4 − s2

4
= 1.For |s| > 2 we get:

λ2,3 =
s ±

√
s2 − 4

2
eiθ,

|λ2,3|2 =

(
s2 ±

√
s2 − 4

2

)2

6= 1.16



One 
an 
he
k that the sum and the produ
t of roots have the above properties (in both
ases).Finally, re
all that the 
hara
teristi
 polynomial of any SU(3)-matrix is of the form(2.9), with eigenvalues uniquely given as roots of this polynomial. Thus, we have shownthat the numbers {λ1, λ2, λ3} are eigenvalues of the 
hara
teristi
 equation of an SU(3)-matrix g and (5.6) 
oin
ides with the 
hara
teristi
 equation of g if and only if tr(g) ∈ D,so tr(SU(3)) = D. 2To summarize, 
ombining theorems 3.1 and 5.2 we get the followingCorollary 5.3. For N = 1 , the redu
ed 
on�guration spa
e ĈΛ is isomorphi
 to D and
ontains three orbit types 
hara
terized by the following 
onditions:1. g has three di�erent eigenvalues ⇔ trg lies inside D,2. g has exa
tly two di�erent eigenvalues ⇔ trg lies on the boundary of D, minusthe 
orners,3. g ∈ Z ⇔ trg is one of the three 
orners on the boundary of D.6 The Con�guration Spa
e for N = 26.1 Strata in Terms of InvariantsWe de�ne a mapping
ρ = (ρ1 . . . ρ9) : G2 −→ R

9by
ρ1(g, h) := ℜ(T1(g, h)) = ℜ(tr(g)), (6.1)
ρ2(g, h) := ℑ(T1(g, h)) = ℑ(tr(g)), (6.2)
ρ3(g, h) := ℜ(T2(g, h)) = ℜ(tr(h)), (6.3)
ρ4(g, h) := ℑ(T2(g, h)) = ℑ(tr(h)), (6.4)
ρ5(g, h) := ℜ(T3(g, h)) = ℜ(tr(hg)), (6.5)
ρ6(g, h) := ℑ(T3(g, h)) = ℑ(tr(hg)), (6.6)
ρ7(g, h) := ℜ(T4(g, h)) = ℜ(tr(hg)), (6.7)
ρ8(g, h) := ℑ(T4(g, h)) = ℑ(tr(hg2)), (6.8)
ρ9(g, h) := ℑ(T5(g, h)) = ℑ(tr(h2g2hg) − tr(h2ghg2)) . (6.9)By Theorem 4.4, the ρi 
onstitute a set of generators of the algebra of invariant polynomialson G2 with respe
t to the adjoint a
tion of G. A

ording to [16℄, the mapping ρ indu
esa homeomorphism of X := G2/AdG onto the image of ρ in R9 . The set {ρi} of generators17



is, by Theorem 4.4, subje
t to a relation, given in Appendix B. We rewrite this relation interms of the 
anoni
al 
oordinates {xi} on R9 by substituting
tr(g) = x1 + ix2 , tr(h) = x3 + ix4 , tr(hg) = x5 + ix6 , tr(hg2) = x7 + ix8and

ℑ(tr(h2g2hg) − tr(h2ghg2)) = x9into its right-hand-side. By Lemma 4.3, the resulting polynomial I0(x1, . . . , x8) is realof order 8 (it is of order 4 in every variable x1, . . . , x8). Thus, the relation de�nes ahypersurfa
e Z1 ⊂ R of 
odimension 1 de�ned by
Z1 :=

{
(x1, . . . , x9) ∈ R

9 : I0(x1, . . . , x8) = x2
9

}and the image ρ(X) is a subset of Z1 . On the other hand, by simple dimension 
ounting weknow that X is 8-dimensional. We 
on
lude that there 
annot exist further independentrelations between generators Ti . Thus, ρ(X) is an 8-dimensional 
ompa
t subset of Z1 . Asalready mentioned before, in order to identify ρ(X) expli
itly, one has to �nd a number ofinequalities between the above invariants. A full solution of this problem will be presentedin a separate paper [22℄.Next, let Xi denote the stratum of G2/AdG 
orresponding to orbit type i. We aregoing to 
hara
terize ea
h Xi in terms of the above invariants. We will �nd a hierar
hy ofrelations: Passing from one stratum to a more degenerate one, one has to add some newrelations to those whi
h are already ful�lled. This way we obtain a sequen
e of algebrai
surfa
es,
Z1 ⊃ Z2 ⊃ Z3 ⊃ Z4 ⊃ Z5 ,
hara
terizing the orbit types. Every Zi has the property that the image of Xi under themapping ρ is a subset of Zi having the dimension of Zi .A

ording to Theorem 3.2, a pair (g, h) belongs to a non-generi
 stratum, i.e., it hasorbit type 2 or higher, i� g and h have a 
ommon eigenve
tor. The following lemma is dueto I.P. Volobuev [23℄:Lemma 6.1. The matri
es g and h have a 
ommon eigenve
tor if and only if the followingthree relations are simultaneously satis�ed:

T5(g, h) = 0 , (6.10)[
g, C + C−1

]
=

[
h, C + C−1

]
= 0 , (6.11)where C := hgh−1g−1 denotes the group 
ommutator.Proof: If x is a 
ommon eigenve
tor of g and h then x is an eigenve
tor of the 
ommutator

C with eigenvalue 1. Then the other eigenvalues of C are λ and λ, for some λ obeying
|λ|2 = 1. In parti
ular, tr(C) is real. Expressing tr(C) in terms of generators we obtain

tr(hgh−1g−1) =
1

2

(
|tr(g)|2 + |tr(h)|2 + |tr(hg)|2 + |tr(hg2)|2

+ |tr(g)tr(hg)|2 − 3 + T5(g, h)
)

+ (6.12)
− ℜ

(
tr(g)tr(h)tr(hg)

)
−ℜ

(
tr(g)tr(hg)tr(hg2)

)
.18



It follows
ℑ(tr(C)) =

1

2i
T5(g, h) , (6.13)hen
e (6.10). Furthermore, the subspa
e E orthogonal to x is an eigenspa
e of the Her-mitean matrix C+C−1 with eigenvalue λ+λ. Then [g, C+C−1]x = 0 and [g, C+C−1]E = 0,hen
e (6.11). Conversely, assume that (6.10) and (6.11) are satis�ed. A

ording to (6.13),then tr(C) is real. Due to Lemma 5.1, we 
an write tr(C) = seiθ + e−2iθ. The rhs. is reali� s = 2 cos θ. Then the re
onstru
tion formula (5.8) for the eigenvalues of C from tr(C)implies that C has an eigenvalue

λ3 =
2 cos θ − i

√
4 − 4 cos2 θ

2
eiθ = (cos θ − i sin θ)eiθ = 1 .If this eigenvalue is degenerate then C = 1, i.e., g and h 
ommute and therefore have a
ommon eigenve
tor (even a 
ommon eigenbasis). If the eigenvalue λ3 = 1 is nondegeneratethen 2 is a nondegenerate eigenvalue of C + C−1. Let x be a 
orresponding eigenve
tor.A

ording to (6.11),

[g, C + C−1]x = 2gx − (C + C−1)gx = 0 ,i.e., gx is again an eigenve
tor of C + C−1 with eigenvalue 2. It follows that x is aneigenve
tor of g and, similarly, of h.In terms of invariants, relation (6.11) 
an be written as
tr

( [
g, C + C−1

]
·
[
g, C + C−1

]† )
= 0 , (6.14)

tr
( [

h, C + C−1
]
·
[
h, C + C−1

]† )
= 0 . (6.15)We omit the lengthy expressions for these equations in terms of generators. We only stressthat they do not depend on T5. Thus, again using the 
anoni
al 
oordinate system, weobtain two polynomials I1(x1, . . . , x8) and I2(x1, . . . , x8) , whi
h vanish on the nongeneri
strata:

Z2 := {(x1, . . . , x9) ∈ Z1 : x9 = 0, I1(x1, . . . , x8) = 0, I2(x1, . . . , x8) = 0} .The de�nition of Z1 implies that 
ondition x9 = 0 is equivalent to I0(x1, . . . , x8) = 0, so Z2
an be equivalently viewed as a subset of R8 given by equations I0 = 0, I1 = 0 and I2 = 0 .The image of the generi
 stratum X1 under the map ρ then is 
ontained in Z1 \Z2. Hen
e,inside ρ(X), it is given by the inequalities
I0 > 0 or I1 > 0 or I2 > 0 .One 
an pass to a set of redu
ed (with respe
t to their degree) polynomials {I0, I

R
1 , IR

2 } ,

IR
1 : =

1

2
I1 + I0 , (6.16)

IR
2 : =

1

2
I2 + I0 , (6.17)19



whi
h generate the same ideal in the polynomial algebra, see Appendix C for their 
on
reteexpressions.The set of orbits of type 3 or higher 
onsists of pairs of 
ommuting matri
es. The
ommutativity of a pair g, h 
an be expressed in terms of invariants as follows:
tr(hgh−1g−1) − 3 = 0 .Taking the imaginary part yields, a

ording to (6.13), T5 = 0 . Denoting

I3 = ℜ
(
tr(hgh−1g−1) − 3

)
,we obtain

I3 = 0 .

