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Abstract

The stratified structure of the configuration space GV = G x - - - x G reduced with
respect to the action of G by inner automorphisms is investigated for G = SU(3).
This is a finite dimensional model coming from lattice QCD. First, the stratification
is characterized algebraically, for arbitrary N. Next, the full algebra of invariants is
discussed for the cases N = 1 and N = 2. Finally, for N =1 and N = 2, the stratified
structure is investigated in some detail, both in terms of invariants and relations and
in more geometric terms. Moreover, the strata are characterized explicitly using local
cross sections.
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1 Introduction

If one wants to analyze the non-perturbative structure of gauge theories, one should start
with clarifying basic structures like that of the field algebra, the observable algebra and
the superselection structure of the Hilbert space of physical states. It is clear that the
standard Doplicher-Haag-Roberts theory [T, 2] for models, which do not contain massless
particles, does not apply here. Nonetheless, there are interesting partial results within the
framework of general quantum field theory both for quantum electrodynamics (QED) and
for non-abelian models, see 3, @, B, 6.

To be rigorous, one can put the system on a finite lattice, leaving the (extremely com-
plicated task) of constructing the full continuum limit, for the time being, aside. This
way, one gets rid of complicated functional analytical problems, but the gauge theoretical
problems one is interested in are still present within this setting. For basic notions con-
cerning lattice gauge theories (including fermions) we refer to [[7] and references therein.
Our approach is Hamiltonian, thus, we put the model on a finite (regular) cubic lattice. In
this context, we have formulated (and in the meantime partially solved [, @, [0, [T}, T2])
the following programme:

1. Describe the field algebra 2, in terms of generators and defining relations and endow
it with an appropriate functional analytical structure

2. Describe the observable algebra 9, (algebra of gauge invariant operators, fulfilling
the Gauss law) in terms of generators and relations

3. Analyze the mathematical structure of O, and endow it with an appropriate func-
tional analytical structure

4. Classify all irreducible representations of O,

5. Investigate dynamics in terms of observables

Finally, of course, one wants to construct the continuum limit. As already mentioned,
in full generality, this is an extremely complicated problem of constructive field theory.
However, the results obtained until now suggest that there is some hope to control the
thermodynamical limit, see [8] for a heuristic discussion. We also mention that for simple
toy models, these problems can be solved, see [T4].

In [T2)] we have started to investigate the structure of the field and the observable algebra
of lattice QCD. In these papers we took the attitude of implementing the constraints on
the quantum level. It is well known that there is another possibility: First, one reduces
the classical phase space and then one formulates the quantum theory over this reduced
phase space. Since the action of the gauge group can have several orbit types, the first
step has to be done using singular Marsden-Weinstein reduction [T9]. Then the reduced
phase space has the structure of a stratified symplectic space. Quantization procedures
for such spaces have been worked out recently or are still under investigation [20]. As
an important ingredient for both reduction and quantization, in this paper, we study the



stratified structure of the reduced classical configuration space. For QCD on a finite lattice,
this is given by the orbit space of the action of SU(3) on SU(3)N = SU(3) x --- x SU(3)
by inner automorphisms.

Our paper is organized as follows: In Section [ we give a precise formulation of the
problem and we discuss the basic tools used in this paper. In Section Bl the stratification
of the reduced configuration space is characterized algebraically for arbitrary N. Next, in
Section [ the full algebra of invariants is discussed for the cases N = 1 and N = 2. Finally,
in Sections Bl and B the stratified structure is investigated for N =1 and N = 2 in some
detail, both in terms of invariants and relations and in more geometric terms. Moreover,
the strata are characterized explicitly using local cross sections.

2 Basics

We consider QQCD on a finite regular cubic lattice A in the Hamiltonian framework. In this
context, the classical gluonic potential is approximated by its parallel transporter:

A} > Cruy)__>gﬁmw 6(3,

where G = SU(3) and A! denotes the set of 1-dimensional elements (links) of A. Thus,
the classical configuration space C,,) over a given link (z,y) is isomorphic to the group
manifold G and the classical phase space over (x,y) is isomorphic to

T°"G =g xG.
Thus, the (gluonic) lattice configuration space is given by
c=II Ceun- (2.1)
(zy)ent
It is obviously isomorphic to the product
GlE=Gx---x@G,
~——_———
L
with L denoting the number of lattice links. The corresponding phase space is a product
of phase spaces of the above type. Gauge transformations act on parallel transporters by
Yew) ™ Yag) = o Iw) "Iy s

with
Nsz—g,eq
and A° denoting the set of O-dimensional elements (sites) of A. These transformations

induce transformations of the phase space over (x,y). Thus, the lattice gauge group is
given by

=116, (2.2)

x€NAO
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with every GG, being a copy of G .

The above symmetry can be easily reduced using the following technique: We choose a
lattice tree, which consists of a fixed lattice point (root) g and a subset of A! such that for
every lattice site = there is a unique lattice path from x to xy. Now, we can fix the gauge
on every on—tree link and we can parallel transport every off-tree configuration variable to
the point xy. This can be viewed as a reduction with respect to the pointed lattice gauge

group
Gh= ][ & (2.3)

xoFATEAO

We end up with a partially reduced configuration space being isomorphic to GV, with N
denoting the number of off-tree links. The corresponding phase space is given by the cotan-
gent bundle T*G". The reduced gauge group is G,, = G, acting via inner automorphisms
G 29— Ad, € Aut(GV):

Adg(g1,- - gn) = (9 91-979 99" g-gv-97").

Thus, we have a finite dimensional Hamiltonian system with symmetry group G. Since
this action has several orbit types, quantization turns out to be a complicated task. Usually,
the non-generic strata occuring here are omitted. If one wants to include them consistently,
one has to develop a quantum theory over a stratified set. One option to do this is to
perform quantization after reduction, i.e., to quantize the reduced phase space of GV.
This is a stratified symplectic space which is constructed from T*G¥ by singular Marsden-
Weinstein reduction [I9]. By properly implementing the tree gauge on the level of the
phase space, it can be shown that this space is isomorphic, as a stratified symplectic space,
to the reduced phase space of the full lattice gauge theory [I8]. This completely justifies
the use of the tree gauge in this approach. The reduced phase space of G is a bundle
over the reduced configuration space

Cr = GV /Adg . (2.4)

In this work, we investigate Cx for N =1 and 2.

Our strategy is as follows:
i) It is well-known that orbit types of the action of a Lie group G on a manifold M are
classified by conjugacy classes of stabilizers [G,,], m € M, of the group action. Moreover,
the orbit of an element m is diffeomorphic to G/G,,. Thus, in Section B], we list the orbit
types by calculating their stabilizers. This is done for arbitrary N . Moreover, all orbit types
will be characterized algebraically, in terms of properties of eigenvectors and eigenvalues
of representatives.
ii) Next, in order to investigate the geometric structure of éA, we make use of basic facts
from invariant theory. According to [I6], if we have an action of a Lie group G on a
manifold M with a finite number of orbit types, then the orbit space of this action can be
characterized as follows: Let (p1...p,) be a set of generators of the algebra of invariant
polynomials of the G-action on M . They define a mapping

p=1(pr...pp): M — R",
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which induces a homeomorphism of the orbit space X := M/G onto the image of p in
RP . Next, restricting our attention to the case of G being an (n X n)-matrix group and
M = GY, we can use general results as developed in [I5]: The algebra of polynomials,
which are invariant under simultaneous conjugation of N matrices is generated by traces
of products of these matrices,

GY 3 (g1,....98) — tr (91,95, - 9i) € C, (2.5)

with £ < 2" — 1. Moreover, for Gl(n,R), the full set of relations between generators is
given by the so called fundamental trace identity

Z Sgl’l(O’) ' H tr(gh o gZ]) = 07 (26)

0€ESn+1 (il,...,i]‘)

where (iy,...,4;) ranges over the set of all cycles of the cycle decomposition of the permu-
tation o. In the case under consideration, G = SU(n), we have two additional relations
induced from the two invariant tensors of SU(n), see [21],

tr(gg") = n, (2.7)
det(g) = 1. (2.8)

Relations ([Z1) and ([Z8) imply the following form of the characteristic polynomial of
g€ G=-5U(3): L

Xo(A) = A% —tr(g) A\ + tr(g)A — 1. (2.9)
The above listed facts enable us to characterize the configuration space in terms of invariant
generators and relations. First, in Section F, we investigate the algebra of invariants and
their relations. Next, in Section Bl and Subsection we study the mapping p in some
detail. For N = 1 we solve the problem completely, that means we find the range of p and
characterize C, as a compact subset of R? . For N = 2, we will find a unique characterization
of each orbit type in terms of invariants. But to find the range of p, defined in terms
of a number of inequalities between invariants, turns out to be a complicated problem.
Therefore, this will be discussed in a separate paper, see [22]. There, we will present a
complete topological characterization of Cpfor N=2as a CW-complex.
iii) We present a somewhat detailed geometric characterization of all occuring strata in
terms of subsets and quotients of SU(3), see Subsection 2
iv) Using a principal bundle atlas of SU(3), viewed as an SU(2)-bundle over S°, we
construct representatives of orbits for all occuring strata, see Subsection

3 The Stratification of the Configuration Space

First, let us consider the case N = 1.



Theorem 3.1. The adjoint action of SU(3) on G' = SU(3) has three orbit types, cor-
responding to three conjugacy classes of stabilizers of dimension 2, 4 and 8, respectively.
The orbit space Gl/AdSU(g) decomposes into three strata characterized by the following
conditions:

1. If g has three different eigenvalues then its stabilizer is U(1) x U(1) and g belongs to
the generic stratum.

2. If g has two different eigenvalues then its stabilizer is U(2).

3. If g has only one eigenvalue then it belongs to the centre Z and its stabilizer s

G = SU(3).

Proof: Up to conjugacy, we may assume that g = diag(A1, A2, A3). In case 1, the \; are
pairwise distinct. Hence, the stabilizer of g is

Hy = {diag(a, 8,7) [, B,7€ U(1), a- -7 =1} =2 U(1) x U(1). (3.1)

In case 2, up to conjugacy, \; # A\s = A3. Then the stabilizer of g is

o (det V)1 ‘
g ‘ v

In case 3, Ay = Ay = A3, i.e, ¢ is a multiple of the identity. Hence, its stabilizer is
G = SU(3). Finally, it is clear that cases 1-3 exhaust all possible values of the A;. O
Next, we deal with the general case.

VEUm}gUm. (3.2)

Theorem 3.2. The adjoint action of SU(3) on GV, N > 2, has five orbit types, corre-
sponding to five conjugacy classes of stabilizers of dimension 0,1,2,4 and 8, respectively.
The orbit space GN/AdSU(3) decomposes into five strata characterized by the following con-
ditions. Denote g := (g1,...,9n)-

1. If g1,...,gn have no common eigenspace then the stabilizer of g is Hg = Z and g
belongs to the generic stratum.

2. If g1, ..., gn have ezxactly one common 1-dimensional eigenspace then Hg = U(1).

3. If g1, ..., 9N have three (different) common (1-dimensional) eigenspaces then Hg =
U(l) x U(1).

4. If g1,...,gn have a common 2-dimensional eigenspace then Hy = U(2).

5. If g1,...,9n have a 3-dimensional common eigenspace, i.e., if they all are propor-

tional to the identity then Hy = G = SU(3).



