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N = G×· · ·×G redued withrespet to the ation of G by inner automorphisms is investigated for G = SU(3) .This is a �nite dimensional model oming from lattie QCD. First, the strati�ationis haraterized algebraially, for arbitrary N . Next, the full algebra of invariants isdisussed for the ases N = 1 and N = 2 . Finally, for N = 1 and N = 2 , the strati�edstruture is investigated in some detail, both in terms of invariants and relations andin more geometri terms. Moreover, the strata are haraterized expliitly using loalross setions.
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1 IntrodutionIf one wants to analyze the non-perturbative struture of gauge theories, one should startwith larifying basi strutures like that of the �eld algebra, the observable algebra andthe superseletion struture of the Hilbert spae of physial states. It is lear that thestandard Dopliher-Haag-Roberts theory [1, 2℄ for models, whih do not ontain masslesspartiles, does not apply here. Nonetheless, there are interesting partial results within theframework of general quantum �eld theory both for quantum eletrodynamis (QED) andfor non-abelian models, see [3, 4, 5, 6℄.To be rigorous, one an put the system on a �nite lattie, leaving the (extremely om-pliated task) of onstruting the full ontinuum limit, for the time being, aside. Thisway, one gets rid of ompliated funtional analytial problems, but the gauge theoretialproblems one is interested in are still present within this setting. For basi notions on-erning lattie gauge theories (inluding fermions) we refer to [7℄ and referenes therein.Our approah is Hamiltonian, thus, we put the model on a �nite (regular) ubi lattie. Inthis ontext, we have formulated (and in the meantime partially solved [8, 9, 10, 11, 12℄)the following programme:1. Desribe the �eld algebra AΛ in terms of generators and de�ning relations and endowit with an appropriate funtional analytial struture2. Desribe the observable algebra OΛ (algebra of gauge invariant operators, ful�llingthe Gauss law) in terms of generators and relations3. Analyze the mathematial struture of OΛ and endow it with an appropriate fun-tional analytial struture4. Classify all irreduible representations of OΛ5. Investigate dynamis in terms of observablesFinally, of ourse, one wants to onstrut the ontinuum limit. As already mentioned,in full generality, this is an extremely ompliated problem of onstrutive �eld theory.However, the results obtained until now suggest that there is some hope to ontrol thethermodynamial limit, see [8℄ for a heuristi disussion. We also mention that for simpletoy models, these problems an be solved, see [14℄.In [12℄ we have started to investigate the struture of the �eld and the observable algebraof lattie QCD. In these papers we took the attitude of implementing the onstraints onthe quantum level. It is well known that there is another possibility: First, one reduesthe lassial phase spae and then one formulates the quantum theory over this reduedphase spae. Sine the ation of the gauge group an have several orbit types, the �rststep has to be done using singular Marsden-Weinstein redution [19℄. Then the reduedphase spae has the struture of a strati�ed sympleti spae. Quantization proeduresfor suh spaes have been worked out reently or are still under investigation [20℄. Asan important ingredient for both redution and quantization, in this paper, we study the3



strati�ed struture of the redued lassial on�guration spae. For QCD on a �nite lattie,this is given by the orbit spae of the ation of SU(3) on SU(3)N = SU(3) × · · · × SU(3)by inner automorphisms.Our paper is organized as follows: In Setion 2 we give a preise formulation of theproblem and we disuss the basi tools used in this paper. In Setion 3, the strati�ationof the redued on�guration spae is haraterized algebraially for arbitrary N . Next, inSetion 4 the full algebra of invariants is disussed for the ases N = 1 and N = 2 . Finally,in Setions 5 and 6 the strati�ed struture is investigated for N = 1 and N = 2 in somedetail, both in terms of invariants and relations and in more geometri terms. Moreover,the strata are haraterized expliitly using loal ross setions.2 BasisWe onsider QCD on a �nite regular ubi lattie Λ in the Hamiltonian framework. In thisontext, the lassial gluoni potential is approximated by its parallel transporter:
Λ1 ∋ (x, y) → g(x,y) ∈ G ,where G = SU(3) and Λ1 denotes the set of 1-dimensional elements (links) of Λ . Thus,the lassial on�guration spae C(x,y) over a given link (x, y) is isomorphi to the groupmanifold G and the lassial phase spae over (x, y) is isomorphi to