I3 
an be expressed in terms of T1, . . . , T4 , and in terms of 
anoni
al 
oordinates it takesthe form
I3(x1, . . . , x8) = x1

2 x5
2 + x1

2 x6
2 + x2

2 x5
2 + x2

2 x6
2 − 2 x1 x5 x7 − 2 x1 x5 x3

−2 x1 x6 x8 − 2 x1 x6 x4 − 2 x2 x5 x8 + 2 x2 x5 x4 + 2 x2 x6 x7

−2 x2 x6 x3 + x1
2 + x2

2 + x5
2 + x6

2 + x7
2 + x8

2 + x3
2 + x4

2 − 9 .Then, the image of the stratum X3 under the mapping ρ is a subset of
Z3 := {(x1, . . . , x9) ∈ Z2 : I3(x1, . . . , x8) = 0} .Sin
e ℜ (tr(hgh−1g−1) − 3) ≤ 0 , the image of the stratum X2 under ρ is given, as a subsetof ρ(X), by the following equations and inequalities

I0 = 0 , I1 = 0 , I2 = 0 , I3 < 0 .The set of orbits of type 4 or higher 
onsists of 
ommuting pairs with a 
ommon
2-dimensional eigenspa
e. This implies that both matri
es and all their produ
ts havedegenerate eigenvalues. The invariants Ti, i = 1, . . . , 4 , are tra
e fun
tions of produ
ts of
SU(3)-matri
es, so they take values in D , see Theorem 5.2. Thus, by Corollary 5.3, thevalues of all invariants Ti, i = 1, . . . , 4 , 
omputed on degenerate elements have to belongto ∂D. The polynomial de�ning this boundary has the following form, see (5.5):

B(x1, x2) := 27 − x1
4 − 2 x1

2 x2
2 − x2

4 + 8 x1
3 − 24 x1 x2

2 − 18 x1
2 − 18 x2

2 .Thus, we have
Z4 := {(x1, . . . , x9) ∈ Z3 : B(x1, x2) = B(x3, x4) = B(x5, x6) = B(x7, x8) = 0} .A

ordingly, the image of the stratum X3 under the map ρ is given, as a subset of ρ(X),by the relations

I0 = 0 , I1 = 0 , I2 = 0 , I3 = 020



and the inequalities
B(x1, x2) > 0 or B(x3, x4) > 0 or B(x5, x6) > 0 or B(x7, x8) > 0 .Finally, the subset of orbits of type 5 
onsists of pairs of matri
es belonging to Z. Theyful�ll |tr(g)| = |tr(h)| = 3, so we have

Z5 :=
{
(x1, . . . , x9) ∈ Z4 : x2

1 + x2
2 − 9 = 0, x2

3 + x2
4 − 9 = 0

}and the image of the stratum X4 under the map ρ is given, as a subset of ρ(X), by
I0 = I1 = I2 = I3 = B(x1, x2) = B(x3, x4) = B(x5, x6) = B(x7, x8) = 0and

x2
1 + x2

2 − 9 < 0 or x2
3 + x2

4 − 9 < 0 .6.2 Geometri
 Stru
ture of StrataIn this se
tion we give a des
ription of the strata in terms of subsets and quotients of
G = SU(3) and 
al
ulate their dimensions. We use the following notation. Let H be asubgroup of G. Then

N(H) := normalizer of H in G,
G2

H := set of pairs (g, h) with stabilizer H ,
G2

(H) := set of pairs (g, h) invariant under H ,
G2

[H] := set of pairs (g, h) of type [H ].We obviously have G2
H ⊂ G2

(H) and G2
H ⊂ G2

[H]. Sin
e we have labelled the orbit types [H ]by i = 1, . . . , 5, we denote the strata G2
[H] by G2

i . Moreover, in what follows, the symbol \always means taking the set theoreti
al 
omplement, whereas / means taking the quotient.For orbit type 5, Theorem 3.2 immediately yields that the 
orresponding stratum is
X5 = Z ×Z .It 
onsists of nine isolated points.For the remainig orbit types, re
all from the basi
 theory of Lie group a
tions [17℄that the proje
tion πi : G2

i → Xi is a lo
ally trivial �bre bundle with typi
al �bre G/Hasso
iated with the N(H)/H-prin
ipal bundle G2
H → Xi, whi
h is naturally embeddedinto the asso
iated bundle. Here H is a representative of the 
onjuga
y 
lass i and we havethe following di�eomorphism

Xi
∼= G2

H

/
N(H)/H , (6.18)where N(H)/H is the right 
oset group a
ting by inner automorphisms on G2

H . Thus, forea
h orbit type we have to 
hoose a representative and then 
ompute the rhs. of (6.18).21



We start with orbit type 4. As a representative, we 
hoose the subgroup (3.2). Let usdenote it by U(2)1. We have
G2

U(2)1 = G2
(U(2)1)

∖
Z ×Zand

G2
(U(2)1) = C(U(2)1) × C(U(2)1) = U(1)1 × U(1)1 , (6.19)where C(·) denotes the 
entralizer in G and U(1)1 denotes the subgroup (3.3). Hen
e,

G2
U(2)1

= U(1)1 × U(1)1

∖
Z × Z .Sin
e U(2)1 and U(1)1 
entralize ea
h other, their normalizers 
oin
ide. Sin
e the onlyway in whi
h N(U(1)1) 
an a
t on U(1)1 is by a permutation of the entries, it must a
ttrivially. It follows

N(U(2)1) = N(U(1)1) = C(U(1)1) = U(2)1 ,and the fa
torization in (6.18) is trivial. Therefore, (6.18) yields
X4

∼= U(1)1 × U(1)1

∖
Z × Z .The dimension of X4 is 2.As a representative for orbit type 3 we 
hoose the subgroup (3.1) of diagonal matri
es.Let us denote it by T . The set G2

T 
onsists of the pairs that are invariant under T minusthose that are of orbit type 4 or higher, i.e., that are 
onjugate to a pair invariant under
U(2)1:

G2
T = G2

(T )

∖ (⋃
g∈G

g G2
(U(2)1) g−1

)
.We have

G2
(T ) = C(T ) × C(T ) = T × T (6.20)and, from formula (6.19),

g G2
(U(2)1) g−1 = g

(
U(1)1 × U(1)1

)
g−1 =

(
g U(1)1 g−1

)
×

(
g U(1)1 g−1

)
.Subtra
tion of this subset from T × T is only nontrivial if gU(1)1g

−1 ⊆ T . The subgroupsarising this way are U(1)1 as well as
U(1)2 = {diag(β, α, β) : α, β ∈ U(1) , β2 = α} ,

U(1)3 = {diag(β, β, α) : α, β ∈ U(1) , β2 = α} .Thus,
G2

T = T × T
∖ (⋃3

i=1
U(1)i × U(1)i

)
.22



The quotient N(T )/T is the Weyl group of G = SU(3), isomorphi
 to the permutationgroup S3. Hen
e,
X3 =

(
T × T

∖ (⋃3

i=1
U(1)i × U(1)i

)) /
S3 ,where S3 a
ts on the elements of T by permuting the entries. The dimension of the stratum

X3 is 4. Note that if we take the quotient (T × T )/S3, also the points of orbit type 4 and
5 are fa
torized in the proper way. One 
an make this pre
ise by saying that (T × T )/S3is isomorphi
, as a strati�ed spa
e, to the subspa
e

X3 ∪ X4 ∪ X5 ⊆ X = G2/AdG .As we will see below, this is not true in general.Next, 
onsider orbit type 2. As a representative, we 
hoose the subgroup U(1)1, givenby (3.3). Using an argument analogous to that for orbit type 3, together with formula(6.20) and C(U(1)1) = U(2)1, we �nd
G2

U(1)1 = U(2)1 × U(2)1

∖ (⋃
g∈G

g(T × T )g−1
)

.A pair (g, h) ∈ U(2)1 ×U(2)1 is 
onjugate to an element of T ×T i� g and h belong to thesame maximal toral sugroup in U(2)1. Thus,
G2

U(1)1
= U(2)1 × U(2)1

∖ (⋃
T̃

T̃ × T̃
)

,where the union is over all maximal tori in U(2)1. As for the normalizer, we already knowthat N(U(1)1) = U(2)1, hen
e we have to fa
torize by U(2)1/U(1)1
∼= SU(2), i.e., by U(2)1modulo its 
enter:

X2
∼=

(
U(2)1 × U(2)1

∖ (⋃
T̃

T̃ × T̃
)) /

U(2)1/U(1)1 .We see that this stratum has dimension 5. We remark that in (6.21) it is important toremove the pairs of higher symmetry, be
ause they would not be fa
torized in the properway here. Sin
e U(1)1 is the 
enter of U(2)1, we get
X2

∼=
(
U(2)1 × U(2)1

∖ (⋃
T̃

T̃ × T̃
)) /

U(2)1 . (6.21)Moreover, ⋃
T̃ T̃ × T̃ 
ontains all non-generi
 orbit types of the U(2)1-a
tion. Hen
e, therhs. of (6.21) is isomorphi
 to the generi
 stratum of the orbit spa
e of the a
tion of theabstra
t Lie group U(2) by diagonal 
onjugation on U(2) × U(2), i.e.,

X2
∼=

(
(U(2) × U(2))

/
U(2)

)

gen
. (6.22)One option to analyze this quotient is to restri
t the a
tion to the subgroup SU(2) ⊂ U(2)and to rewrite the two fa
tors U(2) using the Lie group isomorphism

U(2) ∼= (U(1) × SU(2))
/

Z2 ,23



thus obtaining
(U(2) × U(2))

/
U(2) ∼=

(
U(1) × U(1) ×

((
SU(2) × SU(2)

)/
SU(2)

)) / (
Z2 × Z2

)
.Here the quotient (

SU(2) × SU(2)
)
/SU(2) is known as the �pillow�. It 
onsists of a 3-dimensional stratum (
orresponding to the interior), a 2-dimensional stratum (the bound-ary minus the 4 edges) and a 0-dimensional stratum (the 4 edges).Another option is to apply an algorithm whi
h provides a de
omposition of quotients ofdiagonal (or joint) a
tions on dire
t produ
t spa
es into quotients of the individual fa
tors.Sin
e we will use this algorithm again to des
ribe the generi
 stratum X1 below, we willexplain it in some generality. Let H be a Lie group a
ting on a manifold M and 
onsiderthe diagonal a
tion of H on M × M (one 
an easily generalize the pro
edure to diagonala
tion on M1 × · · · ×Mn). In what follows, we denote the sets of orbit types of the a
tionof H on M , of a subgroup K ⊆ H on M and of H on M ×M by O(M, H) , O(M, K) and