Proof:

If there are two eigenvectors e; and ey, common for all matrices gy,..., gy, then also
their vector product e; X e5 is a common eigenvector. If e; and e; are not orthogonal, then
the 2-dimensional space P spanned by them is a common eigenspace. This means that the
pair (e, es) can be replaced by any orthonormal basis of P. This implies that if g is not
of type 1 or 2, its elements can be jointly diagonalized. We conclude that the above types
exhaust all possible cases.

Next we calculate the stabilizer for each case.

1. Assume that the stabilizer of g contains an element s € Z. Then s has at least 2
different eigenvalues. One of these must be nondegenerate. Since the corresponding
eigenspace is left invariant by all g; and since it is 1-dimensional, it is an eigenspace
of all g;, in contradiction to the assumption.

2. Since the g; have a common eigenvector ey, up to conjugacy, we may assume that

a; 0
0| B;

Y

gi =

where B; € U(2). Then Hg contains the subgroup

al 0 N
{[ﬂﬁﬁ”a,ﬁeU(l),ﬂ —a}_U(l). (3.3)

Conversely, let s € Hg. Since the common eigenspace of the g; is 1-dimensional, e;

is also an eigenvector of s. Then
a0
0

where A € U(2). Again up to conjugacy, we may assume that A = diag(3,vy). If
0 # ~ then the B; must also be diagonal, because they commute with A. Then the g;
have more than one common eigenspace, which contradicts the assumption. Hence
f =~ and Hg coincides with the subgroup (B3).

Y

3. Choose a basis in C?, which jointly diagonalizes all the matrices g, ..., g,
a; 0 0
gi=10 b 0
0 C;

The non-existence of a 2-dimensional eigenspace means that none among the three
equations a; = b;, b; = ¢; and ¢; = q,, is fulfilled for all 7. This implies that any
matrix which commutes with all matrices gy, ..., gy must be diagonal, too. Whence,
the stabilizer Hy is of the form (B).



4. The orthogonal complement of the 2-dimensional common eigenspace of the g; is a
one-dimensional common eigenspace. Thus, up to conjugacy,

a; 0
0|61

and Hg contains the subgroup (B2). Conversely, let s € Hg. The non-existence of a
3-dimensional eigenspace means that there is iy such that a;, # b;,. Then

gi =

B (detV)~'] 0
°T 0 \v

with V € U(2). Whence, Hg coincides with the subgroup (B2).

5. In this case, all matrices gy, ..., gy belong to Z, so the statement is obvious. O

Observe that types 1 and 3 may be uniquely characterized as follows:
Corollary 3.3.

1. The matrices g1, ..., gn have no common eigenvector if and only if there exists a pair
(9i, g5) or a triple (gi, g, gx) of elements not possessing any common eigenvector.

2. Suppose that gy, ..., gn have three (different) common (1-dimensional) eigenspaces.
There does not exist a common 2-dimensional eigenspace if and only if there exists
an element g; with three different eigenvalues or a pair (g;,g;) such that each of
its elements has exactly two different eigenvalues and non-degenerate eigenvalues
correspond to different eigenvectors.

Proof:

1. If there exists a pair (g;,g;) or a triple (g¢;, g;, gx) having no common eigenvector then,
obviously, there is no common eigenvector for all of them. Conversely, assume that every
triple (gi,g;,gx) has a common eigenvector. We prove that in this case there exists a
common eigenvector for all matrices gy, ..., gy. First, observe that it is sufficient to consider
the case when none of the matrices gy, ..., gy is fully degenerate (i.e. g; ¢ Z). This means
that every g; has at least two different eigenvalues.

The proof goes via induction: for K > 3 we show that if any subset of g of K elements
has a common eigenvector, then the same is true for any subset of K + 1 elements. Thus,
take a subset (g1,...,9x+1). For each i = 1,..., K + 1, skip ¢g; and choose a common
eigenvector v; of the remaining set of K elements. If there exist ¢ # j such that v; and
v; are parallel then they both are common eigenvectors of g,..., gx41. Otherwise, there
exist ¢ # j such that v; and v; are not orthogonal, because there cannot be more than 3
mutually orthogonal vectors in C3. Suppose that vg and vy is such a pair. It spans a
2-dimensional subspace P C C3. Since vk, vix4; are common, non-orthogonal eigenvectors
of g1,...,9x_1, P is a common eigenspace of these elements. Now consider v;. Since it



is an eigenvector of g, and since, by assumption, g is not proportional to the identity, v,
must either belong to P or be orthogonal to P. But in both cases it is also an eigenvector
of g; and, therefore, a common eigenvector of g1, ..., gx11.

2. In this case all matrices ¢1,...,gx can be jointly diagonalized. If one of them has 3
different eigenvalues (i.e., it has no 2-dimensional eigenspace), then there is no common 2-
dimensional eigenspace P for all of them. Suppose that this is not the case, i.e., that every
g; has a 2-dimensional eigenspace P;. There will be no common 2-dimensional eigenspace if
and only if there exist ¢, j such that P; # P;. Then also the non-degenerate eigenspaces Q;
and Q; of g; and g; do not coincide, because they are given by the orthogonal complements
of P; and P;, respectively. Hence, the decomposition of C? into common eigenspaces of g

andgj iS QZ@QJ@PZQPJ |:|

4 The Algebra of Invariants

In this section, we analyze the algebra of invariants for N =1 and N = 2. We start with
invariant monomials built from one matrix.

Lemma 4.1. The invariants tr(g") can be uniquely expressed in terms of tr(g), for any
integer 1 .

Proof: Recall formula 29 for the characteristic polynomial of g € SU(3) :
Xg(A) = A — tr(g)A? + tr(g)A — 1.

Thus, by the Cayley-Hamilton theorem, we have

g° —tr(9)g* + tr(g)g — 1 =0, (4.1)
Multiplying both sides of (@1) by g—! we obtain:
¢* —tr(g)g + tr(g) — g = 0. (4.2)
Taking the trace of both sides we get
tr(g%) = (tr(g))” — 2tr(g). (4.3)

Analogously, multiplying @Il) by ¢%, 7 > 1 and taking the trace one gets formulae for
tr(g""?) in terms of traces of tr(¢g"™!), tr(¢") and tr(g). So by induction tr(g’) is uniquely
given by tr(g). For negative i, the statement now follows from 271 O

So in case N = 1, the algebra of invariant functions has only one generator. The case
N = 2 is more complicated. Its characterization in terms of invariant generators will be
given in Theorem E4]

Lemma 4.2. The invariants tr(g'h?) can be uniquely expressed in terms of the following
set of independent invariants:

{tr(g), tr(h), tr(gh), tr(g°h) } . (4.4)

10



Proof: First, substituting ¢ — gh in [Z) and multiplying both sides by ¢g~! to the left
we get:
hgh — tr(gh)h + tr(gh)g™" — (ghg) ™t = 0. (4.5)

Taking the trace of both sides yields:

tr(gh?) — tr(gh)tr(h) + tr(gh)tr(g) — tr(g2h) = 0. (4.6)

Thus, from five traces occurring in this equation only four are independent. In what follows,
we express tr(gh?) in terms of the set

{tr(g), tr(R), tr(gh). tr(g°h) } .
Multiplying (] by hg® and taking the trace we obtain
tr(hg™?) — tr(g)tr(hg™?) + tr(g)tr(hg™") — tr(hg’) = 0, (4.7)

This equation enables us to express tr(hg'™) in terms of tr(hg'™?), tr(hg'™) and tr(hg'),
so by induction it can be expressed in terms of tr(hg?), tr(hg), tr(h) and tr(g).

Starting now from an arbitrary invariant of the form tr(g‘h?), we can use the above
procedure recursively. First, we lower the power ¢ of g and then we lower the power j of
h. We end up with invariants of the form tr(h™g'), with k < 2, I < 2. So, to finish the
proof it is sufficient to express tr(g?h?) in terms of the set (). For that purpose, we use
the fundamental trace identity (Z8) for £ = 4. Substituting g1 = g2 = g, g3 = g4 = h we
obtain:

tr(g)tr*(h) — 4tr(hg)tr(g)tr(h) — tr?(g)tr(h?) — tr(g*)tr*(h) + 2tr?(hg) (4.8)
+ 4tr(g)tr(h%g) + tr(h®)tr(g®) + 4tr(h)tr(hg®) — 2tr(hghg) — 4tr(h?¢g?) = 0.

Using equation ([E3) we get
tr(hghg) = tr ((hg)*) = tr*(hg) — 2tr(hg).
This way we obtain a formula for tr(h?¢g?) in terms of invariants (E4). O

Lemma 4.3. The invariants tr(h®g*hg) and tr(h*ghg?®) have the following properties:

1. The sum tr(h*g*hg) + tr(h®ghg?®) can be expressed as a polynomial in invariants of
order k <5,

2. Re (tr(h?g?hg) — tr(h?ghg?)) = 0,
3. tr(h*g*hg) — tr(h?ghg?) = 3tr ((hg — gh)*) = det(hg — gh),
4. The invariant (tr(h2g2hg) — tr(h2ghg?))’ can be expressed as a polynomial in the

invariants (@A) and their complex conjugates.

11



Proof:

1. Using the fundamental trace identity [Z0) for £ = 4 and g; = hgh, go = g, g5 = h,
g4 = g we obtain:

otr(h%ghg®) + 2tr(h*g*hg) + 2tr(hghghg) (4.9)
= tr(h?g)tr(g)*tr(h) — 2tr(hghg)tr(g)tr(h) — 2tr(h%g)tr(g)tr(hg)
— tr(R?g)tr(h)tr(g?) — tr(hg)tr(g)® + 2tr(hghg)tr(hg) + 4tr(h*ghg)tr(g)
+ 2tr(h?g)tr(hg?) + tr(R3g)tr(g?) + 2tr(hghg?)tr(h) .

On the left-hand-side of this equation there are invariants of order 6, and on the
right-hand-side all the invariants are of lower order. By Lemma E1, we express
tr(hghghg) as follows

tr(hghghg) = tr((hg)®) = tr*(hg) — 3tr(hg)tr(hg) + 3.
Moving it to the right-hand-side yields the statement.
2. By substituting ¢ — gh, h — hg in ({0) we obtain:
tr(h*ghg®) — tr(h*g*)tr(hg) + tr(h?g*)tr(hg) — tr(h*g*hg) = 0.

Taking the real part yields:
Re(tr(h*ghg®)) — Re(tr(h*¢*hg)) =

3. The first equality is obtained by expanding the right-hand-side. The second one
follows from the formula for the determinant of a 3 x 3-matrix A in terms of traces,

det(A) = %tr(A?’) — %tr(AQ)tr(A) + étr(A)?’.

Nevertheless, it can be checked by direct computation.

4. The explicit formula expressing this invariant in terms of invariants (€4]) is lengthy
and, therefore, we give it in Appendix [Bl including some remarks how to derive it.

O

Theorem 4.4. Any function on G? = G x G invariant with respect to the adjoint action of
G can be expressed as a polynomial in the following invariants and their complex conjugates:

Ti(g.h) = tr(g),
Ts(g,h) = tr(h),
Ts(g, h) = tr(hg),
Ti(g,h) = tr(hg®),
Ts(g,h) := tr(h*¢*hg) — tr(h*ghg?). (4.10)
Moreover, for given values of Ty, ..., Ty, there are at most two possible values of Ty.

12



Proof: First we observe that using equation [fLZ) we can express g~! in terms of positive
powers of g and tr(g). This implies that every invariant can be expressed as a polynomial
in traces of products of only positive powers of matrices g and h.