T ∗G ∼= g∗ × G .Thus, the (gluoni) lattie on�guration spae is given by
CΛ =

∏

(x,y)∈Λ1

C(x,y) . (2.1)It is obviously isomorphi to the produt
GL := G × · · · × G︸ ︷︷ ︸

L

,with L denoting the number of lattie links. The orresponding phase spae is a produtof phase spaes of the above type. Gauge transformations at on parallel transporters by
g(x,y) 7→ g′

(x,y) = gx · g(x,y) · g−1
y ,with

Λ0 ∋ x 7→ gx ∈ Gand Λ0 denoting the set of 0-dimensional elements (sites) of Λ . These transformationsindue transformations of the phase spae over (x, y) . Thus, the lattie gauge group isgiven by
GΛ =

∏

x∈Λ0

Gx , (2.2)4



with every Gx being a opy of G .The above symmetry an be easily redued using the following tehnique: We hoose alattie tree, whih onsists of a �xed lattie point (root) x0 and a subset of Λ1 suh that forevery lattie site x there is a unique lattie path from x to x0 . Now, we an �x the gaugeon every on�tree link and we an parallel transport every o�-tree on�guration variable tothe point x0. This an be viewed as a redution with respet to the pointed lattie gaugegroup
G0

Λ =
∏

x0 6=x∈Λ0

Gx . (2.3)We end up with a partially redued on�guration spae being isomorphi to GN , with Ndenoting the number of o�-tree links. The orresponding phase spae is given by the otan-gent bundle T ∗GN . The redued gauge group is Gx0 ≡ G, ating via inner automorphisms
G ∋ g 7→ Adg ∈ Aut(GN):

Adg(g1, . . . , gN) = (g · g1 · g−1, g · g2 · g−1, . . . , g · gN · g−1) .Thus, we have a �nite dimensional Hamiltonian system with symmetry group G. Sinethis ation has several orbit types, quantization turns out to be a ompliated task. Usually,the non-generi strata ouring here are omitted. If one wants to inlude them onsistently,one has to develop a quantum theory over a strati�ed set. One option to do this is toperform quantization after redution, i.e., to quantize the redued phase spae of GN .This is a strati�ed sympleti spae whih is onstruted from T ∗GN by singular Marsden-Weinstein redution [19℄. By properly implementing the tree gauge on the level of thephase spae, it an be shown that this spae is isomorphi, as a strati�ed sympleti spae,to the redued phase spae of the full lattie gauge theory [18℄. This ompletely justi�esthe use of the tree gauge in this approah. The redued phase spae of GN is a bundleover the redued on�guration spae
ĈΛ

∼= GN/AdG . (2.4)In this work, we investigate ĈΛ for N = 1 and 2.Our strategy is as follows:i) It is well-known that orbit types of the ation of a Lie group G on a manifold M arelassi�ed by onjugay lasses of stabilizers [Gm], m ∈ M , of the group ation. Moreover,the orbit of an element m is di�eomorphi to G/Gm. Thus, in Setion 3, we list the orbittypes by alulating their stabilizers. This is done for arbitrary N . Moreover, all orbit typeswill be haraterized algebraially, in terms of properties of eigenvetors and eigenvaluesof representatives.ii) Next, in order to investigate the geometri struture of ĈΛ, we make use of basi fatsfrom invariant theory. Aording to [16℄, if we have an ation of a Lie group G on amanifold M with a �nite number of orbit types, then the orbit spae of this ation an beharaterized as follows: Let (ρ1 . . . ρp) be a set of generators of the algebra of invariantpolynomials of the G-ation on M . They de�ne a mapping
ρ = (ρ1 . . . ρp) : M −→ R

p ,5



whih indues a homeomorphism of the orbit spae X := M/G onto the image of ρ in
Rp . Next, restriting our attention to the ase of G being an (n × n)-matrix group and
M = GN , we an use general results as developed in [15℄: The algebra of polynomials,whih are invariant under simultaneous onjugation of N matries is generated by traesof produts of these matries,