O(M × M, H) , respe
tively. We start with de
omposing
(M × M)

/
H =

⋃

[K]∈O(M,H)

(
M[K] × M

) /
H .If two pairs (x1, x2), (y1, y2) ∈ MK × M ⊂ M[K] × M are 
onjugate under h ∈ H , then
onjugation of the stabilizer of x1 by h yields the stabilizer of y1. Sin
e both are equal to

K, h is in the normalizer of K in H , h ∈ N(K). Thus,
(
M[K] × M

) /
H =

(
MK × M

) /
N(K) ,for some �xed representative K of the orbit type [K]. Fa
torization by N(K) 
an bea
hieved by �rst fa
torizing by K and then by N(K)/K. Sin
e K a
ts trivially on thefa
tor MK , we obtain

(M × M)
/

H =
⋃

[K]∈O(M,H)

(
MK × (M/K)

) /
N(K)/K . (6.23)We de
ompose M/K by orbit types of the K-a
tion on M :

M/K =
⋃

[K ′]K∈O(M,K)

(
M/K

)
[K ′]K

. (6.24)Here [K ′]K denotes the 
onjuga
y 
lass of the subgroup K ′ ⊆ K in K. Inserting (6.24)into (6.23), we obtain
(M ×M)

/
H =

⋃

[K]∈O(M,H)



MK ×




⋃

[K ′]K∈O(M,K)

(M/K)[K ′]K








/

N(K)/K . (6.25)24



Consider, on the other hand, the de
omposition of (M × M)/H by orbit types,
(M × M)

/
H =

⋃

[L]∈O(M×M,H)

(
(M × M)

/
H

)
[L]

.A representative of the rhs. of (6.25) is given by (x, y), where x ∈ MK and y 
an be 
hosensu
h that it has orbit type K ′ under the a
tion of K. The stabilizer of this pair under thea
tion of H is given by interse
ting the stabilizer of x under the a
tion of H , whi
h is K,with the stabilizer of y under the a
tion of H . The interse
tion yields the stabilizer of yunder the a
tion of K, whi
h is K ′. Hen
e, the stabilizer of (x, y) under the a
tion of His K ′ and the orbit type is [K ′], where the 
onjuga
y 
lass is taken in H . Thus, for every
[L] ∈ O(M × M, H), we have
(
(M × M)

/
H

)

[L]
=

⋃

[K]∈O(M,H)


MK ×




⋃

[K′]K∈O(M,K)

[K′]=[L]

(M/K)[K ′]K







/
N(K)/K .(6.26)At this stage, the equality sign just means bije
tive 
orresponden
e on the level of abstra
tsets. Of 
ourse, this 
an be made more pre
ise by saying how the individual manifolds onthe rhs. are glued together to build up the manifold on the lhs. Here we do not elaborateon this, for details we refer to [22℄.Let us apply (6.26) to the quotient given by (6.22), i.e. to the 
ase M = H = U(2)with 
onjugate a
tion. Representatives of orbit types of the U(2)-a
tion on U(2) are

K = U(2) and K = T , where T denotes the subgroup of U(2) 
onsisting of diagonalmatri
es (obviously, if we identify U(2) with the subgroup U(2)1 of SU(3), this is 
onsistentwith the notation T used above). Representatives of orbit types of the K-a
tion on U(2)are K ′ = U(2), T for K = U(2) and K ′ = T , U(1) for K = T . Here U(1) denotes the
enter of U(2). Hen
e, the only pie
e in the de
omposition (6.26) that belongs to thegeneri
 stratum of the U(2)-a
tion on U(2) × U(2) (orbit type [U(1)]) is that labelled bythe subgroups K = T and K ′ = U(1). The �rst fa
tor of this pie
e is
U(2)T = T \ U(1) ,the se
ond one (

U(2)/T
)
[U(1)]T

=
(
U(2)/T

)
gen

.The quotient group N(K)/K = N(T )/T is the Weyl group of U(2). It is isomorphi
 to thepermutation group S2 and 
an be represented on U(2) by 
onjugation by the permutationmatrix [
0 1
1 0

]. Of 
ourse, on the �rst fa
tor this amounts to inter
hanging the entries.Thus, we end up with
X2

∼=
((

U(2) × U(2)
) /

U(2)
)

gen
=

((
T \ U(1)

)
×

(
U(2)/T

)
gen

) /
S2 .25



Clearly, (
U(2)/T

)
gen


an be further analyzed, in a similar way as above.Finally, 
onsider the generi
 stratum X1. Again, we apply (6.26), where now M = H =
G = SU(3) with 
onjugate SU(3)-a
tion. Representatives of orbit types of the G-a
tionon G are K = G, U(2)1, and T . For K = G, the orbit types of the K-a
tion on G areagain [G], [U(2)] and [T ], hen
e these pie
es do not 
ontribute to X1. For K = U(2)1 and
K = T , the K-a
tion on G has one orbit type represented by Z. For both a
tions, thisorbit type is the generi
 one. Thus, for X1, the de
omposition (6.26) 
onsists of one pie
elabelled by the subgroups K = U(2)1 and K ′ = Z and one pie
e labelled by K = T and
K ′ = Z. Computing these pie
es we obtain
X1 =

(
U(1)1 \ Z

)
×

(
G/U(2)1

)
gen

∪
( (

T
∖(⋃3

i=1
U(1)i

))
×

(
G/T

)
gen

) /
S3 ,where the a
tion of the Weyl group S3 on G 
an be represented by 
onjugation by the

3 × 3-permutation matri
es. These are generated, e.g., by



1 0 0
0 0 1
0 1 0



 ,




0 1 0
1 0 0
0 0 1



 .(Noti
e that the permutation matri
es of negative sign have determinant −1, hen
e theyare not in SU(3).) On the �rst fa
tor, S3 a
ts by permuting the entries. We note againthat the quotients (
G/U(2)1

)
gen

and (
G/T

)
gen


an be further analyzed.6.3 Representatives of OrbitsAs above, we denote strata by G2
i ⊂ G2 , and the 
orresponding pie
es of the strati�edorbit spa
e by Xi = G2

i /AdG ⊂ G2/AdG, i = 1, . . . , 5 . In this subse
tion we presentrepresentatives for ea
h orbit type. More pre
isely, we de�ne lo
al 
ross se
tions
Xi ⊃ Ui ∋ [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2

i ,for ea
h bundle
πi : G2

i → Xi .Here, Ui denotes a dense subset of Xi . For that purpose, we use a system of lo
al trivial-izations of SU(3), viewed as an SU(2)-prin
ipal bundle over S5, see Appendix A.The generi
 stratum: The proje
tion π1 : G2
1 → X1 of the generi
 stratum is a lo
allytrivial prin
ipal �bre bundle with stru
ture group G/Z. Using arguments developed in[24℄ one 
an prove that this bundle is non-trivial and that one 
an �nd a system of lo
altrivializations (respe
tively lo
al 
ross se
tions), de�ned over a 
overing of X1 with opensubsets, whi
h are all dense with respe
t to the natural measure (the one indu
ed by theHaar-measure). 26



Proposition 6.2. There exists a lo
al 
ross se
tion
X1 ⊃ U1 ∋ [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2

1 ,of the generi
 stratum with s given by
s1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , s2 =

[
a −δ−1b†

b δ
(1− bb†

1+|a|

)
]
×




1 0 0
0 c d
0 −d̄ c̄


 , (6.27)where:

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

b =

[
b1

b2

]
, b1, b2 ∈ R+,

|a|2 + b2
1 + b2

2 = 1, (6.28)
a = |a|δ−2,

|c|2 + |d|2 = 1.Proof: Let
X1 ⊃ U1 ∋ [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2

1be a lo
al 
ross se
tion, with U1 dense in X1 . Sin
e AdG a
ts (pointwise) on this 
rossse
tion, we 
an �x the gauge by bringing s to a spe
ial form. Sin
e s1 and s2 are in generi
position on U1 , they have no 
ommon eigenve
tor and at least one element of this pair, say
s1, has three di�erent eigenvalues. Thus, on this neighbourhood, we 
an �x the gauge intwo steps: First, we diagonalize s1 and next we use the stabilizer of this diagonal elementto bring s2 to a spe
ial form. Sin
e s1 and s2 have no 
ommon eigenve
tor, this �xesthe (remaining) stabilizer gauge 
ompletely, (up to Z3). Thus, we 
an assume that s1 isdiagonal, with eigenvalues ordered in a unique way, and that s2 has the form, de�ned bythe 
ross se
tion (A.13) in Appendix A,

s2 =

[
a −δib

†

b δ−1
i

(
1 − bb†

1+|a|

)
]
×

[
1 0

0 S

]
, S ∈ SU(2) . (6.29)Let

π−1
1 (U1) ∋ (s1, s2) 7→ f(s1, s2) ∈ Gbelong to the stabilizer of s1 . Sin
e s1 is diagonal, f 
an be written in the form

f =




e−i(α+β) 0 0
0 eiα 0
0 0 eiβ


 .