From the general theory [T5] we know that we can restrict ourselves to invariants of
order k < 2" — 1 = 7. By Lemmas Bl and B2 all invariants of the type tr(g*), tr(h*),
tr(hig’) can be expressed in terms of T, Ty, T3, T;. Observe that all invariants of order
k < 3 are of this type. In what follows we list invariants of order k£ < 7 which are not of
this type, and for each order k£ we present the method of expressing it in terms of invariants
of lower order and 7.

o i = 4: tr(hghg). By Lemma B, we have tr(hghg) = tr((hg)?) = tr*(hg) — 2tr(hg).

o k=5 tr(hghg?), tr(h*ghg). Substituting h — hg in (L) we obtain:

tr(g°hgh) = tr(g - hg - hg) = tr(g - hg)tr(hg) — tr(g - hg)tr(g) + tr(g* - hg).
Analogously we deal with tr(h%ghg).

o k = 6: tr(h3ghg), tr(g3hgh), tr(h*g*hg), tr(h*ghg?), tr(hghghg). The invariant
tr(hghghg) = tr((hg)?) can be expressed in terms of tr(hg) by Lemma EETl Next,
by Lemma B2, we can reduce the power in tr(h3 - ghg) and express it in terms
of tr(h? - ghg) and other invariants of lower order. (More precisely, we substitute
h — ghg into equation [{7) for i = 0). We deal with tr(g3hgh) analogously. Next,
we rewrite tr(h?g?gh) and tr(h%ghg?) in the following way:

tr(h*g*gh) = <tr(h2gzgh) + tr(hzghg2)) + %((tr(thth) - tr(hzghg2)> =

1
(tr(h2g2h9) + tr(h2ghgz)) +575(9,1)

1 1
tr(h’ghg®) = §<tr(h2g2hg) +tr(h2ghgz)) —575(9,1)

1
2
1
2

By Lemma B3] the sum tr(h%g?hg) + tr(h®ghg?®) can be expressed as a polynomial in
invariants of lower order.

e k =T: There are two types of nontrivial invariants in this case:

1. tr(hig’htg™), i+ j + 1+ m = 7. If one of the powers 4, 4,1, m, is equal to 3
or more, we can decrease the order by an appropriate substitution in equation
(D). Next, we observe that there are only two possible cases when all powers
i,j,1,m are smaller than 3, namely tr(h%g*h?g) and tr(h?g?hg?). Substituting
h — h%g into equation ({LH) we obtain:

tr(h?g°h*g) = tr(g-h®g-h*g) = tr(g- R*g)tr(h*g) —tr(g - h2g)tr(g) +tr(g? - h2g).

Analogously we deal with tr(h%g%hg?).

13



2. tr(h?ghghg), tr(g2hghgh). By Lemma FE2 we can express tr(h*ghghg) = tr(h -
(hg)?) in terms of tr(h - (hg)?), tr(h - (hg)), tr(h) and tr(hg). For tr(g*hghgh),

we get an analogous expression.

Finally, by Lemma B33, T5(g, h) is purely imaginary and (75(hg))? can be expressed as a
polynomial in T4, T5, T3, T4, so only the sign of T5 remains undetermined. O

5 The Configuration Space for N =1

Applying the theory outlined above is trivial for N =1 : From Lemma ETl we immediately
get that the orbit space is uniquely characterized by the trace function, because it generates
the algebra of invariants. Here, we will explicitly find the image of the Hilbert mapping

p:SU(3)/Adsys — C=R?,

which is simply given by the trace function, p = tr.
First, observe that the set of possible values of tr(g), is given by the sum of the eigen-
values of g:

tr(g) = T(a, ) = ¢ + e + 7,5 (0,2n] (5.1)

If g belongs to a non-generic orbit of type 2 or 3 in Theorem Bl then at least two
eigenvalues are equal. Thus, setting o = (3 we obtain a curve,

0,273 a — T(a) =2e + e ¥ € C, (5.2)

which turns out to be a hypocycloid, see Figure [[I We define D as the compact region
enclosed by this curve. We will show that D coincides with the image of the Hilbert
mapping p. For this purpose we first prove the following

Lemma 5.1. Any complex number T € C can be presented in the following form:
T =se 4 720 (5.3)
where s € R, 0 € [0, 7[.

Proof:
It is sufficient to show that the mapping

R x [O77T[9 (8,9) — ¢(8,¢9) = Sew + e—2i9 ceC
is surjective. Denoting T = t; + ity we have:

t1 = scosf + cos 26
(5.4)
ty = ssinf — sin 20
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i 0 1 , 3
-1
-2

Figure 1: Hypocycloid.

We show that for given to, ¢; runs over the whole real axis. For ¢t # 0 (sinf # 0), we
obtain from the second equation in (B.4):

tg + sin 20
§=——.
sin 0
Substituting this into the first equation of (E4), we get ¢, as a function of 6:

. t2 + sin 20
N sin 0

t1(6) cos 0 4 cos 20.

The limits at the boundaries are:

lim t1(0) = sgn(ts) - 00,

0—0+t
Glim, t1(0) = —sgn(ty) - 00.

The function § — ¢,(f) is continuous over the interval |0, 7], so it takes all mean values.
This means that for given ¢t # 0, ¢; (]0,7]) = R.
For t5 = 0 we have § = 0. Then, the first of equations (B4 yields ¢; = s+ 1. O

Observe that by substituting («, 5) — (6 + ¢, — ¢) formula (B) can be rewritten in
the form

T(6,0) = @+ 4 i0-6) 4 =20
yielding

T(¢,0) = (ei¢> + e—i¢) e 1 e 20 — 9cos e + o720 = geif | o0,
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where we have denoted s := 2cos¢. Thus, in the parametrization (B3]) we have
D = {T(s,0) =se” + e €C: (s,0) € [-2,2] x [0,7[}

and

OD ={T(s,0) =se’+ e eC:0€c[0,n], s=2 or s=—-2}.

But
T(=2,0) = —26? + 720 = 92¢/0+m) 4 = 20+m) — (2 0 4 1) |,

and, whence, dD coincides with the hypocycloid defined above,
0D ={T(9) =2+ e > €C:0€0,2n[}.

One easily checks that in terms of x = R(7) and y = (T, D is given by:

D= {z+iy e C:27—a* — 227y — y* + 82° — 24ay® — 182° — 18y* > 0} .

Theorem 5.2. Let T' € C and consider the equation
N —TN+TA-1=0.
Its roots A1, Ao, A3 obey
Al =1]Xe| =1[A3] =1, M+X+A3=T, MhaA\3=1,
if and only if T € D . Consequently, tr(SU(3)) = D.

(5.5)

(5.6)

(5.7)

Proof: Using Lemma B we can substitute T'(s,6) = se + e~%? into equation (&0):

M= (se 4 2NN 4 (se7 + PN —1=0.

It is easy to check that \; = e %7 is a root of this equation. Thus, we can rewrite it in

the form: ' ' '
(A — e ) (N2 — s\ + %) = 0.

Let us find the two remaining solutions. For |s| < 2 (T" € D) we obtain:

sEtivd—s?

Aoz = 5
s2 44— s

Nosl? = le.

For |s| > 2 we get:

stvs?—4
>\23 = —¢
k] 2 )

24527 —1\°

bl = (T 4

(5.8)



One can check that the sum and the product of roots have the above properties (in both
cases).

Finally, recall that the characteristic polynomial of any SU(3)-matrix is of the form
[Z3), with eigenvalues uniquely given as roots of this polynomial. Thus, we have shown
that the numbers {1, A2, A3} are eigenvalues of the characteristic equation of an SU(3)-
matrix g and (B6) coincides with the characteristic equation of g if and only if tr(g) € D,
so tr(SU(3)) = D. O

To summarize, combining theorems Bl and we get the following

Corollary 5.3. For N = 1, the reduced configuration space Ca is wsomorphic to D and
contains three orbit types characterized by the following conditions:

1. g has three different eigenvalues < trg lies inside D,

2. g has exactly two different eigenvalues << trg lies on the boundary of D, minus
the corners,

3. g€ Z & trg is one of the three corners on the boundary of D.

6 The Configuration Space for N =2

6.1 Strata in Terms of Invariants

We define a mapping

by
pi(g,h) = R(Ti(g,h)) = R(tr(g)), (6.1)
pa(g,h) = (Ti(g, h)) = S(tr(g)), (6.2)
ps3(g,h) = R(Ta(g,h)) = R(tr(h)), (6.3)
pa(g, k) = S(Ta(g. h)) = S(tr(h)), (6.4)
ps(g,h) = R(T3(g,h)) = R(tr(hg)), (6.5)
pe(g,h) = S(T3(g,h)) = S(tr(hg)), (6.6)
pr(g,h) = R(Tu(g,h)) = R(tr(hg)), (6.7)
ps(g.h) = S(Tu(g,h)) = S(tr(hg?)), (6.8)
po(g.h) = S(Ts(g,h)) = S(tr(h*g*hg) — tr(h*ghg?)). (6.9)

By Theorem L4l the p; constitute a set of generators of the algebra of invariant polynomials
on G? with respect to the adjoint action of G. According to [16], the mapping p induces
a homeomorphism of X := G?/Adg onto the image of p in R?. The set {p;} of generators
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is, by Theorem B4 subject to a relation, given in Appendix [Bl We rewrite this relation in
terms of the canonical coordinates {x;} on R? by substituting

tr(g) = x1 +ixy, tr(h) =xz3+ixy, tr(hg) = x5+ ixe, tr(hgz) = Ty + ixg

and

S(tr(h*g*hg) — tr(h*ghg®)) =
into its right-hand-side. By Lemma E3 the resulting polynomial Iy(zq,...,zs) is real
of order 8 (it is of order 4 in every variable zy,...,xg). Thus, the relation defines a
hypersurface Z; C R of codimension 1 defined by

Zl = {(:L'l,...,l’g) c ]Rg : Io([['l,...,l'g) :l’g}

and the image p(X) is a subset of Z; . On the other hand, by simple dimension counting we
know that X is 8-dimensional. We conclude that there cannot exist further independent
relations between generators T; . Thus, p(X) is an 8-dimensional compact subset of Z; . As
already mentioned before, in order to identify p(X) explicitly, one has to find a number of
inequalities between the above invariants. A full solution of this problem will be presented
in a separate paper [22].

Next, let X; denote the stratum of G?/Adg corresponding to orbit type i. We are
going to characterize each X; in terms of the above invariants. We will find a hierarchy of
relations: Passing from one stratum to a more degenerate one, one has to add some new
relations to those which are already fulfilled. This way we obtain a sequence of algebraic

surfaces,
1D 4y D 3D Ly D Ly,

characterizing the orbit types. Every Z; has the property that the image of X; under the
mapping p is a subset of Z; having the dimension of Z; .

According to Theorem B2, a pair (g, h) belongs to a non-generic stratum, i.e., it has
orbit type 2 or higher, iff g and h have a common eigenvector. The following lemma is due
to I.P. Volobuev [23]:

Lemma 6.1. The matrices g and h have a common eigenvector if and only if the following
three relations are simultaneously satisfied:

g.C+C=[nC+C'] = 0, (6.11)
where C := hgh™'g™! denotes the group commutator.