GN ∋ (g1, . . . , gN) 7→ tr (gi1gi2 · · · gik) ∈ C , (2.5)with k 6 2n − 1 . Moreover, for Gl(n, R), the full set of relations between generators isgiven by the so�alled fundamental trae identity
∑

σ∈Sn+1

sgn(σ) ·
∏

(i1,...,ij)

tr(gi1 · · · gij ) = 0 , (2.6)where (i1, . . . , ij) ranges over the set of all yles of the yle deomposition of the permu-tation σ . In the ase under onsideration, G = SU(n) , we have two additional relationsindued from the two invariant tensors of SU(n), see [21℄,
tr(gg†) = n , (2.7)
det(g) = 1 . (2.8)Relations (2.7) and (2.8) imply the following form of the harateristi polynomial of

g ∈ G = SU(3):
χg(λ) = λ3 − tr(g)λ2 + tr(g)λ − 1 . (2.9)The above listed fats enable us to haraterize the on�guration spae in terms of invariantgenerators and relations. First, in Setion 4, we investigate the algebra of invariants andtheir relations. Next, in Setion 5 and Subsetion 6.1 we study the mapping ρ in somedetail. For N = 1 we solve the problem ompletely, that means we �nd the range of ρ andharaterize ĈΛ as a ompat subset of R2 . For N = 2, we will �nd a unique haraterizationof eah orbit type in terms of invariants. But to �nd the range of ρ, de�ned in termsof a number of inequalities between invariants, turns out to be a ompliated problem.Therefore, this will be disussed in a separate paper, see [22℄. There, we will present aomplete topologial haraterization of ĈΛ for N = 2 as a CW-omplex.iii) We present a somewhat detailed geometri haraterization of all ouring strata interms of subsets and quotients of SU(3), see Subsetion 6.2.iv) Using a prinipal bundle atlas of SU(3) , viewed as an SU(2)-bundle over S5 , weonstrut representatives of orbits for all ouring strata, see Subsetion 6.3.3 The Strati�ation of the Con�guration SpaeFirst, let us onsider the ase N = 1. 6



Theorem 3.1. The adjoint ation of SU(3) on G1 ≡ SU(3) has three orbit types, or-responding to three onjugay lasses of stabilizers of dimension 2, 4 and 8, respetively.The orbit spae G1/AdSU(3) deomposes into three strata haraterized by the followingonditions:1. If g has three di�erent eigenvalues then its stabilizer is U(1)×U(1) and g belongs tothe generi stratum.2. If g has two di�erent eigenvalues then its stabilizer is U(2).3. If g has only one eigenvalue then it belongs to the entre Z and its stabilizer is
G = SU(3).Proof: Up to onjugay, we may assume that g = diag(λ1, λ2, λ3). In ase 1, the λi arepairwise distint. Hene, the stabilizer of g is

Hg = {diag(α, β, γ) |α, β, γ ∈ U(1) , α · β · γ = 1} ∼= U(1) × U(1) . (3.1)In ase 2, up to onjugay, λ1 6= λ2 = λ3. Then the stabilizer of g is
Hg =

{[
(det V )−1

V

] ∣∣∣∣∣ V ∈ U(2)

}
∼= U(2) . (3.2)In ase 3, λ1 = λ2 = λ3, i.e., g is a multiple of the identity. Hene, its stabilizer is