27



The a
tion of f on an arbitrary group element g is given by:



g11 g12 g13

g21 g22 g23

g31 g32 g33


 →




g11 e−i(α+2β)g12 e−i(2α+β)g13

ei(α+2β)g21 g22 e−i(β−α)g23

ei(2α+β)g31 ei(β−α)g32 g33


 . (6.30)Thus, we 
an 
hoose the phases α and β in su
h a way that after transformation with f ,the entries bi of b o

uring in (6.29) are real and positive.By the results of Subse
tion 6.1, it is 
lear that the representative s 
an be expressedin terms of invariants ti := Ti(s1, s2), i = 1, . . . , 5 . With some e�ort, one 
an �nd theseexpressions expli
itly. Here, we only sket
h how to do that. In se
tion 5 we have alreadyfound the eigenvalues {λ1, λ2, λ3} in terms of t1 = tr(s1). Thus, we are left with 
al
ulating

s2 . For that purpose, denote the diagonal entries of s2 by x, y and z. Then, we have
t2 = x + y + z ,

t3 = λ1x + λ2y + λ3z ,

t4 = λ2
1x + λ2

2y + λ2
3z .This is system of linear equations for x, y, z, whi
h 
an be trivially solved. The se
ond, non-trivial step 
onsists in expressing the parameters a, b, c, d, δ in terms of x, y, z, by solvingthe set of non-linear equations

x = a ,

y = δc − δ

1 + |a|(b
2
1c − b1b2d) , (6.31)

z = δc − δ

1 + |a|(b1b2d + b2
2c) ,where, of 
ourse, relations (6.28) have to be taken into a

ount. It 
an be shown that thisset of equations has two solutions, 
orresponding to di�erent parameters b1, b2, d:

a = x,

δ =

√
|a|
a

,

c =
δy + δz

1 + |a| ,

b1
± =

1√
2

[
2(c1q1 + c2q2) + (1 − |c|2)(1 − |a|2) ±

√
∆

]1/2

,

b2
± =

√
1 − |a|2 − b2

1 ,

d1
± =

c1b
2
1 − q1

b1b2
,

d2
± =

−c2b
2
1 + q2

b1b2

, 28



where
c1 := Re(c), c2 := Im(c) ,

d1 := Re(d), d2 := Im(d) ,

q1 := −Re(δy − c)(1 + |a|) ,

q2 := −Im(δy − c)(1 + |a|) ,and
∆ =

[
2(c1q1 + c2q2) + (1 − |c|2)(1 − |a|2)

]2 − 4(q2
1 + q2

2) .Next, observe that the matri
es des
ribed by these two sets of parameters are related,namely one of them is equal to the transposition of the se
ond one. On the other hand, allinvariants ti, i = 1, . . . , 4 , are invariant under transposition of matri
es. The two solutionsare distinguished by the value of T5(s1, s2), whi
h has the property
T5(s1, s2) = −T5(s

T
1 , sT

2 ) .In terms of matrix elements of s1 and s2, T5 has the following form:
T5(s1, s2) = ±(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

√
∆ .Thus, 
al
ulating the value of T5(s1, s2) enables us to 
hoose the 
orre
t sign in front ofthe square root of ∆ and to obtain a unique solution.The U(1)-stratum: Let s be a lo
al 
ross se
tion of the (non-trivial) bundle π2 : G2

2 →
X2 . There exists one 
ommon eigenve
tor of s1 and s2. Assume that it is the �rst eigen-ve
tor of s1 . After diagonalizing s1, the pair (s1, s2) has the following form

s1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , s2 =

[
det(S)−1 0

0 S

]
, (6.32)where S ∈ U(2). The stabilizer Hs

∼= U(1) of s is given by (3.3). Thus, to obtain a 
rossse
tion, we have to �x the S2-a
tion, whi
h permutes the se
ond and third basis ve
torsand the Hs-a
tion on s2 . First, sin
e λ2 6= λ3, these eigenvalues 
an be uniquely ordered,for example by in
reasing phase. Next, the Hs-a
tion is �xed by requiring that the leftlower entry of s2 has to be real and positive. Thus, we get the following lo
al 
ross se
tion:
s1 =




λ1 0 0
0 λ2 0
0 0 λ3



 , s2 =




δ−2 0 0
0 δc −δ2d
0 d δc̄



 , (6.33)where:
|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

|δ| = 1,

|c|2 + d2 = 1, d ∈ R+.29



Again, the representative (6.33) 
an be expressed in terms of invariants: The eigenvalues
λ1, λ2, λ3 of s1 are given in terms of t1 . If λ1 6= λ2, we 
an pro
eed in the same way asfor the generi
 stratum above, i.e., by solving the set of equations (6.31). This way, weobtain the diagonal 
omponents δ−2, δc, δc̄ of s2, and we 
an 
ompute the 
oe�
ients c and
δ. There exist two solutions for c and δ but they des
ribe the same matrix. If λ1 = λ2,equations (6.31) imply

(δ−2 + δc) = (x + y) , δc̄ = z ,whi
h 
an be solved with respe
t to c and δ2:
δ2 =

2

(x + y) ±
√

(x + y)2 − 4z̄
, c = δz̄ .(There are two values for δ2, but only one of them satis�es the 
ondition |δ|2 = 1. Takingthe square root of the 
orre
t one then yields two solutions for δ, but these give the samematrix.) Finally, one 
al
ulates

d =
√

1 − |c|2 .The U(1) × U(1)-stratum: Let s be a lo
al 
ross se
tion of the (non-trivial) bundle
π3 : G2

3 → X3 . In this 
ase, s1 and s2 
an be jointly diagonalized:
s1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , s2 =




δ1 0 0
0 δ2 0
0 0 δ3


 ,where:

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

|δ1| = |δ2| = |δ3| = 1, δ1δ2δ3 = 1 .Sin
e there is no 
ommon 2-dimensional eigenspa
e, the remainder of the a
tion of thestabilizer Hs
∼= U(1) × U(1) is the permutation group S3 . To �x the S3-a
tion, observethat, a

ording to Corollary 3.3, either one of the matri
es has three di�erent eigenvaluesor both have a pair of degenerate eigenvalues 
orresponding to distin
t eigenspa
es. Inthe �rst 
ase, we 
an �x the S3-a
tion by ordering the three distin
t eigenvalues. In these
ond 
ase, we 
an put the unique nondegenerate eigenvalue of s1 in the �rst pla
e andestablish the order of the two remaining eigenve
tors by ordering the 
orresponding twodistin
t eigenvalues of s2.Expressing s in terms of invariants is then immediate: All eigenvalues 
an be 
al
ulatedin terms of the tra
es t1 = tr(s1) and t2 = tr(s2). To determine whi
h eigenvalues of s1 and

s2 
orrespond to the same eigenve
tor it is su�
ient to know the value of t3 = tr(s1s2). It
an take six values 
orresponding to the permutations of the eigenvalues of s2 relative tothose of s1. 30



The U(2)-stratum: Let s be a 
ross se
tion of the (trivial) bundle π4 : G2
4 → X4 .Obviously, s 
an be taken in the following form:

s1 =




λ1 0 0
0 λ2 0
0 0 λ2


 , s2 =




δ1 0 0
0 δ2 0
0 0 δ2


 ,where |λ1| = |λ2| = |δ1| = |δ2| = 1, λ1λ

2
2 = δ1δ

2
2 = 1. For expressing (s1, s2) in terms ofinvariants it is su�
ient to know the values t1 and t2 , be
ause there is only one possibleorder.The SU(3)-stratum: Let s be a 
ross se
tion of the (trivial) bundle π5 : G2

5 → X5 .Then,
s1 =




λ 0 0
0 λ 0
0 0 λ



 , s2 =




δ 0 0
0 δ 0
0 0 δ



 ,de�ne a unique 
ross se
tion, with λ3 = 1 and δ3 = 1. The tra
es of both matri
es takeone of the following three values: 3 · ei 2kπ
3 , k = 0, 1, 2 . Thus, expressing them in terms ofinvariants is trivial.A
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A A Prin
ipal Bundle Atlas for the SU(3) group mani-foldIt is well known that the group SU(3) 
an be viewed as a prin
ipal bundle over the sphere
S5 with stru
ture group SU(2),

SU(2) →֒ SU(3)
π→ S5 , (A.1)with π being the 
anoni
al proje
tion from SU(3) onto the right 
oset spa
e SU(3)/SU(2) ∼=

S5. An expli
it des
ription of π is obtained as follows: Any 3× 3 matrix 
an be written inthe form
g =

[
a c†

b B

]
, (A.2)with a ∈ C, b, c ∈ C

2 and a 
omplex 2 × 2-matrix B. The 
ondition that g belongs to
U(3), namely

gg† = 1 = g†g,translates into the following relations for entries of g:
|a|2 + ‖b‖2 = 1 = |a|2 + ‖c‖2, (A.3)

āb + Bc = 0 = ac + B†b, (A.4)
bb† + BB† = 1 = cc† + B†B. (A.5)We embed the subgroup SU(2) of SU(3) as follows:

SU(2) ∋ S → h =

[
1 0

0 S

]
∈ SU(3).Observe that then SU(2) is the stabilizer of the ve
tor

e1 :=




1
0
0



 ∈ S5 ⊂ C
3 .The image of the left a
tion of g ∈ SU(3) on e1 is exa
tly the �rst 
olumn of g, whi
h � onthe other hand � is also invariant under right a
tion of SU(2). Thus, π(g) 
an be identi�edwith the �rst 
olumn of g,

π(g) =




a
b1

b2



 ∈ S5 ⊂ C
3 ,whi
h by (A.3) has norm 1, indeed.Next, we 
onstru
t an atlas of lo
al trivializations of the bundle (A.1). Observe �rstthat, a

ording to (A.5), det(B) = 0 i� ‖b‖ = 1 and, when
e, i� a = 0. Thus, let32



us assume a 6= 0 and 
onstru
t appropriate trivializations of (A.1) over the open set
O = {(a, b)|a 6= 0} ⊂ S5. Using the polar de
omposition B = AV , where A > 0,
V ∈ U(2), we 
an rewrite equation (A.5) as follows:

bb† = 1 − A2 = V c c†V †,yielding
c = − e−iφV †b, φ ∈ R, (A.6)