Proof: It x is a common eigenvector of g and h then x is an eigenvector of the commutator
C with eigenvalue 1. Then the other eigenvalues of C' are A and A, for some A\ obeying
|A|? = 1. In particular, tr(C) is real. Expressing tr(C) in terms of generators we obtain

nlhgh™g™) = 2 (1) + (W + lir(hg)l? + (g
+ [tr(g)tr(hg) 2 = 3+ Ty(g, b)) + (6.12)

_ R (tr(g)tr(h)W) —R (tr(g)tr(hg)tr(th)) .
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It follows

S(x(C)) = 5 T5(9. 1) (6.13)

hence (EI0). Furthermore, the subspace E orthogonal to z is an eigenspace of the Her-
mitean matrix C+C~! with eigenvalue A+X. Then [g, C+C~ ']z = 0 and [g, C+C~|E = 0,
hence (6IT)). Conversely, assume that ([E10) and (&IT)) are satisfied. According to (E13),
then tr(C) is real. Due to Lemma Bl we can write tr(C) = se® + e72. The rhs. is real
iff s = 2cosf. Then the reconstruction formula (E8) for the eigenvalues of C' from tr(C')
implies that C' has an eigenvalue
A3 = 2c080 7 i 24 — 4008296” = (cos@ —isinf)e? =1 .

If this eigenvalue is degenerate then C' = 1, i.e., ¢ and h commute and therefore have a
common eigenvector (even a common eigenbasis). If the eigenvalue A3 = 1 is nondegenerate
then 2 is a nondegenerate eigenvalue of C' + C~1. Let z be a corresponding eigenvector.

According to (G1TI),

l9.C+C Mo =29z — (C+C gz =0,

i.e., gr is again an eigenvector of C' + C~! with eigenvalue 2. It follows that z is an
eigenvector of g and, similarly, of h. O
In terms of invariants, relation (GI1]) can be written as

w([g.c+Cc [g.c+C) = o, (6.14)
w([hc+c] - he+c)') = o (6.15)

We omit the lengthy expressions for these equations in terms of generators. We only stress
that they do not depend on T5. Thus, again using the canonical coordinate system, we
obtain two polynomials I1(z1,...,xs) and Is(z1,...,xs), which vanish on the nongeneric
strata:

Lo 1= {(I‘l,...,ﬂ?g) € Z ZIQIO,Il(l’l,...,JZg):O,IQ(Il,...,JIg) :0}

The definition of Z; implies that condition xg = 0 is equivalent to Iy(xy,...,x5) = 0, so Z
can be equivalently viewed as a subset of R® given by equations Iy =0, I; =0 and I, = 0.
The image of the generic stratum X; under the map p then is contained in Z; \ Z5. Hence,
inside p(X), it is given by the inequalities

Ip>0 or Iy >0 or Iy >0.

One can pass to a set of reduced (with respect to their degree) polynomials { Iy, I, IZ} |

1

. = Sl (6.16)
1

. = 512+10, (6.17)
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which generate the same ideal in the polynomial algebra, see Appendix [ for their concrete
expressions.

The set of orbits of type 3 or higher consists of pairs of commuting matrices. The
commutativity of a pair g, h can be expressed in terms of invariants as follows:

tr(hgh™'¢g™') =3=0.
Taking the imaginary part yields, according to (6I3)), 75 = 0. Denoting

I3 =R (tr(hgh™'g™") = 3) ,

we obtain
Ig - O .
I3 can be expressed in terms of Ty, ...,7T4, and in terms of canonical coordinates it takes
3 1, s 44,
the form
2 2 2 2 2 2 2 2
]3($1,...,$8) = T1 %5  + 17T +X2” 5" + X2" X —2$1$5$7—2$1$5ﬂ73

—221X6T8 — 221X Ta — 29 T5T8 + 2T9 X5 X4 + 29X T

—211721176$3 +3712 —|—$22—|—$52 +3762 +3772 —|—$82 —|—$32—|—$42 —-9.
Then, the image of the stratum X3 under the mapping p is a subset of
Zg = {(1’1,...,1’9) € ZQ : [3([['1,...,£L'8) = 0} .

Since R (tr(hgh~tg™1) — 3) < 0, the image of the stratum X, under p is given, as a subset
of p(X), by the following equations and inequalities

IOIO, ]120, IQZO, I3<O

The set of orbits of type 4 or higher consists of commuting pairs with a common
2-dimensional eigenspace. This implies that both matrices and all their products have
degenerate eigenvalues. The invariants T, i = 1,...,4, are trace functions of products of
SU(3)-matrices, so they take values in D, see Theorem B2l Thus, by Corollary B3], the
values of all invariants 7T}, ¢ = 1,...,4, computed on degenerate elements have to belong
to OD. The polynomial defining this boundary has the following form, see (E1):

B(I‘l,l’g) =27 — 1’14 — 21’121‘22 — 3724 + 83713 — 241’1 1’22 — 183712 — 18.]722 .
Thus, we have
Zy = A{(z1,...,20) € Zg : B(wy,22) = B(ws, x4) = B(ws, x6) = B(ar, x5) = 0} .

Accordingly, the image of the stratum X3 under the map p is given, as a subset of p(X),
by the relations
IOIO, ]120, IQZO, I3:O



and the inequalities
B(xy,29) >0 or B(xg,x4) >0 or B(ws,z6) >0 or B(xz,ag)>0.

Finally, the subset of orbits of type 5 consists of pairs of matrices belonging to Z. They
fulfill |tr(g)| = [tr(h)| = 3, so we have

Zs = {(21,...,09) € Zy: 3] + 35— 9 =0, 25 + 2] — 9 =0}
and the image of the stratum X, under the map p is given, as a subset of p(X), by
I =1, =1y =13 = B(x1,22) = B(x3,24) = B(xs,26) = B(a7,28) =0
and

2l +13-9<0 or a5+27-9<0.

6.2 Geometric Structure of Strata

In this section we give a description of the strata in terms of subsets and quotients of
G = SU(3) and calculate their dimensions. We use the following notation. Let H be a
subgroup of G. Then

N(H) := normalizer of H in G,
G% := set of pairs (g, h) with stabilizer H,
G?H) := set of pairs (g, h) invariant under H,
G[QH] = set of pairs (g, h) of type [H].

We obviously have G%, C G%H) and G%, C GfH]. Since we have labelled the orbit types [H]|

by i =1,...,5, we denote the strata G%H] by G?. Moreover, in what follows, the symbol \

always means taking the set theoretical complement, whereas / means taking the quotient.
For orbit type 5, Theorem immediately yields that the corresponding stratum is

Xs=2Zx2Z.

It consists of nine isolated points.

For the remainig orbit types, recall from the basic theory of Lie group actions [I7]
that the projection m;: G? — X, is a locally trivial fibre bundle with typical fibre G/H
associated with the N(H)/H-principal bundle G% — X;, which is naturally embedded
into the associated bundle. Here H is a representative of the conjugacy class ¢ and we have
the following diffeomorphism

X, = G%,/N(H)/H, (6.18)

where N(H)/H is the right coset group acting by inner automorphisms on G?%. Thus, for
each orbit type we have to choose a representative and then compute the rhs. of (EIS).
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We start with orbit type 4. As a representative, we choose the subgroup (B2)). Let us
denote it by U(2);. We have

and

Gl = CU2)1) x C(U2)1) =U(1)y x U(1)y (6.19)
where C(-) denotes the centralizer in G and U(1); denotes the subgroup (B3]). Hence,
Since U(2); and U(1); centralize each other, their normalizers coincide. Since the only

way in which N(U(1);) can act on U(1); is by a permutation of the entries, it must act
trivially. It follows

and the factorization in (EI8) is trivial. Therefore, (EI8) yields
Xy = Uy x U \ Zx 2.
The dimension of X, is 2
As a representative for orbit type 3 we choose the subgroup (B of diagonal matrices.

Let us denote it by 7. The set G# consists of the pairs that are invariant under 7" minus
those that are of orbit type 4 or higher, i.e., that are conjugate to a pair invariant under

U(2)1Z
G = G%T)\ (Ugec g G?U@)l)g_l) :

Gl =C(T)xC(T)=TxT (6.20)

We have

and, from formula (6T9),

gG%U(2)1)g_1 =g(UL)1 xU1)1)g " =(gUM)1g7") x (gUL)1g7") .

Subtraction of this subset from T x T is only nontrivial if gU(1);g~* C T. The subgroups
arising this way are U(1); as well as

Ul)y = {diag(8.,8): a,8€U(1), 3*=1a},
U(l); = {diag(8,8,0):a,8€U(1), 3* =a} .

Thus,

Gh o= TxT\ (U; U1 x U(1):) -
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The quotient N(7T')/T is the Weyl group of G = SU(3), isomorphic to the permutation

group S3. Hence,
X, = (Tx7\ (U; U xU))) /S5,

where S5 acts on the elements of T by permuting the entries. The dimension of the stratum
X3 is 4. Note that if we take the quotient (T x T')/Ss, also the points of orbit type 4 and
5 are factorized in the proper way. One can make this precise by saying that (7" x T')/S3
is isomorphic, as a stratified space, to the subspace

X3UX4UX5§X:G2/AdG

As we will see below, this is not true in general.
Next, consider orbit type 2. As a representative, we choose the subgroup U(1);, given
by (B3). Using an argument analogous to that for orbit type 3, together with formula

E&20) and C(U(1)1) = U(2)y, we find
Ghw, = U@ixu@n\ (U _ 9@ xDg™) .

A pair (g,h) € U(2); x U(2); is conjugate to an element of 7' x T"iff g and h belong to the
same maximal toral sugroup in U(2);. Thus,

Gl = U@2sxU(2) \(U T><T>,

where the union is over all maximal tori in U(2);. As for the normalizer, we already know
that N(U(1);) = U(2)1, hence we have to factorize by U(2);/U(1); = SU(2), i.e., by U(2);

modulo its center:

X, = (venxven\ (U, TxT)) /ven/uva,

We see that this stratum has dimension 5. We remark that in (E21]) it is important to
remove the pairs of higher symmetry, because they would not be factorized in the proper
way here. Since U(1); is the center of U(2);, we get

X, & <U( ) x U(2) \(U T><T>) /U (6.21)

Moreover, UTT x T contains all non-generic orbit types of the U(2);-action. Hence, the
rhs. of (GZI)) is isomorphic to the generic stratum of the orbit space of the action of the
abstract Lie group U(2) by diagonal conjugation on U(2) x U(2), i.e

X, ~ <(U(2) % U(2)) / U(2)>gen . (6.22)

One option to analyze this quotient is to restrict the action to the subgroup SU(2) C U(2)
and to rewrite the two factors U(2) using the Lie group isomorphism

UQ2) = (U(1)x SU(2 /ZQ,
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thus obtaining
(U(2) x U(2)) / U@) = (U(l) x U(1) x <(SU(2) x SU(2)) /SU(2))> / (22 x Zg) .

Here the quotient (SU(2) x SU(2))/SU(2) is known as the “pillow”. It consists of a 3-
dimensional stratum (corresponding to the interior), a 2-dimensional stratum (the bound-
ary minus the 4 edges) and a 0-dimensional stratum (the 4 edges).