G = SU(3). Finally, it is lear that ases 1�3 exhaust all possible values of the λi.Next, we deal with the general ase.Theorem 3.2. The adjoint ation of SU(3) on GN , N > 2, has �ve orbit types, orre-sponding to �ve onjugay lasses of stabilizers of dimension 0, 1, 2, 4 and 8, respetively.The orbit spae GN/AdSU(3) deomposes into �ve strata haraterized by the following on-ditions. Denote g := (g1, . . . , gN).1. If g1, . . . , gN have no ommon eigenspae then the stabilizer of g is Hg = Z and gbelongs to the generi stratum.2. If g1, . . . , gN have exatly one ommon 1-dimensional eigenspae then Hg
∼= U(1).3. If g1, . . . , gN have three (di�erent) ommon (1-dimensional) eigenspaes then Hg

∼=
U(1) × U(1).4. If g1, . . . , gN have a ommon 2-dimensional eigenspae then Hg

∼= U(2).5. If g1, . . . , gN have a 3-dimensional ommon eigenspae, i.e., if they all are propor-tional to the identity then Hg = G = SU(3).7



Proof:If there are two eigenvetors e1 and e2, ommon for all matries g1, . . . , gN , then alsotheir vetor produt e1 × e2 is a ommon eigenvetor. If e1 and e2 are not orthogonal, thenthe 2-dimensional spae P spanned by them is a ommon eigenspae. This means that thepair (e1, e2) an be replaed by any orthonormal basis of P. This implies that if g is notof type 1 or 2, its elements an be jointly diagonalized. We onlude that the above typesexhaust all possible ases.Next we alulate the stabilizer for eah ase.1. Assume that the stabilizer of g ontains an element s 6∈ Z. Then s has at least 2di�erent eigenvalues. One of these must be nondegenerate. Sine the orrespondingeigenspae is left invariant by all gi and sine it is 1-dimensional, it is an eigenspaeof all gi, in ontradition to the assumption.2. Sine the gi have a ommon eigenvetor e1, up to onjugay, we may assume that
gi =

[
ai 0

0 Bi

]
,where Bi ∈ U(2). Then Hg ontains the subgroup

{[
α 0

0 β1

] ∣∣∣∣∣ α, β ∈ U(1) , β2 = α

}
∼= U(1) . (3.3)Conversely, let s ∈ Hg. Sine the ommon eigenspae of the gi is 1-dimensional, e1is also an eigenvetor of s. Then

s =

[
α 0

0 A

]
,where A ∈ U(2). Again up to onjugay, we may assume that A = diag(β, γ). If

β 6= γ then the Bi must also be diagonal, beause they ommute with A. Then the gihave more than one ommon eigenspae, whih ontradits the assumption. Hene
β = γ and Hg oinides with the subgroup (3.3).3. Choose a basis in C3, whih jointly diagonalizes all the matries g1, . . . , gN ,

gi =




ai 0 0
0 bi 0
0 0 ci


 .The non-existene of a 2-dimensional eigenspae means that none among the threeequations ai = bi, bi = ci and ci = ai, is ful�lled for all i. This implies that anymatrix whih ommutes with all matries g1, . . . , gN must be diagonal, too. Whene,the stabilizer Hg is of the form (3.1). 8



4. The orthogonal omplement of the 2-dimensional ommon eigenspae of the gi is aone-dimensional ommon eigenspae. Thus, up to onjugay,
gi =

[
ai 0

0 bi1

]and Hg ontains the subgroup (3.2). Conversely, let s ∈ Hg. The non-existene of a
3-dimensional eigenspae means that there is i0 suh that ai0 6= bi0 . Then

s =

[
(det V )−1 0

0 V

]
,with V ∈ U(2). Whene, Hg oinides with the subgroup (3.2).5. In this ase, all matries g1, . . . , gN belong to Z, so the statement is obvious.Observe that types 1 and 3 may be uniquely haraterized as follows:Corollary 3.3.1. The matries g1, . . . , gN have no ommon eigenvetor if and only if there exists a pair