A2 = 1 − bb†. (A.7)Formulae (A.4) and (A.6) imply
(ā − e−iφA)b = 0,whi
h means that b is an eigenve
tor of the matrix A with eigenvalue ā eiφ. Positivity of

A implies |a| = ā eiφ.From equation (A.7) we have A =
√

1 − bb†. Sin
e A > 0 this formula de�nes Auniquely. Obviously, it must be of the form
A = α1 + β bb†. (A.8)Plugging this into equation (A.7) yields

A = 1 − 1

1 + |a|bb
†. (A.9)We 
on
lude that any matrix g ∈ U(3) whi
h ful�ls the 
ondition a 6= 0 
an be written inthe following form:

g =

[
a − eiφb†

b 1 − bb†

1+|a|

]
·
[

1 0

0 V

]
, (A.10)with |a|2 + ‖b‖2 = 1, a = |a| eiφ, V ∈ U(2).Imposing the 
ondition det g = 1 is equivalent to

det A(a + eiφb†A−1b) det V = 1. (A.11)From (A.3) and (A.9) we have det A = |a| and A−1b = 1
|a|

b. Using this, equation (A.11)takes the form:
|a|(a + e+iφ ‖b‖2

|a| ) det V = 1.Finally, substituting a = |a| eiφ and using (A.3), we obtain:
det V = e−iφ =

a

|a| .33



We de
ompose V = δ−1S, where S ∈ SU(2) and δ−2 := det V , or δ2 = a
|a|
. Of 
ourse,

|δ| = 1. Corresponding to the two 
hoi
es of the square root of a
|a|
, we 
hoose two opensubsets Oi ⊂ O,

O1 :=








a
b1

b2



 ∈ O : phase(a) ∈] − π, π[



 ,

O2 :=









a
b1

b2


 ∈ O : phase(a) ∈]0, 2π[




 . (A.12)Then, every element g ∈ π−1(Oi) ⊂ SU(3), 
an be uniquely represented as
g = si(π(g)) · hi(g) ,with si being two lo
al 
ross se
tions of (A.1) over Oi,

S5 ⊃ Oi ∋ (a, b) → si(a, b) =

[
a −δib

†

b δ−1
i

(
1 − bb†

1+|a|

)
]
∈ SU(3) , (A.13)and

hi(g) =

[
1 0

0 Si(g)

]
⊂ SU(3) , Si(g) ∈ SU(2) . (A.14)Thus, 
orresponding to the two 
hoi
es of the square root, we obtain two lo
al bije
tivemappings

π−1(Oi) ∋ g −→ χi(g) :=
(
π(g), (si(π(g)))−1 · g

)
∈ Oi × SU(2) .Similarly, we 
hoose the following open neighborhood of a = 0:

O3 :=








a
b1

b2


 ∈ S5 :

(
b1

b2

)
6=

(
0
0

)

 .Then, we �nd a lo
al 
ross se
tion s3 over O3 su
h that

g = s3(π(g)) · h(g) =

[
a b†

b −1 + 1−ā
‖b‖2 bb†

]
·
[

1 0

0 S(g)

]
, (A.15)with S(g) ∈ SU(2), and a lo
al bije
tive mapping

π−1(O3) ∋ g −→ χ3(g) :=
(
π(g), (s3(π(g)))−1 · g

)
∈ O3 × SU(2) .Proposition A.1. The lo
al mappings χi, i = 1, 2, 3, form an atlas of lo
al trivializationsof the SU(2)-prin
ipal bundle (A.1). 34



Proof:The proof 
onsists of 
he
king the following obvious statements:1. The open neighborhoods Oi 
over S5,
O1 ∪ O2 ∪O3 = S5 .2. The mappings

π−1(Oi) ∋ g −→ χi(g) :=
(
π(g), (si(π(g)))−1 · g

)
∈ Oi × SU(2)are lo
al di�eomorphisms, for i = 1, 2, 3.3. The mappings {χi} are 
ompatible with the bundle stru
ture and with the rightgroup a
tion:

pri
1 ◦ χi = π , (A.16)

(pri
2 ◦ χi)(g · g′) = (pri

2 ◦ χi(g)) · g′ , (A.17)for i = 1, 2, 3, with pri
α , α = 1, 2, denoting the proje
tion on the �rst, respe
tivelyse
ond fa
tor of Oi × SU(2).
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B The Relation for T 2
5The relation for the square of the invariant T5, referred to in Lemma 4.3/4., is

(
tr(h2g2hg) − tr(h2ghg2)

)2

=

− 27 + tr(h)2tr(h)
2
+ 18tr(hg)tr(hg) + tr(hg)2tr(hg)

2
+ tr(hg2)2tr(hg2)

2
+ 18tr(hg2)tr(hg2)

− 4tr(h)3 − 4tr(h)
3 − 4tr(hg2)3 − 4tr(g)

3 − 4tr(hg2)tr(h)2tr(hg) − 4tr(hg2)tr(hg)tr(h)
2

− 4tr(hg)2tr(hg2)tr(g) − 4tr(hg)
2
tr(hg2)tr(g) − 4tr(hg2)tr(hg)tr(g)2 − 6tr(hg2)tr(hg)tr(g)

−4tr(hg)
2
tr(hg2)tr(g)

2
+8tr(hg2)

2
tr(hg)tr(g)+tr(hg2)2tr(hg)

2
tr(g)

2
+tr(hg2)

2
tr(hg)2tr(g)2

+8tr(hg2)2tr(hg)tr(g)−4tr(hg)tr(hg2)tr(g)
2−4tr(hg)2tr(hg2)tr(g)2−4tr(hg)2tr(h)tr(hg2)

+12tr(h)tr(hg2)tr(hg)+12tr(hg2)tr(hg)tr(h)−4tr(hg2)
2
tr(hg)tr(h)−4tr(hg2)2tr(h)tr(hg)

− 4tr(hg2)
3 − 2tr(hg2)tr(hg)tr(hg)tr(hg2) − 2tr(hg2)tr(hg2)tr(h)tr(h) − 4tr(hg)

3

− 2tr(hg2)tr(h)tr(h)tr(hg)tr(g) − 4tr(hg)3 − 2tr(h)tr(hg)tr(h)tr(hg) + 18tr(h)tr(h)

− 2tr(h)tr(hg)tr(hg)
2
tr(g)tr(g)2 − 4tr(hg)tr(h)tr(g)

2 − 6tr(hg)tr(h)tr(g)

+ 12tr(hg2)tr(h)tr(g) − 4tr(hg2)tr(h)2tr(g) − 4tr(hg2)2tr(h)tr(g) − 4tr(hg2)
2
tr(h)tr(g)

+ tr(g)
2
tr(g)2 − 2tr(hg2)tr(hg2)tr(h)tr(hg)tr(g) − 2tr(hg)tr(hg2)tr(hg)

2
tr(g)

2
tr(g)

+ 4tr(hg2)tr(hg)tr(hg)tr(hg2)tr(g)tr(g) − 2tr(hg)2tr(hg2)tr(hg)tr(g)tr(g)2

+ 2tr(hg)tr(hg2)tr(h)tr(hg)tr(g)
2
+ 4tr(hg)tr(hg2)tr(h)tr(hg)tr(g)

+ 2tr(h)tr(hg)tr(hg2)tr(hg)tr(g)2 + 4tr(h)tr(hg)tr(hg2)tr(hg)tr(g)
+ 4tr(hg2)tr(hg)tr(h)tr(g)tr(g) + 4tr(h)tr(hg2)tr(hg)tr(g)tr(g)

+ 2tr(h)tr(hg2)tr(hg)
2
tr(g)tr(g) + 2tr(hg)2tr(h)tr(hg2)tr(g)tr(g) + 4tr(hg)3tr(g)tr(g)

+ 4tr(hg)tr(hg)tr(g)
3
+ 4tr(hg)

3
tr(g)tr(g) − 2tr(hg2)tr(hg)tr(h)tr(h)tr(g)

− 6tr(hg)tr(hg2)tr(g) − 4tr(hg2)tr(h)
2
tr(g) − 4tr(h)tr(hg)2tr(g)

2 − 4tr(h)tr(hg)
2
tr(g)

− 4tr(hg)tr(h)tr(g)2 − 6tr(hg)tr(h)tr(g) − 4tr(h)tr(hg)2tr(g) + 8tr(h)
2
tr(hg)tr(g)

+ 8tr(hg)tr(h)2tr(g) + tr(h)2tr(hg)
2
tr(g)2 + tr(hg)2tr(h)

2
tr(g)

2 − 4tr(hg2)tr(h)tr(g)
2

+ 12tr(hg2)tr(h)tr(g) − 4tr(hg2)tr(h)tr(g)2 − 4tr(h)tr(hg)
2
tr(g)2 + 4tr(hg)tr(hg)tr(g)3

− 2tr(hg2)tr(hg2)tr(hg)tr(h)tr(g) − 2tr(hg)2tr(h)tr(hg)tr(g)
2
tr(g)

+ 4tr(h)tr(hg)tr(h)tr(hg)tr(g)tr(g) − 2tr(h)tr(h)tr(g)tr(g) − 4tr(g)3

− 2tr(hg2)tr(hg2)tr(g)tr(g) − 2tr(hg2)tr(hg2)
2
tr(hg)tr(g) − 2tr(hg2)2tr(hg2)tr(hg)tr(g)

+ 2tr(hg2)tr(hg)tr(g)
2
tr(g) + 2tr(hg)tr(hg2)tr(g)tr(g)2 + 2tr(hg)tr(hg2)tr(hg)

2
tr(g)

+ 2tr(hg)2tr(hg2)tr(hg)tr(g) + tr(hg)2tr(hg)
2
tr(g)