Another option is to apply an algorithm which provides a decomposition of quotients of
diagonal (or joint) actions on direct product spaces into quotients of the individual factors.
Since we will use this algorithm again to describe the generic stratum X; below, we will
explain it in some generality. Let H be a Lie group acting on a manifold M and consider
the diagonal action of H on M x M (one can easily generalize the procedure to diagonal
action on My x --- x M,). In what follows, we denote the sets of orbit types of the action

of H on M, of a subgroup K C H on M and of H on M x M by O(M,H), O(M, K) and
O(M x M, H), respectively. We start with decomposing

Mxm) [ o = (M) S H

[K]1€eO(M,H)

If two pairs (z1,22), (Y1,y2) € Mg x M C Mg x M are conjugate under h € H, then
conjugation of the stabilizer of x; by h yields the stabilizer of y;. Since both are equal to
K, his in the normalizer of K in H, h € N(K). Thus,

(Mo x M) [ H = (Mg x M) | N(K),

for some fixed representative K of the orbit type [K]. Factorization by N(K) can be
achieved by first factorizing by K and then by N(K)/K. Since K acts trivially on the
factor My, we obtain

(M x M) / o= J (Mgx(M/K)) /N(K)/K. (6.23)
(K]€O(M,H)

We decompose M /K by orbit types of the K-action on M:

M/K= | (M/E) ey - (6.24)
K| €O(M,K)

Here [K'|k denotes the conjugacy class of the subgroup K’ C K in K. Inserting (624
into (E23)), we obtain

(M x M) / = |J |Mcx U (M/E) g, / N(K)/K . (6.25)

[K]eO(M,H) [K'|k€eO(M,K)
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Consider, on the other hand, the decomposition of (M x M)/H by orbit types,

(MxM)/H - U ((MxM)/H)

7
[L]€eO(M x M,H)

A representative of the rhs. of (23 is given by (z,y), where x € My and y can be chosen
such that it has orbit type K’ under the action of K. The stabilizer of this pair under the
action of H is given by intersecting the stabilizer of z under the action of H, which is K,
with the stabilizer of y under the action of H. The intersection yields the stabilizer of y
under the action of K, which is K’. Hence, the stabilizer of (z,y) under the action of H
is K" and the orbit type is [K'], where the conjugacy class is taken in H. Thus, for every
[L] € O(M x M, H), we have

(axan fa) = U (x| U /K | |/ MK

[K]€O(M,H) [K/] ) €O(M,K)
[K)=I[L]

(6.26)
At this stage, the equality sign just means bijective correspondence on the level of abstract
sets. Of course, this can be made more precise by saying how the individual manifolds on
the rhs. are glued together to build up the manifold on the lhs. Here we do not elaborate
on this, for details we refer to [22].

Let us apply (626) to the quotient given by (622, i.e. to the case M = H = U(2)
with conjugate action. Representatives of orbit types of the U(2)-action on U(2) are
K = U(2) and K = T, where T denotes the subgroup of U(2) consisting of diagonal
matrices (obviously, if we identify U(2) with the subgroup U(2); of SU(3), this is consistent
with the notation 7" used above). Representatives of orbit types of the K-action on U(2)
are K’ = U(2), T for K = U(2) and K’ =T, U(1) for K = T. Here U(1) denotes the
center of U(2). Hence, the only piece in the decomposition ([E26) that belongs to the
generic stratum of the U(2)-action on U(2) x U(2) (orbit type [U(1)]) is that labelled by
the subgroups K = T and K’ = U(1). The first factor of this piece is

UR2)r=T\U(1),
the second one
UR/T)yay, = (UR/T),, -

The quotient group N(K)/K = N(T)/T is the Weyl group of U(2). It is isomorphic to the
permutation group Sy and can be represented on U(2) by conjugation by the permutation

. 1 . . . )
matrix [ (1) 0l Of course, on the first factor this amounts to interchanging the entries.
Thus, we end up with

%= (e xue) fve) = (o) x ueyr),,) /s

gen
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Clearly, (U(2)/T) gon CAN be further analyzed, in a similar way as above.

Finally, consider the generic stratum X;. Again, we apply (£20), where now M = H =
G = SU(3) with conjugate SU(3)-action. Representatives of orbit types of the G-action
on G are K = G, U(2), and T. For K = G, the orbit types of the K-action on G are
again [G], [U(2)] and [T, hence these pieces do not contribute to X;. For K = U(2); and
K =T, the K-action on GG has one orbit type represented by Z. For both actions, this
orbit type is the generic one. Thus, for X7, the decomposition (E26]) consists of one piece
labelled by the subgroups K = U(2); and K’ = Z and one piece labelled by K = T and
K’ = Z. Computing these pieces we obtain

3

X, = (UWi\2) % (G/U@)),, U ((T\(Uizl U(1),.)) X (G/T)gen) /53,

where the action of the Weyl group S3 on G can be represented by conjugation by the
3 X 3-permutation matrices. These are generated, e.g., by

_ o O

1 0
0 0
0 1

o = O
O = O
S O =

(Notice that the permutation matrices of negative sign have determinant —1, hence they
are not in SU(3).) On the first factor, S5 acts by permuting the entries. We note again
that the quotients (G/U(2)1), —and (G/T) can be further analyzed.

gen gen

6.3 Representatives of Orbits

As above, we denote strata by G? C G?, and the corresponding pieces of the stratified
orbit space by X; = G?/Adg C G?/Adg, i = 1,...,5. In this subsection we present
representatives for each orbit type. More precisely, we define local cross sections

Xi D U; > [g] — s([g]) = (s1,52)([g]) € G,

for each bundle
e G? — X, .

Here, U; denotes a dense subset of X;. For that purpose, we use a system of local trivial-
izations of SU(3), viewed as an SU(2)-principal bundle over S5, see Appendix [Al

The generic stratum: The projection 7;: G} — X of the generic stratum is a locally
trivial principal fibre bundle with structure group G/Z. Using arguments developed in
[24] one can prove that this bundle is non-trivial and that one can find a system of local
trivializations (respectively local cross sections), defined over a covering of X; with open
subsets, which are all dense with respect to the natural measure (the one induced by the
Haar-measure).
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Proposition 6.2. There exists a local cross section

X1 DU > [g] — s([g]) = (s1.52)([g]) € GT,

of the generic stratum with s given by

A 00 a| —o 1o 1 0
S1 = 0 )\2 0 , So = [ b ‘ s(1 ot ] X 0 g d y (627)
0 0 X < _1+Ia\) 0|—-d ¢
where:
Al = [Ae] = [As] =1, AdoAg =1,
h— {bl } b by € R,
by
la> + b5 + b3 = 1, (6.28)
a=lal67?,
|c|2 + |al|2 =1.
Proof: Let

X1 DU 3 [g] — s([g]) = (s1,52)([g]) € GI

be a local cross section, with U; dense in X; . Since Adg acts (pointwise) on this cross
section, we can fix the gauge by bringing s to a special form. Since s; and sy are in generic
position on U, , they have no common eigenvector and at least one element of this pair, say
s1, has three different eigenvalues. Thus, on this neighbourhood, we can fix the gauge in
two steps: First, we diagonalize s; and next we use the stabilizer of this diagonal element
to bring sy to a special form. Since s; and sy have no common eigenvector, this fixes
the (remaining) stabilizer gauge completely, (up to Zs3). Thus, we can assume that s; is
diagonal, with eigenvalues ordered in a unique way, and that s, has the form, defined by
the cross section ([AT3) in Appendix [A]

a —5ZbT
5y = [ | - - ] X [%i] ., SeSUQ). (6.29)

T (Uy) 3 (s1,52) — f(s1,8) € G

belong to the stabilizer of s; . Since s; is diagonal, f can be written in the form

Let

e—z‘(a+6) 0 0
f= 0 & 0
0 0 ef
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The action of f on an arbitrary group element g is given by:

g G2 13 g1 et g, el g,
g1 g2 a3 | — | €Ty 922 e = gyg | . (6.30)
931 932 933 I 933
Thus, we can choose the phases a and (3 in such a way that after transformation with f,
the entries b; of b occuring in (29) are real and positive. O
By the results of Subsection B.1], it is clear that the representative s can be expressed
in terms of invariants ¢; := T;(s1,82), ¢ = 1,...,5. With some effort, one can find these

expressions explicitly. Here, we only sketch how to do that. In section [l we have already
found the eigenvalues {1, Ao, A3} in terms of t; = tr(s;). Thus, we are left with calculating
sy . For that purpose, denote the diagonal entries of sy by x, y and z. Then, we have

to = z+y+z,
ty = >\1$+>\2y+)\32,
ts = MNz+MNy+Aiz.

This is system of linear equations for x, y, z, which can be trivially solved. The second, non-
trivial step consists in expressing the parameters a, b, c,d,d in terms of x,y, z, by solving
the set of non-linear equations

r = a,
S _
Yy = oc — m(bfc — blbgd) s (631)

)
= ¢ — ——(b1bod + b%C
z C 1—|—|CL|(12 +2C),

where, of course, relations (.28) have to be taken into account. It can be shown that this
set of equations has two solutions, corresponding to different parameters by, bo, d:

a = T,
5=
a Y
oy + 6z
c = s
1+ |al
1 1/2
b = = [2e + eag) + (L= 1)1~ fal?) £ VA]
byt = \/1—|a|2—b%,
4t = Clb% —q1
1 - T 1
b1 b2
E = —2b7 + ¢
2 - T 1 7

b1bo
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where

¢ = Re(e), ¢o:=1Im(c),
d, = Re(d), do:=1Im(d),
@ = —Re(dy —c)(1+la]),
¢ = —Im(dy —c)(1 +al),

and
A= [2(ciqr + c2g0) + (1= |e)(A — [a?)]* — 4(¢? + ).

Next, observe that the matrices described by these two sets of parameters are related,
namely one of them is equal to the transposition of the second one. On the other hand, all

invariants ¢;, 2 = 1,...,4, are invariant under transposition of matrices. The two solutions
are distinguished by the value of T5(s1, s2), which has the property
Ts(s1,80) = —T5(sT,5%).

In terms of matrix elements of s; and sy, 75 has the following form:
T5(51, 82) = ﬂ:()\l — )\2)()\2 - )\3)()\3 - Al)\/g

Thus, calculating the value of T5(sy, s2) enables us to choose the correct sign in front of
the square root of A and to obtain a unique solution.

The U(1)-stratum: Let s be a local cross section of the (non-trivial) bundle my: G2 —
X5 . There exists one common eigenvector of s; and s,. Assume that it is the first eigen-
vector of s;. After diagonalizing s, the pair (s1, s2) has the following form

At 00 det(S)"" | 0
S1 — 0 >\2 0 s S9 = 5 (632)
0 |s
0 0 X3

where S € U(2). The stabilizer Hg = U(1) of s is given by (B3). Thus, to obtain a cross
section, we have to fix the Ss-action, which permutes the second and third basis vectors
and the Hg-action on sg. First, since Ay # A3, these eigenvalues can be uniquely ordered,
for example by increasing phase. Next, the Hg-action is fixed by requiring that the left
lower entry of sy has to be real and positive. Thus, we get the following local cross section:

A 000 52| 0 0
si;=1 0 X 0 |, s3=1| 0 [dc —6%d |, (6.33)
0 0 As 0| d oc

where:

Al =X = [As] =1, Adodg =1,
6| =1,
|C|2 + d2 = 1, d c R+.
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Again, the representative (E33]) can be expressed in terms of invariants: The eigenvalues
A1, A2, A3 of s; are given in terms of ¢;. If \; # A3, we can proceed in the same way as
for the generic stratum above, i.e., by solving the set of equations (E31]). This way, we
obtain the diagonal components 62, dc, 6¢ of s9, and we can compute the coefficients ¢ and
0. There exist two solutions for ¢ and 0 but they describe the same matrix. If A\; = )\,
equations (B3] imply

(672 +6c) = (x+y), dc=z,

which can be solved with respect to ¢ and §2:

8 = 2 , c=0%Z.
(x+y) £ +/(r+y)?—4z

(There are two values for 4%, but only one of them satisfies the condition |§]? = 1. Taking
the square root of the correct one then yields two solutions for d, but these give the same

matrix.) Finally, one calculates
d=+/1—|c?.