(gi, gj) or a triple (gi, gj, gk) of elements not possessing any ommon eigenvetor.2. Suppose that g1, . . . , gN have three (di�erent) ommon (1-dimensional) eigenspaes.There does not exist a ommon 2-dimensional eigenspae if and only if there existsan element gi with three di�erent eigenvalues or a pair (gi, gj) suh that eah ofits elements has exatly two di�erent eigenvalues and non-degenerate eigenvaluesorrespond to di�erent eigenvetors.Proof:1. If there exists a pair (gi, gj) or a triple (gi, gj, gk) having no ommon eigenvetor then,obviously, there is no ommon eigenvetor for all of them. Conversely, assume that everytriple (gi, gj, gk) has a ommon eigenvetor. We prove that in this ase there exists aommon eigenvetor for all matries g1, . . . , gN . First, observe that it is su�ient to onsiderthe ase when none of the matries g1, . . . , gN is fully degenerate (i.e. gi /∈ Z). This meansthat every gi has at least two di�erent eigenvalues.The proof goes via indution: for K ≥ 3 we show that if any subset of g of K elementshas a ommon eigenvetor, then the same is true for any subset of K + 1 elements. Thus,take a subset (g1, . . . , gK+1). For eah i = 1, . . . , K + 1, skip gi and hoose a ommoneigenvetor vi of the remaining set of K elements. If there exist i 6= j suh that vi and
vj are parallel then they both are ommon eigenvetors of g1, . . . , gK+1. Otherwise, thereexist i 6= j suh that vi and vj are not orthogonal, beause there annot be more than 3mutually orthogonal vetors in C3. Suppose that vK and vK+1 is suh a pair. It spans a
2-dimensional subspae P ⊂ C3. Sine vK , vK+1 are ommon, non-orthogonal eigenvetorsof g1, . . . , gK−1, P is a ommon eigenspae of these elements. Now onsider v1. Sine it9



is an eigenvetor of g2 and sine, by assumption, g2 is not proportional to the identity, v1must either belong to P or be orthogonal to P. But in both ases it is also an eigenvetorof g1 and, therefore, a ommon eigenvetor of g1, . . . , gK+1.2. In this ase all matries g1, . . . , gN an be jointly diagonalized. If one of them has 3di�erent eigenvalues (i.e., it has no 2-dimensional eigenspae), then there is no ommon 2-dimensional eigenspae P for all of them. Suppose that this is not the ase, i.e., that every
gi has a 2-dimensional eigenspae Pi. There will be no ommon 2-dimensional eigenspae ifand only if there exist i, j suh that Pi 6= Pj. Then also the non-degenerate eigenspaes Qiand Qj of gi and gj do not oinide, beause they are given by the orthogonal omplementsof Pi and Pj, respetively. Hene, the deomposition of C3 into ommon eigenspaes of giand gj is Qi ⊕ Qj ⊕ Pi ∩Pj .4 The Algebra of InvariantsIn this setion, we analyze the algebra of invariants for N = 1 and N = 2 . We start withinvariant monomials built from one matrix.Lemma 4.1. The invariants tr(gi) an be uniquely expressed in terms of tr(g) , for anyinteger i .Proof: Reall formula 2.9 for the harateristi polynomial of g ∈ SU(3) :