2
tr(g)2 − 2tr(hg)2tr(hg)

2
tr(g)tr(g)

− 2tr(hg)tr(hg)tr(g)
2
tr(g)2 − 8tr(hg)tr(hg)tr(g)tr(g) + 2tr(h)tr(hg)tr(hg)

2
tr(g)

+ 2tr(hg)tr(h)tr(g)
2
tr(g) + 2tr(hg)tr(h)tr(g)tr(g)2 + 2tr(hg)2tr(h)tr(hg)tr(g)

− 2tr(h)2tr(h)tr(hg)tr(g) − 2tr(hg)tr(h)tr(h)
2
tr(g) + 18tr(g)tr(g) − 4tr(h)tr(hg2)tr(hg)

2.It 
an be derived in the following way. Consider the invariant fun
tions tr(hghgghghhggh)and tr(hghgghhgghgh) of order 12. The sum of them 
an be expressed in terms of gen-erators T1, . . . , T5 in two di�erent ways. First, we use the tra
e identity (2.6) for k = 436



and g1 = gh, g2 = gg, g3 = hg, g4 = hhgghh to express tr(hghgghghhggh) in terms oftra
es of lower order. Next, we use the tra
e identity (2.6) for k = 4 and g1 = hh, g2 = gh,
g3 = gghhgg, g4 = hg to express tr(hghgghhgghgh). It turns out that in both 
ases (whi
hare a
tually equivalent, be
ause one is obtained from the other by inter
hanging g with h),we obtain expressions whi
h 
an be simpli�ed using standard te
hniques from Se
tion 4.The �nal expressions in terms of generators do not depend on T5.On the other hand we observe that the sum
tr(hghgghghhggh)+ tr(hghgghhgghgh) = tr

(
(hg)2(gh)2(hg)(gh)

)
+tr

(
(hg)2(gh)(hg)(gh)2

)
an be expressed in terms of invariants of lower order using formula (4.9) (we substitute
h → hg, g → gh). In this 
ase, we obtain a di�erent formula 
ontaining T 2

5 . Taking thedi�eren
e of these two expressions yields the above relation.All 
al
ulations des
ribed above were made by a 
omputer program written underMaple 8.00. It is worth mentioning that this program automati
ally generates polynomialexpression in terms of generators for any tra
e fun
tion (at least up to order 12) using onlystandard te
hniques, namely fundamental tra
e identities and appropriate substitutions inthe Cayley equation.Finally, let us mention that, on
e the relation has been found, it 
an be 
he
ked bydire
t 
al
ulation.
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C The Polynomials I0 , IR
1 and IR