The U(1) x U(1)-stratum: Let s be a local cross section of the (non-trivial) bundle
m3: G2 — Xj3. In this case, s; and s, can be jointly diagonalized:

)\1 0 0 (51 O O
S1 = 0 )\2 0 s S9 = 0 52 0 s
0 0 X 0 0 0

where:

(M =1Xef = A3l =1, Mg =1,
|51| == |(52| == |53| - 1, (5152(53 == 1

Since there is no common 2-dimensional eigenspace, the remainder of the action of the
stabilizer Hg = U(1) x U(1) is the permutation group Ss3. To fix the Ss-action, observe
that, according to Corollary B3], either one of the matrices has three different eigenvalues
or both have a pair of degenerate eigenvalues corresponding to distinct eigenspaces. In
the first case, we can fix the Ss-action by ordering the three distinct eigenvalues. In the
second case, we can put the unique nondegenerate eigenvalue of s; in the first place and
establish the order of the two remaining eigenvectors by ordering the corresponding two
distinct eigenvalues of s,.

Expressing s in terms of invariants is then immediate: All eigenvalues can be calculated
in terms of the traces t; = tr(s;) and ¢y = tr(sg). To determine which eigenvalues of s; and
sy correspond to the same eigenvector it is sufficient to know the value of t3 = tr(s;s2). It
can take six values corresponding to the permutations of the eigenvalues of sy relative to
those of s;.
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The U(2)-stratum: Let s be a cross section of the (trivial) bundle my: G — X, .
Obviously, s can be taken in the following form:

)\1 0 0 (51 O 0
S1 = 0 )\2 0 s Sg9 = 0 52 0 s
0 0 X 0 0 o
where [\i| = |Xo| = |01] = |02 = 1, MA2 = 6,05 = 1. For expressing (s1, s3) in terms of

invariants it is sufficient to know the values ¢; and 5, because there is only one possible
order.

The SU(3)-stratum: Let s be a cross section of the (trivial) bundle m5: G2 — Xj.
Then,

A0 0 0 00
S1 = 0 X 0 s So = 0 0 0 y
0 0 A 00 9
define a unique cross section, with A3 = 1 and §* = 1. The traces of both matrices take

one of the following three values: 3 - ei%Tﬂ, k =0,1,2. Thus, expressing them in terms of

invariants is trivial.
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A A Principal Bundle Atlas for the SU(3) group mani-
fold

It is well known that the group SU(3) can be viewed as a principal bundle over the sphere
S® with structure group SU(2),

SU(2) — SU(3) & S°, (A.1)

with 7 being the canonical projection from SU(3) onto the right coset space SU(3)/SU(2) =
S5, An explicit description of 7 is obtained as follows: Any 3 x 3 matrix can be written in

the form
alct
b

with @ € C, b,c € C? and a complex 2 x 2-matrix B. The condition that g belongs to
U(3), namely

9= (A.2)

Y

99" =1=g'g,

translates into the following relations for entries of g:

lal? + [[6l* = 1 = |al* + [|el|?, (A.3)
ab+ Bc= 0= ac+ B'b, (A.4)
bb' + BB =1 = cc' + B'B. (A.5)

We embed the subgroup SU(2) of SU(3) as follows:

[1 0
SU(2)> 8 —h=
0S8

Observe that then SU(2) is the stabilizer of the vector

e SU(3).

1
e = 0 €S5CC?’.
0

The image of the left action of g € SU(3) on e is exactly the first column of g, which — on
the other hand — is also invariant under right action of SU(2). Thus, 7(g) can be identified
with the first column of g,

w(g)= | b eSS cC?,

which by ([A3) has norm 1, indeed.
Next, we construct an atlas of local trivializations of the bundle ([AJl). Observe first
that, according to (A1), det(B) = 0 iff ||b]] = 1 and, whence, iff a« = 0. Thus, let
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us assume a # 0 and construct appropriate trivializations of (AJl) over the open set
O = {(a,b)la # 0} C S°. Using the polar decomposition B = AV, where A > 0,
V € U(2), we can rewrite equation ([AH) as follows:

' =1—A2=VecVrT,
yielding

c = —e Vi ¢eR, (A.6)
A? = 1-bb'. (A7)
Formulae ([A4) and ([(Af) imply
(@— e Ab=0,
which means that b is an eigenvector of the matrix A with eigenvalue @e’. Positivity of
A implies |a| = ae™.

From equation (A1) we have A = /1 —0bbt. Since A > 0 this formula defines A
uniquely. Obviously, it must be of the form

A=al+3bb. (A.8)
Plugging this into equation (A7) yields

A=1- bb'. (A.9)

1+ |al

We conclude that any matrix g € U(3) which fulfils the condition a # 0 can be written in
the following form:

[ al| —e ] 10 (A.10)
g = bbT : ) 10
b|1— 1+|al 0
with |a|> + ||b]|> =1, a=|a|e®, V eU(2).
Imposing the condition det ¢ = 1 is equivalent to
det A(a + eb'A~'b) det V = 1. (A.11)

From (AZ3) and (A20) we have det A = |a| and A™1b = ﬁb. Using this, equation ((A_TT])
takes the form:

AR
la|(a + e“‘z’%) detV =1.

Finally, substituting a = |a| e and using ([(A3), we obtain:

| =

detV = e % =

=
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We decompose V = 6715, where S € SU(2) and §72 := det V, or §? = 7. Of course,

, we choose two open
la]

|0] = 1. Corresponding to the two choices of the square root of
subsets O; C O,

0, = by | € O:phase(a) €] —m, 7] p,

Oy = by | € O : phase(a) €]0,27[ p . (A.12)
by

Then, every element g € 7~1(0;) C SU(3), can be uniquely represented as

g =si(m(g)) - hi(g) ,

with s; being two local cross sections of (A over O,

a —(SibT
S>> O; 3 (a,b) — si(a,b) = [ . | e (1 - bb|T ‘> e SU(3), (A.13)
and . 0
hi(g) = [ 0| 5.(a) C SU(@3), Si(g) € SU(2) . (A.14)

Thus, corresponding to the two choices of the square root, we obtain two local bijective
mappings

700 39— xi(9) = (v(9). (s1(n(9))) " - g) € 01 x SU(2).

Similarly, we choose the following open neighborhood of a = 0:

a
O3 = by 655:<Zl)7£(0)
b ? 0

Then, we find a local cross section s3 over O3 such that

al bt 1l 0
g = s3(m(g)) - hlg) = [ ; ‘ “1+ By ] : [ﬁ] : (A.15)

with S(g) € SU(2), and a local bijective mapping

7 H05) 3 g — x3(9) = (7(9), (s3(m(g))) " - g) € O3 x SU(2).

Proposition A.1. The local mappings x;, 1 = 1,2,3, form an atlas of local trivializations
of the SU(2)-principal bundle (A1)
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Proof:
The proof consists of checking the following obvious statements:

1. The open neighborhoods O; cover S°,

OLUO,UO; = 5°.

2. The mappings
mH0i) 3 g — xilg) = (7(9), (si(n(g))) ™" - g) € Oi x SU(2)
are local diffeomorphisms, for i = 1,2, 3.

3. The mappings {x;} are compatible with the bundle structure and with the right
group action:

prioxi = , (A.16)
(prioxi)(g-g) = (prioxi9) ¢, (A17)

for i = 1,2,3, with pr’,, a = 1,2, denoting the projection on the first, respectively
second factor of O; x SU(2).

O
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B The Relation for T7

The relation for the square of the invariant Ty, referred to in Lemma E3)/4., is

(tr(hQQth) - tr(h29h92))2 =

— 27+tr(h)2tr(h)2 + 18tr(hg)tr(hg) +tr(hg)2tr(hg) + tr(hg?)?tr(hg? ) + 18tr(hg?)tr(hg?)
— dtr(h)? — dtr(h) — dtr(hg?)? - 1t1(g). — 4dtr(hg?)tr(h)2tr(hg) — dtr(hg?)tr(hg)tr(h)”
—4tr(hg)22tr(hg2)tr( g) — 4tr(hg) tr(hg2)tr(g) — 4dtr(hg?)tr (hgz)tr( )2 6t1"(hg2 Jtr(hg)tr(g)
—4tr(hg) tr(hg?)tr(g) +8tr(hg?) tr(hg)tr(g)—l—tr(h 2tr(hg) tr(g) +tr(hg?) tr(hg)?tr(g)?

) 9
+8tr(hg?)*tr(hg)tr(g) — 4t (hg)tr(hg2)tr(g)2—4tr( g)2t (hg?®)tr(g)* —4tr(hg)?tr(h)tr(hg?)
+12tr(h)t1;)(hg2)tr(hg)+12tr(hgz)tr(hg)tr( ) —4tr(hg 2) tr(hg)tr(h) — 4tr(hg? )2t3r(h)tr(hg)
— 4tr(hg?) — 2tr(hg?)tr(hg)tr(hg)tr(hg?) — 2tr(hg?)tr(hg?)tr(h)tr(h) — 4tr(hg)
— 2tr(hg2)tr(hmg@tr(g — 4tr(hg)? — 2tr(h)t2r(hg)t r(h)tr(hg) + 18tr(h)tr(h)
— 2tr(h)tr(hg)tr(hg) tr(g)tr(g)? — 4tr(hg)tr(h)tr(g) — 6tr(hg)tr(h)tr(g)
+ 12tr(hg Jtr(h)tr(g) — 4tr(hg?)tr(h)?tr(g) — 4tr(hg?)*tr(h)tr(g) — 4tr(hg ) hg?) r(h)tr(g)
+tr(g) r(g)? — 2tr(hg?)tr(hg?)tr(h)tr(hg)tr(g) — 2tr(hg)tr(hg? )tr(hg) tr(g) tr(g)
+ dtr(hg®)tr(hg)tr(hg)tr(hg?)tr(g)tr(g) — 2tr(hg)*tr(hg?)tr(hg)tr(g)tr(9)*
+ 2tr(hg)tr(hg?)tr(h)tr(hg)tr(g)” + 4tr(hg)tr(hg®)tr(h)tr(hg)tr(g)
+ 2tr(h )tr(hg)tr(hg Ytr(hg)tr(g)? + 4tr(h)tr(hg)tr(hg?)tr(hg)tr(g)
+ dtr(hg®)tr(hg)tr(h)tr(g)tr(g) + 4tr(R)tr(hg?)tr(hg)tr(g)tr(g) _
+ 2tx(n)tr(hg?)tr(hg) tr(g)tr(g) + 2tr(hg)*tr(A)ir(hg?)tr(9)tr(g) + dtr(hg)*tr(g)tr(g)
( )
(
(
(

)
)?