χg(λ) = λ3 − tr(g)λ2 + tr(g)λ − 1.Thus, by the Cayley-Hamilton theorem, we have
g3 − tr(g)g2 + tr(g)g − 1 = 0 . (4.1)Multiplying both sides of (4.1) by g−1 we obtain:
g2 − tr(g)g + tr(g) − g−1 = 0. (4.2)Taking the trae of both sides we get

tr(g2) = (tr(g))2 − 2tr(g). (4.3)Analogously, multiplying (4.1) by gi, i > 1 and taking the trae one gets formulae for
tr(gi+2) in terms of traes of tr(gi+1), tr(gi) and tr(g). So by indution tr(gi) is uniquelygiven by tr(g). For negative i , the statement now follows from 2.7.So in ase N = 1 , the algebra of invariant funtions has only one generator. The ase
N = 2 is more ompliated. Its haraterization in terms of invariant generators will begiven in Theorem 4.4.Lemma 4.2. The invariants tr(gihj) an be uniquely expressed in terms of the followingset of independent invariants:

{
tr(g), tr(h), tr(gh), tr(g2h)

}
. (4.4)10



Proof: First, substituting g → gh in (4.2) and multiplying both sides by g−1 to the leftwe get:
hgh − tr(gh)h + tr(gh)g−1 − (ghg)−1 = 0. (4.5)Taking the trae of both sides yields:

tr(gh2) − tr(gh)tr(h) + tr(gh)tr(g) − tr(g2h) = 0. (4.6)Thus, from �ve traes ourring in this equation only four are independent. In what follows,we express tr(gh2) in terms of the set
{
tr(g), tr(h), tr(gh), tr(g2h)

}
.Multiplying (4.1) by hgi and taking the trae we obtain

tr(hgi+3) − tr(g)tr(hgi+2) + tr(g)tr(hgi+1) − tr(hgi) = 0, (4.7)This equation enables us to express tr(hgi+3) in terms of tr(hgi+2), tr(hgi+1) and tr(hgi),so by indution it an be expressed in terms of tr(hg2), tr(hg), tr(h) and tr(g).Starting now from an arbitrary invariant of the form tr(gihj) , we an use the aboveproedure reursively. First, we lower the power i of g and then we lower the power j of
h. We end up with invariants of the form tr(hmgl), with k 6 2, l 6 2. So, to �nish theproof it is su�ient to express tr(g2h2) in terms of the set (4.4). For that purpose, we usethe fundamental trae identity (2.6) for k = 4. Substituting g1 = g2 = g, g3 = g4 = h weobtain:

tr2(g)tr2(h) − 4tr(hg)tr(g)tr(h) − tr2(g)tr(h2) − tr(g2)tr2(h) + 2tr2(hg) (4.8)
+ 4tr(g)tr(h2g) + tr(h2)tr(g2) + 4tr(h)tr(hg2) − 2tr(hghg) − 4tr(h2g2) = 0.Using equation (4.3) we get

tr(hghg) = tr
(
(hg)2

)
= tr2(hg) − 2tr(hg).This way we obtain a formula for tr(h2g2) in terms of invariants (4.4).Lemma 4.3. The invariants tr(h2g2hg) and tr(h2ghg2) have the following properties:1. The sum tr(h2g2hg) + tr(h2ghg2) an be expressed as a polynomial in invariants oforder k 6 5,2. Re (tr(h2g2hg) − tr(h2ghg2)) = 0,3. tr(h2g2hg) − tr(h2ghg2) = 1

3
tr ((hg − gh)3) = det(hg − gh),4. The invariant (tr(h2g2hg) − tr(h2ghg2))

2 an be expressed as a polynomial in theinvariants (4.4) and their omplex onjugates.11



Proof:1. Using the fundamental trae identity (2.6) for k = 4 and g1 = hgh, g2 = g, g3 = h,
g4 = g we obtain:
2tr(h2ghg2) + 2tr(h2g2hg) + 2tr(hghghg) (4.9)

= tr(h2g)tr(g)2tr(h) − 2tr(hghg)tr(g)tr(h) − 2tr(h2g)tr(g)tr(hg)

− tr(h2g)tr(h)tr(g2) − tr(h3g)tr(g)2 + 2tr(hghg)tr(hg) + 4tr(h2ghg)tr(g)