2

I0(x1, x2, x3, x4, x5, x6, x7, x8) =
− x1

4 x5
4 − 2x1

4 x5
2 x6

2 − x1
4 x6

4 − 2x1
2 x2

2 x5
4 − 4x1

2 x2
2 x5

2 x6
2 − 2x1

2 x2
2 x6

4 − x2
4 x5

4

− 2x2
4 x5

2 x6
2 − x2

4 x6
4 + 4x1

3 x3 x5
3 + 4x1

3 x3 x5 x6
2 + 4x1

3 x4 x5
2 x6 + 4x1

3 x4 x6
3

+ 4x1
3 x5

3 x7 + 4x1
3 x5

2 x6 x8 + 4x1
3 x5 x6

2 x7 + 4x1
3 x6

3 x8 + 4x1
2 x2 x3 x5

2 x6

+ 4x1
2 x2 x3 x6

3 − 4x1
2 x2 x4 x5

3 − 4x1
2 x2 x4 x5 x6

2 + 4x1
2 x2 x5

3 x8

− 4x1
2 x2 x5

2 x6 x7 + 4x1
2 x2 x5 x6

2 x8 − 4x1
2 x2 x6

3 x7 + 4x1 x2
2 x3 x5

3

+ 4x1 x2
2 x3 x5 x6

2 + 4x1 x2
2 x4 x5

2 x6 + 4x1 x2
2 x4 x6

3 + 4x1 x2
2 x5

3 x7

+ 4x1 x2
2 x5

2 x6 x8 + 4x1 x2
2 x5 x6

2 x7 + 4x1 x2
2 x6

3 x8 + 4x2
3 x3 x5

2 x6 + 4x2
3 x3 x6

3

− 4x2
3 x4 x5

3 − 4x2
3 x4 x5 x6

2 + 4x2
3 x5

3 x8 − 4x2
3 x5

2 x6 x7 + 4x2
3 x5 x6

2 x8

− 4x2
3 x6

3 x7 + 2x1
4 x5

2 + 2x1
4 x6

2 + 4x1
2 x2

2 x5
2 + 4x1

2 x2
2 x6

2 − 6x1
2 x3

2 x5
2

− 2x1
2 x3

2 x6
2 − 8x1

2 x3 x4 x5 x6 − 8x1
2 x3 x5

2 x7 − 8x1
2 x3 x5 x6 x8 − 2x1

2 x4
2 x5

2

− 6x1
2 x4

2 x6
2 − 8x1

2 x4 x5 x6 x7 − 8x1
2 x4 x6

2 x8 + 2x1
2 x5

4 + 4x1
2 x5

2 x6
2

− 6x1
2 x5

2 x7
2 − 2x1

2 x5
2 x8

2 − 8x1
2 x5 x6 x7 x8 + 2x1

2 x6
4 − 2x1

2 x6
2 x7

2

− 6x1
2 x6

2 x8
2 − 8x1 x2 x3

2 x5 x6 + 8x1 x2 x3 x4 x5
2 − 8x1 x2 x3 x4 x6

2

− 8x1 x2 x3 x5
2 x8 − 8x1 x2 x3 x6

2 x8 + 8x1 x2 x4
2 x5 x6 + 8x1 x2 x4 x5

2 x7

+ 8x1 x2 x4 x6
2 x7 − 8x1 x2 x5

2 x7 x8 + 8x1 x2 x5 x6 x7
2 − 8x1 x2 x5 x6 x8

2

+ 8x1 x2 x6
2 x7 x8 + 2x2

4 x5
2 + 2x2

4 x6
2 − 2x2

2 x3
2 x5

2 − 6x2
2 x3

2 x6
2

+ 8x2
2 x3 x4 x5 x6 − 8x2

2 x3 x5 x6 x8 + 8x2
2 x3 x6

2 x7 − 6x2
2 x4

2 x5
2 − 2x2

2 x4
2 x6

2

+ 8x2
2 x4 x5

2 x8 − 8x2
2 x4 x5 x6 x7 + 2x2

2 x5
4 + 4x2

2 x5
2 x6

2 − 2x2
2 x5

2 x7
2

− 6x2
2 x5

2 x8
2 + 8x2

2 x5 x6 x7 x8 + 2x2
2 x6

4 − 6x2
2 x6

2 x7
2 − 2x2

2 x6
2 x8

2

− 4x1
3 x3 x5 − 4x1

3 x4 x6 − 8x1
3 x5

2 − 4x1
3 x5 x7 − 8x1

3 x6
2 − 4x1

3 x6 x8

− 4x1
2 x2 x3 x6 + 4x1

2 x2 x4 x5 − 4x1
2 x2 x5 x8 + 4x1

2 x2 x6 x7 + 8x1
2 x3 x5

2

− 8x1
2 x3 x5 x7 − 8x1

2 x3 x6
2 + 8x1

2 x3 x6 x8 − 16x1
2 x4 x5 x6 + 8x1

2 x4 x5 x8

+ 8x1
2 x4 x6 x7 − 8x1

2 x5
3 + 8x1

2 x5
2 x7 + 24x1

2 x5 x6
2 − 16x1

2 x5 x6 x8

− 8x1
2 x6

2 x7 − 4x1 x2
2 x3 x5 − 4x1 x2

2 x4 x6 + 24x1 x2
2 x5

2 − 4x1 x2
2 x5 x7

+ 24x1 x2
2 x6

2 − 4x1 x2
2 x6 x8 + 32x1 x2 x3 x5 x6 + 16x1 x2 x4 x5

2 − 16x1 x2 x4 x6
2

− 16x1 x2 x5
2 x8 − 32x1 x2 x5 x6 x7 + 16x1 x2 x6

2 x8 + 4x1 x3
3 x5 + 4x1 x3

2 x4 x6

+ 4x1 x3
2 x5 x7 + 4x1 x3

2 x6 x8 + 4x1 x3 x4
2 x5 − 4x1 x3 x5

3 − 8x1 x3 x5
2 x7

− 4x1 x3 x5 x6
2 + 4x1 x3 x5 x7

2 + 4x1 x3 x5 x8
2 − 8x1 x3 x6

2 x7 + 4x1 x4
3 x6

+ 4x1 x4
2 x5 x7 + 4x1 x4

2 x6 x8 − 4x1 x4 x5
2 x6 − 8x1 x4 x5

2 x8 − 4x1 x4 x6
3

− 8x1 x4 x6
2 x8 + 4x1 x4 x6 x7

2 + 4x1 x4 x6 x8
2 − 4x1 x5

3 x7 − 4x1 x5
2 x6 x8

− 4x1 x5 x6
2 x7 + 4x1 x5 x7

3 + 4x1 x5 x7 x8
2 − 4x1 x6

3 x8 + 4x1 x6 x7
2 x8 + 4x1 x6 x8

3

− 4x2
3 x3 x6 + 4x2

3 x4 x5 − 4x2
3 x5 x8 + 4x2

3 x6 x7 − 8x2
2 x3 x5

2 − 8x2
2 x3 x5 x7

+ 8x2
2 x3 x6

2 + 8x2
2 x3 x6 x8 + 16x2

2 x4 x5 x6 + 8x2
2 x4 x5 x8 + 8x2

2 x4 x6 x7

− 8x2
2 x5

3 − 8x2
2 x5

2 x7 + 24x2
2 x5 x6

2 + 16x2
2 x5 x6 x8 + 8x2

2 x6
2 x7 + 4x2 x3

3 x6

− 4x2 x3
2 x4 x5 + 4x2 x3

2 x5 x8 − 4x2 x3
2 x6 x7 + 4x2 x3 x4

2 x6 − 4x2 x3 x5
2 x6

+ 8x2 x3 x5
2 x8 − 4x2 x3 x6

3 + 8x2 x3 x6
2 x8 + 4x2 x3 x6 x7

2 + 4x2 x3 x6 x8
2

− 4x2 x4
3 x5 + 4x2 x4

2 x5 x8 − 4x2 x4
2 x6 x7 + 4x2 x4 x5

3 − 8x2 x4 x5
2 x7

+ 4x2 x4 x5 x6
2 − 4x2 x4 x5 x7

2 − 4x2 x4 x5 x8
2 − 8x2 x4 x6

2 x7 − 4x2 x5
3 x8

+ 4x2 x5
2 x6 x7 − 4x2 x5 x6

2 x8 + 4x2 x5 x7
2 x8 + 4x2 x5 x8

3 + 4x2 x6
3 x7 − 4x2 x6 x7

3

− 4x2 x6 x7 x8
2 − x1

4 − 2x1
2 x2

2 + 2x1
2 x3

2 + 8x1
2 x3 x5 + 8x1

2 x3 x7 + 2x1
2 x4

2

+ 8x1
2 x4 x6 + 8x1

2 x4 x8 + 8x1
2 x5

2 + 8x1
2 x5 x7 + 8x1

2 x6
2 + 8x1

2 x6 x8 + 2x1
2 x7

2

+ 2x1
2 x8

2 − 16x1 x2 x3 x6 + 16x1 x2 x3 x8 + 16x1 x2 x4 x5 − 16x1 x2 x4 x738



− 16x1 x2 x5 x8 + 16x1 x2 x6 x7 − 16x1 x3
2 x5 + 8x1 x3

2 x7 + 32x1 x3 x4 x6

− 16x1 x3 x4 x8 + 8x1 x3 x5
2 − 8x1 x3 x6

2 + 8x1 x3 x7
2 − 8x1 x3 x8

2 + 16x1 x4
2 x5

− 8x1 x4
2 x7 − 16x1 x4 x5 x6 − 16x1 x4 x7 x8 + 8x1 x5

2 x7 − 16x1 x5 x6 x8

− 16x1 x5 x7
2 + 16x1 x5 x8

2 − 8x1 x6
2 x7 + 32x1 x6 x7 x8 − x2

4 + 2x2
2 x3

2

− 8x2
2 x3 x5 − 8x2

2 x3 x7 + 2x2
2 x4

2 − 8x2
2 x4 x6 − 8x2

2 x4 x8 + 8x2
2 x5

2

− 8x2
2 x5 x7 + 8x2

2 x6
2 − 8x2

2 x6 x8 + 2x2
2 x7

2 + 2x2
2 x8

2 − 16x2 x3
2 x6

− 8x2 x3
2 x8 − 32x2 x3 x4 x5 − 16x2 x3 x4 x7 − 16x2 x3 x5 x6 + 16x2 x3 x7 x8

+ 16x2 x4
2 x6 + 8x2 x4

2 x8 − 8x2 x4 x5
2 + 8x2 x4 x6

2 + 8x2 x4 x7
2 − 8x2 x4 x8

2

+ 8x2 x5
2 x8 + 16x2 x5 x6 x7 + 32x2 x5 x7 x8 − 8x2 x6

2 x8 + 16x2 x6 x7
2

− 16x2 x6 x8
2 − x3

4 − 2x3
2 x4

2 + 2x3
2 x5

2 + 8x3
2 x5 x7 + 2x3

2 x6
2 − 8x3

2 x6 x8

+ 2x3
2 x7

2 + 2x3
2 x8

2 + 16x3 x4 x5 x8 + 16x3 x4 x6 x7 + 8x3 x5
2 x7 + 16x3 x5 x6 x8

+ 8x3 x5 x7
2 − 8x3 x5 x8

2 − 8x3 x6
2 x7 + 16x3 x6 x7 x8 − x4

4 + 2x4
2 x5

2 − 8x4
2 x5 x7

+ 2x4
2 x6

2 + 8x4
2 x6 x8 + 2x4

2 x7
2 + 2x4

2 x8
2 − 8x4 x5

2 x8 + 16x4 x5 x6 x7

+ 16x4 x5 x7 x8 + 8x4 x6
2 x8 − 8x4 x6 x7

2 + 8x4 x6 x8
2 − x5

4 − 2x5
2 x6

2 + 2x5
2 x7

2

+ 2x5
2 x8

2 − x6
4 + 2x6

2 x7
2 + 2x6

2 x8
2 − x7

4 − 2x7
2 x8

2 − x8
4 + 8x1

3 − 24x1 x2
2

+ 12x1 x3 x5 − 24x1 x3 x7 + 12x1 x4 x6 − 24x1 x4 x8 + 12x1 x5 x7 + 12x1 x6 x8

+ 12x2 x3 x6 + 24x2 x3 x8 − 12x2 x4 x5 − 24x2 x4 x7 + 12x2 x5 x8 − 12x2 x6 x7

+ 8x3
3 − 24x3 x4

2 − 24x3 x5 x7 + 24x3 x6 x8 + 24x4 x5 x8 + 24x4 x6 x7 + 8x5
3

− 24x5 x6
2 + 8x7

3 − 24x7 x8
2 − 18x1

2 − 18x2
2 − 18x3

2 − 18x4
2 − 18x5

2 − 18x6
2

− 18x7
2 − 18x8

2 + 27

IR
1 (x1, x2, x3, x4, x5, x6, x7, x8) =

27 − 9x8
2 − 9x7

2 − 9x3
2 − 9x4

2 − 6x2 x6 x7 + 2x7
3 − 6x7 x8

2 − 9x6
2 − 9x5

2 + 6x1 x5 x7

+ 6x2 x5 x8 − 8x1 x2 x3 x6 + 8x1 x2 x4 x5 + 2x5
3 − 6x5 x6

2 + 4x1
2 x3 x5 − 4x2

2 x3 x5