+ 4tr(hg)tr(hg)tr(g "4 4tr(hg)3tr(g)gr(g) — 2t1"(hg2)tr(hg)tr(h);cr(—h)tr(g)

— 6tr(hg)tr(hg?)tr(g) — 4tr(hg?)tr(h) tr(g) — 4tr(h)tr(hg)*tr(g)” — 4t12"(h)tr(hg)

— 4tr(hg) 6tr(hg)tr(h);cr(g) — 4tr(h)tr(hg)2tr( ) + 8tr(h) tr(hg

H(1)Pir(hg) tr(9)? + tr(hg) () r(g)’ — dix(h)

— 4tr(hg?)tr(h)tr(g)? — 4tr(h)t tr ( + 4tr(hg
1(hg)tr(g) t

)*
r(h)t ( )—Qtr(hg)ztf( )t r(9)
4tr(g)?

r(g)

r(g)*

t
t

+ I
-+
-+
=

r(h)t
r(h)*tr

N—
-+
—

—~
>

=)

N—
=

—~

=)

N—

w

h
+ 8tr(hg)
+ 12tr(hg?)tr(h)tr
— 2tr(hg*)tr(h
+ 4tr(h)tr(h

r(h
g

r(g)t
gt

?ﬂ\_/
Q
~—
-+

9)
Jtr(g
r(g) =

t
(

T

=
A
\_/

r h)t
9) - 2t1"(h92)t1"(h9 ) t(hg)tr(g) — 2tr(hg®)*tr(hg®)tr (hg)tr(g
tr(g) tr(g) + 2tx(hg)tr(hg?)tr(g)tr(9)* + 2tx(hg)tr(hg®)tr(hg) tr(g)
Jtr(hg ) 1(g) + tr(hg)*tx(hg) tr(g) tr(g)? — 2tx(hg “tr(hg) tr(g)tr(g)
( ) tr(g)* — 8tr(hg)tr(hg)tr(g)tr(g) + 2tr(h)tr(hg)tr(hg) tr(g)

+ 2tr(hg)tr(h)tr(g) tr(g) + 2tr(hg)tr(h)tr(g ) r(g)? + 2tr(hg)*tr(h)tr(hg)tr(g) o
2t tr(g) — 2tr(hg)tr(h)tx(h) tr(g) + 18tx(g)tr(g) — dtx(h)tr(hg?)x(hg)
It can be derived in the following way. Consider the invariant functions tr(hghgghghhggh)

and tr(hghgghhgghgh) of order 12. The sum of them can be expressed in terms of gen-
erators T1,. . ., Ts in two different ways. First, we use the trace identity ([Z) for k = 4
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and g1 = gh, go = g9, g3 = hg, g4 = hhgghh to express tr(hghgghghhggh) in terms of
traces of lower order. Next, we use the trace identity (Z) for k = 4 and ¢; = hh, g, = gh,
93 = gghhgg, g4 = hg to express tr(hghgghhgghgh). It turns out that in both cases (which
are actually equivalent, because one is obtained from the other by interchanging g with h),
we obtain expressions which can be simplified using standard techniques from Section Hl
The final expressions in terms of generators do not depend on T.

On the other hand we observe that the sum

tr(hghgghghhggh) +tr(hghgghhgghgh) = tr((hg)Xgh)Ahg)(gh)) +tr((hg)Agh)(hg)(gh)?)

can be expressed in terms of invariants of lower order using formula (L) (we substitute
h — hg, g — gh). In this case, we obtain a different formula containing T2. Taking the
difference of these two expressions yields the above relation.

All calculations described above were made by a computer program written under
Maple 8.00. 1t is worth mentioning that this program automatically generates polynomial
expression in terms of generators for any trace function (at least up to order 12) using only
standard techniques, namely fundamental trace identities and appropriate substitutions in
the Cayley equation.

Finally, let us mention that, once the relation has been found, it can be checked by
direct calculation.
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C The Polynomials [, I{* and I¥

Io(x1, 22, 3, T4, T5, T6, T7, T8) =

— l‘14 l‘54 — 23)14 ZE52 ZE62 — ZE14 ZE64 — 23)12 X9
— 21’24 a:52 a:62 — a;24 $64 + 4%13 I3 x53 + 41’13 T3 Ts xﬁz + 4%13 T4 x52 Te + 4%13 T4 Tg
+4x3xsdar +4x12 w5z s + 4 x5 w5 w62 w7 + 4215 65 w8 + 4112 Ty 13 752 T
+A4x12 oy a6 —dxi2xo x5 — 412 o T4 T5 262 + 4112 T9 55 X8
—dx? x5’ rgar + 4012 vy x5 w62 w83 — 4212 To 65 T7 + 41 222 3 T
+4x o w35 xe +4my w2 Ty x5 16 + 411 92 T4 65 + 43y 122 w55 7

+ 4.%'1 a;22 a;52 Te T8 + 4.%'1 a;22 I x62 Tr7 + 4.%'1 x22 x63 rg + 41’23 I3 a;52 Te + 41’23 T3 Tg
— Az g rs® — AP wyxs 6? + 4 19° w53 s — 4 x93 152 16 o7 + 4795 T5 62 T3

— 41’23 a;63 7 + 2%14 .%'52 + 2.%'14 .’L’62 + 4.%'12 a:22 $52 + 4%12 a;22 xﬁz — 6%12 .%'32 .%'52

— 21‘12$3 Te~ — 8:E12$3 Ty4Ts5 T — 8:17121‘31‘52 Ty — 8:17121‘31‘5 Ty — 21‘121‘42 1‘52
- 6.%'12
2
2

2,.2
a:42 a:62 — 83;12334 T5Te X7 — 8%12 T4 .’L’62 rs + 2%12 .’L’54 + 4%12 .’L’52 .’L’62
—6x12 x5zt — 2212 5
2,.2

ZE54 — 4:1712 l‘22 l‘52 l‘62 —2 ZE12 l‘22 l‘64 — l‘24 l‘54

3

2

3

3

2082 — 8wl wsagrrrs + 2212 w6t — 2212 62 72

— 6z 262 w82 — 811 To w32 x5 T + X1 Ty T3 T4 T2 — 8T To Ty Ta T2
—81‘1:1721‘31‘521‘8—8:1711‘2:173:17621178+81‘1$2$42$51‘6+81‘1$21‘4$521‘7

+ 8%y Ty T4 G2 Ty — 8T T T2 Ty Ty + X1 Ty Ty Tg T7> — ST T Ty T Tg2

+ 8.%'1 ) x62 T7x8 + 2%24 $52 + 2%24 x62 — 21’22 x32 x52 — 61’22 a:32 a:62

+ 802 w3y x5 w6 — 802 T3 x5 T g + 8o’ w3 62 Ty — 6x9% w42 w52 — 292 142 X6
+ 8x9 xa w5 wg — 8x9® x4 x5 T k7 + 292 5t + 419?152 w62 — 2292 52 72

— 63322 ZE52 ZE82 + 811722 5T T7 TR + 2:1722 l‘64 — 63322 l‘62 l‘72 — 23)22 ZE62 ZE82
—dx3agrs —4dxPxaxe — 8P ws? —AxP a5y — SwP w2 — 4212 16 28
—43)1211721173336—1—43312:172:174335—43)12$2l‘5l‘8+4$12$2l‘6l‘7+8$12$3l‘52
—8xilxgrsar — 8w 2wy’ + 8212 w3 w6 w8 — 16 212 14 5 T + 812 T4 Th T8

+ 8zl xawgrr — 8wl wsS + 8wl w5y + 24112 w5 w62 — 16 12 x5 76 X8
—8x12xgay — Az 20 k3 w5 — A X1 Xo? s T + 24 21 o2 152 — A1y 222 5 X7

+ 24 141 ZE22 ZE62 — 412 l‘22 Tg g+ 321 To T3 T5x6 + 1611 T2 ZE4$52 — 16212924 ZE62
—163:13;23;523;8—32x1x2x5x6x7+16x1x2x62x8+4x1x33x5+4x1x32x4x6
+4x1x32x5x7+4x1x32x6x8+4x1x3x42x5—4x1x3x53—8x1x3x52x7
—dxir3xs w6’ + 41 T3 35 T2 + A3 1375 82 — 871 T3 162 T7 + 471 T4 TG
+4x1x42x5x7+4x1x42x6x8—4x1x4x52x6—8x1x4x52x8—4x1x4x63
—8riraxl s + A1 T4 6T + A x4 m6 182 — ATy 55 17 — A1 152 X6 TS
—dzirsaglar+4z x5S 4z oy xrag? — 4z xS w8 + 4 xy Tex72 a8 + 431 T X8
— Az zy e+ Ax0d Ty 15 — A 295 x5 k8 + 4 19° g 17 — 89?3 152 — 8192 13 T T7

+ 8x92 w3 w6 + 82 w3 6 w8 + 16 9% x4 x5 76 + 822 T4 5 T8 + 8292 T4 16 T7

— 8o x5 — 8wa? w52 w7 + 24 192 x5 62 + 16 292 x5 16 x5 + 8 o2 w62 w7 + 4o 35 T¢
—dxgxslraxs +4xox32 w508 — ATy w32 g T7 + A xo 13 142 g — 4T T3 T2 T

+ 8xo w352 x5 — 4o w3 165 + 819 3 T2 Ty + 4 o T3 T T2 + 4T T3 16 T
—4m2x43x5+4x2x42x5x8—4x2x42a:6x7+4x2x4x53—8x2x4x52x7
+4x2x4x5x62—4x2x4x5az72—4x2x4x5x82—8x2x4x62x7—4x2x53x8

+4dxo w52 xg 7 — dxo T 162 X8 + 4T Ty 172 k8 + 4T T5 x8S + 4 X9 6 T7 — A X9 TG T
—dagzgarag? — 1t — 2212 x0? + 2212 w32 + 8wl g w5 + 812wy wr + 2212 142
+83312:L'4ZL'6+83312£L‘4:L'8+8:L'12£B52+83312335£L'7+833123362+83312:L'6£L'8+23312£B7
+ 2212252 — 1621 wo w326 + 16 21 20 T3 T8 + 1621 o x4 x5 — 16 21 T2 T4 T7

3

3

2
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— 16%1 To T5 T8 + 16%1 TroTg L7 — 16.%’1 x32x5 +8x1 x32x7+32x1 T34 Tg

— 16ZE1ZE3ZE4$8+8£L‘1$3£L‘52 —8£L‘1$3£L‘62 +8£L‘1$3$72 —8$1£L‘3$82 + 16£L‘1$42$5
— 8z x4’y — 1621 Ty x5 6 — 16 21 T4 7 T8 + 821 5% 7 — 16 21 5 T6 T8

— 1621 5272 + 16 11 5 182 — 811 62 7 + 3211 T6 7 Ty — Tt + 292 132
—8x22:173:175 —8x22x3:177+2:1722x42 —8x22x4:176 —8x22x4:178+8:1722x52
—8x22x5x7+8x22x62 —8x22x6x8 +2x22x72 +2x22x82 - 161’21’321'6

—8mo w32y — 32x0 w3 T4 k5 — 1619 T34 T7 — 16 29 T3 T5 16 + 16 29 T3 T7 T8

+ 16%2%42$6 +8x2x42x8 - 8%21’4%52 + 89 x4x62 +8x2x4x72 — 81’2%4%82

+ 8wy x5 g + 16 29 5 6 7 + 32 o T5 Ty Ty — 8Ty 62 Ty + 16 29 16 272

— 1629 g xg® — x3* — 2232 24% + 2232 w52 + 83 w5 7 + 232 162 — 823 26 28
+21‘32$72 +2$32$82+ 16 x3 x4 T5 8 + 161‘31‘4ZE6$7+81‘3$52$7+ 16 3 x5 6 T3
+ 8x3 x5 w72 — 8x3 x5 w8 — 8wy 6’ 17 + 1623 w6 17 8 — st + 2242 5% — 84 15 7
+ 2242262 + 8x4l xg s + 242 172 + 2242 182 — 8xy w52 18 + 16 T4 T5 T T7