+ 2tr(h2g)tr(hg2) + tr(h3g)tr(g2) + 2tr(hghg2)tr(h) .On the left-hand-side of this equation there are invariants of order 6, and on theright-hand-side all the invariants are of lower order. By Lemma 4.1, we express
tr(hghghg) as follows

tr(hghghg) = tr((hg)3) = tr3(hg) − 3tr(hg)tr(hg) + 3.Moving it to the right-hand-side yields the statement.2. By substituting g → gh, h → hg in (4.5) we obtain:
tr(h2ghg2) − tr(h2g2)tr(hg) + tr(h2g2)tr(hg) − tr(h2g2hg) = 0.Taking the real part yields:

Re(tr(h2ghg2)) − Re(tr(h2g2hg)) = 0.3. The �rst equality is obtained by expanding the right-hand-side. The seond onefollows from the formula for the determinant of a 3 × 3-matrix A in terms of traes,
det(A) =

1

3
tr(A3) − 1

2
tr(A2)tr(A) +

1

6
tr(A)3 .Nevertheless, it an be heked by diret omputation.4. The expliit formula expressing this invariant in terms of invariants (4.4) is lengthyand, therefore, we give it in Appendix B, inluding some remarks how to derive it.Theorem 4.4. Any funtion on G2 = G×G invariant with respet to the adjoint ation of

G an be expressed as a polynomial in the following invariants and their omplex onjugates:
T1(g, h) := tr(g),

T2(g, h) := tr(h),

T3(g, h) := tr(hg),

T4(g, h) := tr(hg2),

T5(g, h) := tr(h2g2hg) − tr(h2ghg2). (4.10)Moreover, for given values of T1, . . . , T4, there are at most two possible values of T5.12



Proof: First we observe that using equation (4.2) we an express g−1 in terms of positivepowers of g and tr(g). This implies that every invariant an be expressed as a polynomialin traes of produts of only positive powers of matries g and h.From the general theory [15℄ we know that we an restrit ourselves to invariants oforder k 6 2n − 1 = 7. By Lemmas 4.1 and 4.2, all invariants of the type tr(gk), tr(hk),
tr(higj) an be expressed in terms of T1, T2, T3, T4. Observe that all invariants of order
k 6 3 are of this type. In what follows we list invariants of order k 6 7 whih are not ofthis type, and for eah order k we present the method of expressing it in terms of invariantsof lower order and Ti.

• k = 4: tr(hghg). By Lemma 4.1, we have tr(hghg) = tr((hg)2) = tr2(hg) − 2tr(hg).
• k = 5: tr(hghg2), tr(h2ghg). Substituting h → hg in (4.6) we obtain:

tr(g2hgh) = tr(g · hg · hg) = tr(g · hg)tr(hg) − tr(g · hg)tr(g) + tr(g2 · hg).Analogously we deal with tr(h2ghg).
• k = 6: tr(h3ghg), tr(g3hgh), tr(h2g2hg), tr(h2ghg2), tr(hghghg). The invariant

tr(hghghg) = tr((hg)3) an be expressed in terms of tr(hg) by Lemma 4.1. Next,by Lemma 4.2, we an redue the power in tr(h3 · ghg) and express it in termsof tr(h2 · ghg) and other invariants of lower order. (More preisely, we substitute
h → ghg into equation (4.7) for i = 0). We deal with tr(g3hgh) analogously. Next,we rewrite tr(h2g2gh) and tr(h2ghg2) in the following way:

tr(h2g2gh) =
1

2

(
tr(h2g2gh) + tr(h2ghg2)

)
+

1

2

(
(tr(h2g2hg) − tr(h2ghg2)

)
=

=
1

2

(
tr(h2g2hg) + tr(h2ghg2)

)
+

1

2
T5(g, h) ,

tr(h2ghg2) =
1

2

(
tr(h2g2hg) + tr(h2ghg2)