+ 6x1 x3 x5 + 6x2 x3 x6 − 6x2 x4 x5 + 4x1
2 x4 x6 − 4x2

2 x4 x6 + 2x3
3 − 6x3 x4

2

+ 4x1 x2 x4 x5
2 − 4x2 x3 x5 x6 − 4x1

2 x4 x5 x6 + 4x2
2 x4 x5 x6 − 4x1 x4 x5 x6

− 4x1 x2 x4 x6
2 − 4x1

2 x5 x6 x8 + 4x2
2 x5 x6 x8 + 4x1 x4

2 x5 + 2x1
2 x3 x6 x8

+ 2x2
2 x3 x6 x8 + 2x1

2 x4 x6 x7 + 2x2
2 x4 x6 x7 + 2x1

2 x4 x5 x8 + 2x2
2 x4 x5 x8

+ 4x1
2 x5 x7 + 6x1 x4 x6 − 4x2

2 x5 x7 + 4x1
2 x6 x8 − 4x2

2 x6 x8 − 4x1 x3
2 x5

− 4x2 x3
2 x6 + 4x2 x4

2 x6 + 8x1 x2 x6 x7 − 8x1 x2 x5 x8 − 2x1
2 x3 x5 x7

− 2x2
2 x3 x5 x7 + x1

4 x6
2 + x2

4 x6
2 − 4x1

3 x6
2 + 2x1

2 x2
2 x5

2 + x2
4 x5

2 − 4x1
3 x5

2

+ 2x1 x3
2 x7 − 2x1 x4

2 x7 − 2x2 x3
2 x8 + 2x2 x4

2 x8 + 2x1 x3 x7
2 − 2x1 x3 x8

2

+ 2x2 x4 x7
2 − 2x2 x4 x8

2 + x1
2 x7

2 + x2
2 x7

2 + x1
2 x8

2 + x2
2 x8

2 − 8x1 x2 x4 x7

+ 8x1 x2 x3 x8 − 4x2 x3 x4 x7 − 4x1 x3 x4 x8 − 4x1 x4 x7 x8 + 4x2 x3 x7 x8

− 8x1 x2 x5 x6 x7 + 4x1
2 x3 x7 − 4x2

2 x3 x7 − 12x1 x3 x7 − 12x2 x4 x7 + 12x2 x3 x8

+ 4x1
2 x4 x8 − 4x2

2 x4 x8 − 12x1 x4 x8 + 12x1 x2
2 x5

2 + 2x1
2 x2

2 x6
2 + 12x1 x2

2 x6
2

− 2x1
3 x5 x7 − 2x1 x2

2 x5 x7 − 2x1
2 x2 x5 x8 + 2x1

2 x2 x6 x7 − 2x1 x2
2 x6 x8

+ 8x1 x6 x7 x8 + 8x2 x5 x7 x8 + 4x2 x5 x6 x7 − 4x1 x2 x5
2 x8 + 4x1 x2 x6

2 x8

− 4x1 x5 x6 x8 − 4x1 x5 x7
2 + 4x1 x5 x8

2 + 4x2 x6 x7
2 − 4x2 x6 x8

2 − 2x2
3 x5 x8

+ 2x2
3 x6 x7 − 2x1

3 x6 x8 + 2x1 x5
2 x7 − 2x1 x6

2 x7 + 2x2 x5
2 x8 − 2x2 x6

2 x8

+ 4x1
2 x5

2 + 4x2
2 x5

2 + 4x1
2 x6

2 + 4x2
2 x6

2 + 2x2 x4 x6
2 + 2x1

2 x5
2 x7 − 2x2

2 x5
2 x7

− 2x1
2 x6

2 x7 + 2x2
2 x6

2 x7 + 8x1 x2 x3 x5 x6 + 2x1
2 x3 x5

2 − 2x2
2 x3 x5

2 + 2x1 x3 x5
2

− 2x2 x4 x5
2 − 2x1

2 x3 x6
2 + 2x2

2 x3 x6
2 − 2x1 x3 x6

2 + 8x1 x3 x4 x6 − 8x2 x3 x4 x5

+ 6x3 x6 x8 + 6x4 x5 x8 − 6x3 x5 x7 + 6x4 x6 x7 − 2x1
3 x4 x6 − 2x1 x2

2 x3 x5

− 2x1
2 x2 x3 x6 + 2x1

2 x2 x4 x5 − 2x1 x2
2 x4 x6 + x1

2 x3
2 + x2

2 x3
2 − 2x1

3 x3 x5

− 2x2
3 x3 x6 + 2x2

3 x4 x5 + 6x1
2 x5 x6

2 + 6x2
2 x5 x6

2 − 2x1
2 x5

3 − 2x2
2 x5

3 + x1
2 x4
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+ x2
2 x4

2 − 18x1
2 − 18x2

2 + 6x1 x6 x8 − 24x1 x2
2 + 8x1

3 + x1
4 x5

2 − 2x1
2 x2

2 − x1
4

− x2
4

IR
2 (x1, x2, x3, x4, x5, x6, x7, x8) =

27 − 2x1 x3
2 x5

2 + 4x2 x3
2 x5 x6 − 4x2 x4

2 x5 x6 + 2x1 x4
2 x5

2 + 2x1 x3
2 x6

2 − 2x1 x4
2 x6

2

+ 2x1
2 x3 x5 x6

2 − 2x2
2 x3 x5 x6

2 − 4x1 x2 x3 x6
3 + 2x1

2 x4 x5
2 x6 − 2x2

2 x4 x5
2 x6

+ 4x1 x2 x4 x5
3 + 6x1 x2

2 x5
3 + 6x1

3 x5 x6
2 − 6x2

3 x5
2 x6 − 6x1

2 x2 x6
3 − 2x1

3 x5
3

+ 2x2
3 x6

3 − 18x1 x2
2 x5 x6

2 + 18x1
2 x2 x5

2 x6 − 4x1 x2 x3 x5
2 x6 + 4x1 x2 x4 x5 x6

2

+ 2x1
2 x3 x5

3 − 2x2
2 x3 x5

3 + 2x1
2 x4 x6

3 − 2x2
2 x4 x6

3 − 9x8
2 − 9x7

2 − 18x3
2

− 18x4
2 − 12x2 x6 x7 + 2x7

3 − 6x7 x8
2 − 9x6

2 − 9x5
2 + 12x1 x5 x7 + 12x2 x5 x8

− 16x1 x2 x3 x6 + 16x1 x2 x4 x5 + 2x5
3 − 6x5 x6

2 − 2x3
2 x4

2 + 8x1
2 x3 x5

− 8x2
2 x3 x5 + 6x1 x3 x5 + 6x2 x3 x6 − 6x2 x4 x5 + 8x1

2 x4 x6 − 8x2
2 x4 x6 + 8x3

3

− 24x3 x4
2 − 16x2 x3 x5 x6 − 16x1 x4 x5 x6 − 12x1

2 x5 x6 x8 + 12x2
2 x5 x6 x8

+ 8x1 x4
2 x5 + 4x1

2 x3 x6 x8 + 4x2
2 x3 x6 x8 + 4x1

2 x4 x6 x7 + 4x2
2 x4 x6 x7

+ 4x1
2 x4 x5 x8 + 4x2

2 x4 x5 x8 − 4x1 x3 x5
2 x7 − 4x2 x4 x5

2 x7 + 6x1 x4 x6

− 8x1 x3
2 x5 − 8x2 x3

2 x6 + 8x2 x4
2 x6 + 4x2 x3 x5

2 x8 − 4x1 x4 x5
2 x8 + 4x2 x3 x6

2 x8

− 4x1 x4 x6
2 x8 − 4x1

2 x3 x5 x7 − 4x2
2 x3 x5 x7 + 2x3 x5

2 x7 − 2x3 x6
2 x7

+ 2x1 x3 x4
2 x5 − 2x2 x3

2 x4 x5 + 2x1 x3
2 x4 x6 + 2x2 x3 x4

2 x6 − 2x2 x3 x5
2 x6

− 2x1 x3 x5 x6
2 − 2x1 x4 x5

2 x6 + 2x2 x4 x5 x6
2 + 4x4 x5 x6 x7 + 4x3 x5 x6 x8 + x3

2 x5
2

+ x4
2 x5

2 + x3
2 x6

2 + x4
2 x6

2 + 4x1 x3
2 x7 − 4x1 x4

2 x7 − 4x2 x3
2 x8 + 4x2 x4

2 x8

+ 2x1 x3 x7
2 − 2x1 x3 x8

2 + 2x2 x4 x7
2 − 2x2 x4 x8

2 − 4x1 x2 x4 x7 + 4x1 x2 x3 x8

− 8x2 x3 x4 x7 − 8x1 x3 x4 x8 − 4x1 x4 x7 x8 + 4x2 x3 x7 x8 − 24x1 x2 x5 x6 x7

+ 2x1
2 x3 x7 − 2x2

2 x3 x7 − 12x1 x3 x7 − 12x2 x4 x7 + 12x2 x3 x8 + 2x1
2 x4 x8

− 2x2
2 x4 x8 − 12x1 x4 x8 − x1

2 x3
2 x5

2 − x2
2 x3

2 x5
2 − x1

2 x4
2 x5

2 − x2
2 x4

2 x5
2

− x1
2 x3

2 x6
2 − x2

2 x3
2 x6

2 − x1
2 x4

2 x6
2 − x2

2 x4
2 x6

2 + 2x1 x3
3 x5 − 2x2 x4

3 x5

+ 2x1 x4
3 x6 + 2x2 x3

3 x6 + 12x1 x6 x7 x8 + 12x2 x5 x7 x8 − 12x1 x2 x5
2 x8

+ 12x1 x2 x6
2 x8 + 4x3

2 x5 x7 − 4x4
2 x5 x7 − 6x1 x5 x7

2 + 6x1 x5 x8
2 + 6x2 x6 x7

2

− 6x2 x6 x8
2 + 4x3 x6 x7 x8 + 4x4 x5 x7 x8 + 8x3 x4 x5 x8 + 8x3 x4 x6 x7 − 3x1

2 x5
2

− 3x2
2 x5

2 − 3x1
2 x6

2 − 3x2
2 x6

2 + 2x3 x5 x7
2 + 8x2 x4 x6

2 + 6x1
2 x5

2 x7

− 6x2
2 x5

2 x7 − 6x1
2 x6

2 x7 + 6x2
2 x6

2 x7 − 2x3 x5 x8
2 − 2x4 x6 x7

2 + 2x4 x6 x8
2

− 4x3
2 x6 x8 + 4x4

2 x6 x8 + 8x1 x3 x5
2 − 8x2 x4 x5

2 − 8x1 x3 x6
2 − 4x1 x3 x6

2 x7

− 4x2 x4 x6
2 x7 + 16x1 x3 x4 x6 − 16x2 x3 x4 x5 − x3

4 − x4
4 + x3

2 x8
2 + x4

2 x8
2

+ 12x3 x6 x8 + 12x4 x5 x8 − 2x4 x5
2 x8 + 2x4 x6

2 x8 − 12x3 x5 x7 + 12x4 x6 x7

− 2x1
3 x4 x6 − 2x1 x3 x5

3 − 2x2 x3 x6
3 + 2x2 x4 x5

3 − 2x1 x4 x6
3 − 2x1 x2

2 x3 x5

− 2x1
2 x2 x3 x6 + 2x1

2 x2 x4 x5 − 2x1 x2
2 x4 x6 + x3

2 x7
2 + x4

2 x7
2 + x1

2 x3
2 + x2

2 x3
2

− 2x1
3 x3 x5 − 2x2

3 x3 x6 + 2x2
3 x4 x5 + x1

2 x4
2 + x2

2 x4
2 − 9x1

2 − 9x2
2 + 12x1 x6 x8

− 6x1 x2
2 + 2x1

3 + 2x1
3 x3 x5

2 − 2x1
3 x3 x6

2 − 8x1 x3 x4 x5 x6 − 4x1
2 x2 x3 x5 x6

− 4x1 x2
2 x4 x5 x6 + 2x1

2 x2 x4 x6
2 − 2x1 x2

2 x3 x6
2 + 2x1 x2

2 x3 x5
2 − 2x1

2 x2 x4 x5
2

+ 8x1 x2 x3 x4 x5 − 2x1
2 x3

2 x5 + 2x2
2 x3

2 x5 + 2x1
2 x4

2 x5 − 2x2
2 x4

2 x5

− 2x2
3 x4 x5

2 + 2x2
3 x4 x6

2 − 4x2
3 x3 x5 x6 − 4x1

3 x4 x5 x6 − 4x2 x3 x4 x5
2

+ 4x2 x3 x4 x6
2 + 4x1 x2 x3

2 x6 − 4x1 x2 x4
2 x6 + 4x1

2 x3 x4 x6 − 4x2
2 x3 x4 x6The polynomials IR

1 and IR
2 are both inhomogeneous polynomials of total degree 6.

IR
1 is a polynomial of degrees 4, 4, 3, 2, 3, 2, 3, 2 and IR

2 is of degrees 3, 3, 4, 4, 3, 3, 3, 2 invariables x1, . . . , x8 respe
tively. 40
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