+ 1624 x5 27 18 + 824 62 X8 — Sx4 6 X7 + Sy w6282 — 5% — 2252 16 + 252 72
+ 225282 — wet + 262 7% + 2262 w8 — 7t — 2072 w5? — gt + 8113 — 24 1y 192
+ 12212325 — 2412307 + 1201 04 6 — 2421 T4 28 + 1221 25 7 + 1221 24 T8
+12x9 2326 + 242038 — 1229 X4 5 — 24 29 T4 27 + 1229 X5 k8 — 12 0 T T7

+ 833 — 24 xgw4? — 24 w3 x5 17 + 24 w3 16 T8 + 24 T4 5 T8 + 24 14 TG T7 + X855

— 24 x5 162 + 8173 — 2417 18% — 18112 — 18192 — 18 232 — 18142 — 18252 — 18 26>
— 1872 — 18252 + 27

Ifz(azl,xg,xg,x4,x5,x6,x7,x8) =

27 — 9252 — 97 — 9as? — 9x4® — 6woxg a7 + 227° — 6782 — 962 — 952 + 621 w527
+ 6202518 — 8T To T3 X6 + ST Taxa T + 2x5° — 65262 + 4212 1375 — 4 X9° T3 75
+6x1x3T5 + 6221326 —6x2 T4 X5 +4ZE12$41‘6 —41‘22$4$6 —1—21‘33 —6:1731‘42
+dxzoxaxs® —Adxo w3 as e —AT12 Ta x5 6 + A% T4 5 T — A X1 Ta T X6
—4x ZE21‘41‘62 —41‘12$5$61‘8 +4l‘22$5l‘61‘8 +4xq 1‘421‘5 +21‘12$3$61‘8
—1—21‘2211731'61‘8—1—21‘121'41'61‘7+21‘22$4l‘61‘7+2$12$4l‘5l‘8+2$22$41‘51‘8
+4LL’12J}5JZ7 +6.Z’1 T4 T — 4x22a:5a:7 +4x12x6x8 —433221’61’8 —4331 x32x5
—dxyr3?re+ Axo 4% 6 + 821 To Te T7 — 8T Ty T5 Ty — 212 T3 T T
— 21’22 T35 Ty +x14 x62 +x24 x62 — 41’133362 + 233123322 3352 +33243352 — 43:13 x52
+2x1 23207 —2xy xal w7 — 20 w32 kg + 2o w42 w8 + 221 Ty 172 — 211 3 T8>
+ 21’2 T4 LL’72 — 21’2 3343382 +33123372 +$22 3372 +33123382 +$22 3382 — 8331 Ty Ty X7
+8x1x0x308 —4xoT3x427 — 41 X348 — 4T x4 728+ 4x0 T3 27X
—8x1x2x5x63:7+4a:12x3x7—43:221'31'7— 121’1333.%’7— 123323343374- 12332333338
+4l‘12$4$8 — 43322 Taxg — 122124228 + 12714 1‘22 1‘52 + 21‘121‘22 1‘62 + 1224 :L'22 :L'62
—2x 3 a5y — 2x1 wo sy — 2212 To T 8 + 2312 Ty T X7 — 21 T2 X6 T8
4+ 8x1 xg 78 + 8T X578 + 4T x5 x6T7 — 42y :L'2£L‘52£L‘8 +4xq 1‘21‘621‘8
—dzirsx6rs — AT X572 + A3 x5 282 + 4 To T 72 — A X9 T 82 — 295 T5 T3
+2$23J}63}7 — 21’131’61’8+23313352337—2331.%’621'7-1-23321’521’8 — 21’23362338
+Ax?as? +4xel sl +4x it +4xel w6 + 2xo 4 162 + 2212 w52 Ty — 292 w52 7
— 2x12a:62a:7+2x22x62x7+8x1w2x3x5x6 +2x12x3x52 —233223331'52 +2$13}33}52
—21‘2$4£L‘52 —21‘121‘3$62 —|-2:L'22$3£L‘62 —2l‘1$3l‘62 +81‘1:L'3$4£L‘6 —81‘21’31‘41‘5
+6x3x6x8+6x4x5x8 —6x3x5x7+6x4x6x7—2x13w4x6 —21’11’221’31’5
—21‘12$2$3l‘6+21‘12$2$41‘5 —2x 1‘221‘4l‘6+l’12$32 —I—:L'22$32 —21‘13$3l‘5
— 21’23 xr3Te + 21’23 T4 x5+ 633121'5 3362 +61’22 Ts x62 — 21’121’53 — 21’22 3353 +3312 3342
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+ x22 x42 — 18%12 — 18%22 + 6212628 — 2421 $22 + 8%13 + a:14a:52 — 2%121’22 — x14

— x24

Ié%(:lﬁl,ZE2,1‘3,1‘4,1‘5,1‘6,1‘7,$8) =

27 — 2%1 x32x52 +4x2x32x5x6 — 4x2x42a:5x6 +2.%'1 x42x52 —1—23;1 x32x62 — 2.%'1 x42x62
+ 21‘12$3 x5 1‘62 — 21‘22 r3 Ty ZE62 — 4212073 1‘63 + 21‘121‘4 ZE52 xTe — 2:1722 T4 1‘52 T
+4.%'1 T Xy 1’53 +6.%'1 a;22 $53 + 6%13 T5 x62 — 61’23 a:52 e — 6x12x2 a;63 — 2%13 a;53
+ 21‘23 ZE63 — 181, ZE22 x5 1‘62 + 18:17121‘2 1‘52 T —4x1 X0 23 ZE52 T+ 4x1 o T4 X5 1‘62
+2x12x3x53 - 2%221'3.%'53 +2x12x4x63 - 2%221'4.%'63 — 91’82 - 9%72 — 181’32
— 18242 — 12x9zgx7 + 227° — 627 282 — 9262 — 952 + 1221 x5 o7 + 1229 5 T8
— 1621 zox3 6 + 16 21 2o g x5 + 2255 — 625 62 — 2232 242 + 812 23 25
—83322:E3ZE5 +6x1 2375 + 6221326 — 622 T4 X5 +83§12:E4:E6 —83322:E4ZE6 +83§33
— 24:E3$42 — 161‘2:1731‘51‘6 — 161‘1 Ty 5T — 121‘1211751‘61‘8 + 121‘22ZE5$61‘8
+8.Z'1 x42x5 +4x12x3x6x8 +4x22x3x6x8 +4x12x4x6x7+4x22x4x6x7
+4l‘12$4$5l‘8 +4l‘22$4$5l‘8 —41‘1 1‘31‘521‘7 —4ZE21‘41‘521‘7+6$1 T4 Tg
— 8.%'1 x32x5 — 8%2%32$6 +8x2x42x6 +4x2x3x52x8 —4%1 x4x52x8 +4x2x3x62x8
—dzizaxeias —Ax2ry s a7 — 4392 T3 T8 T 4+ 23 152 17 — 23 T2 T7
+2x1x3x42x5 — 2%2%32$4$5 +2.Z'1 x32x4x6+2x2x3x42x6 —2%21’3%521'6
— 231 T3 X5 g2 — 241 T T52 T + 2T Ta Ty Te2 + 434 x5 6 T7 + 4 X3 T5 T Ty + T3 X5
+1’42 x52 +1’32 x62 +$42 LL’62 +4x1 a:32 Ty — 41’1 a:42 Ty — 4%2 LL’32 xrs +4$2 LL’42 Ts
+2x 3272 — 22 X3 w82 + 2To x4 w7 — 2To Ty k82 — A Xy To T4 T7 + AT T2 T3 TS
—81’2%31’41’7—8%11’3%4%8 —4x1x4x7x8+4x2x3x7x8 —241’1 T T5Tg X7
+2x12 307 —2x9% w3y — 122 w37 — 1209 x4 7 + 1209 23 T8 + 2212 T4 T3
— 21‘22 Ty g — 12 T T4 T8 — ZE12$32 ZE52 — ZE22 ZE32 ZE52 — ZE12$42 ZE52 - ZE22 ZE42 ZE52
— x12x32 LL’62 — LL’22 LL’32 LL’62 — x12x42 LL’62 — LL’22 LL’42 LL’62 + 21’1 a;33 Iy — 2%2 LL’43 T5
+ 221 242 w6 + 20 235 T6 + 1221 16 T7 T8 + 1229 T5 7 18 — 1271 T 52 T8
+ 122 zoxg? xs +das x5y — dxs® x5 7 — 621 5 72 + 631 x5 8% + 6 29 T 172
— 6agx6w8® + 43067 28 + 474 x5 T7 Ty + 8314 T5 T8 + 83Ty T X7 — 3T12 X5
— 3292252 — 3212 w6 — 322 w6 + 235272 + 8o xa 62 + 6212 252 X7
— 6z x5y — 6212 262 w7 + 602 w62 Ty — 23 15 T2 — 24 T X7 + 2Ty T X8
—dxg?xgry +4x4’ w608 + 821 w3052 — Swoxa x5’ — 81 w3262 — 4y T3 62 TT
— 41‘2 T4 1‘62 x7 + 16$1 T3T4 T — 16$2 T3Xy4 Ty — ZL’34 - ZL'44 +ZL'32 :L'82 +£L‘42 1‘82
+ 123:33;6338 + 12334.%’5338 —2x4x52x8+2x4x62x8 — 121’3%51’74‘ 12334336337
—21‘13$4$6 —2l‘1$3$53 —2:L'2:L'3:L'63—|-2$2£L‘4$53 —2:L'1£L‘4£L‘63 —21‘1:L'22$3£L‘5
— 221219 T3 Tg + 2112 9 14 T5 — 2T 292 x4 g —I—:L'32 :L'72 + x4 :L'72 +x12x32 + 92 T3
— 21’131’33}5 — 21’231’31’6 +2a:23x4a:5 +33123342 +a:22a:42 — 93312 — 93322 + 12331 T I8
—61‘1:L'22—|-2$13 +2l‘131‘3$52 —2:L'13$3£L‘62 — 8T T3T4 X5 X6 —4:L'12£L‘2£L‘3$5$6
—4dx 292 x4 x5 X6 + 2212 o xa 62 — 211 T2 Ty w62 + 221 X2 X3 152 — 2112 o Ty T
+8£L‘1:L'2£L‘3£L‘4:L’5—2:L'12£L‘32£L‘5+2l‘22$32$5+21‘121‘42 2

2

2

2

2

2
— 9152
xT5 T2™ Xy~ Ty
. 3 2 3 2 3 _ 3 _
2x9° Xy x5° + 229° T4 T4 4dx9° x3x5x5 —4x1° x4 x5 6 — 4 X2 T3 x4 T5
—1—41‘21’31‘41‘62—1—41‘11’21‘321‘6—41‘11‘21‘421‘6+4$12$31‘41‘6—4$22$3£L‘4£L‘6

2

The polynomials I and I are both inhomogeneous polynomials of total degree 6.
I? is a polynomial of degrees 4,4,3,2,3,2,3,2 and I® is of degrees 3,3,4,4,3,3,3,2 in
variables x1, ..., xg respectively.
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The non-reduced polynomials I; and I are both inhomogeneous real polynomial of
degree 8. I is of degree 4 in every variable zq, ..., xg and I5 is of degree 4 in the variables
x1, X9, Ty, Tg, 7, Ty and of degree 3 in the variables x3, x4.
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