)
− 1

2
T5(g, h) .By Lemma 4.3 the sum tr(h2g2hg) + tr(h2ghg2) an be expressed as a polynomial ininvariants of lower order.

• k = 7: There are two types of nontrivial invariants in this ase:1. tr(higjhlgm), i + j + l + m = 7. If one of the powers i, j, l, m, is equal to 3or more, we an derease the order by an appropriate substitution in equation(4.7). Next, we observe that there are only two possible ases when all powers
i, j, l, m are smaller than 3, namely tr(h2g2h2g) and tr(h2g2hg2). Substituting
h → h2g into equation (4.6) we obtain:
tr(h2g2h2g) = tr(g ·h2g ·h2g) = tr(g ·h2g)tr(h2g)− tr(g · h2g)tr(g)+tr(g2 · h2g).Analogously we deal with tr(h2g2hg2).13



2. tr(h2ghghg), tr(g2hghgh). By Lemma 4.2 we an express tr(h2ghghg) = tr(h ·
(hg)3) in terms of tr(h · (hg)2), tr(h · (hg)), tr(h) and tr(hg). For tr(g2hghgh) ,we get an analogous expression.Finally, by Lemma 4.3, T5(g, h) is purely imaginary and (T5(hg))2 an be expressed as apolynomial in T1, T2, T3, T4, so only the sign of T5 remains undetermined.5 The Con�guration Spae for N = 1Applying the theory outlined above is trivial for N = 1 : From Lemma 4.1 we immediatelyget that the orbit spae is uniquely haraterized by the trae funtion, beause it generatesthe algebra of invariants. Here, we will expliitly �nd the image of the Hilbert mapping

ρ : SU(3)/AdSU(3) → C ∼= R
2 ,whih is simply given by the trae funtion, ρ = tr.First, observe that the set of possible values of tr(g), is given by the sum of the eigen-values of g:

tr(g) ≡ T (α, β) = eiα + eiβ + e−i(α+β), α, β ∈ [0, 2π[. (5.1)If g belongs to a non-generi orbit of type 2 or 3 in Theorem 3.1, then at least twoeigenvalues are equal. Thus, setting α = β we obtain a urve,
[0, 2π[∋ α 7→ T (α) = 2 eiα + e−2iα ∈ C , (5.2)whih turns out to be a hypoyloid, see Figure 1. We de�ne D as the ompat regionenlosed by this urve. We will show that D oinides with the image of the Hilbertmapping ρ. For this purpose we �rst prove the followingLemma 5.1. Any omplex number T ∈ C an be presented in the following form:

T = s eiθ + e−2iθ, (5.3)where s ∈ R, θ ∈ [0, π[.Proof:It is su�ient to show that the mapping
R × [0, π[∋ (s, θ) 7→ φ(s, θ) := s eiθ + e−2iθ ∈ Cis surjetive. Denoting T = t1 + it2 we have:






t1 = s cos θ + cos 2θ

t2 = s sin θ − sin 2θ
(5.4)14
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Figure 1: Hypoyloid.We show that for given t2, t1 runs over the whole real axis. For t2 6= 0 (sin θ 6= 0), weobtain from the seond equation in (5.4):
s =

t2 + sin 2θ

sin θ
.Substituting this into the �rst equation of (5.4), we get t1 as a funtion of θ:

t1(θ) =
t2 + sin 2θ

sin θ
cos θ + cos 2θ.The limits at the boundaries are:

lim
θ→0+

t1(θ) = sgn(t2) · ∞ ,

lim
θ→π−

t1(θ) = −sgn(t2) · ∞.The funtion θ → t1(θ) is ontinuous over the interval ]0, π[, so it takes all mean values.This means that for given t2 6= 0, t1 ( ]0, π[ ) = R.For t2 = 0 we have θ = 0. Then, the �rst of equations (5.4) yields t1 = s + 1.Observe that by substituting (α, β) → (θ + φ, θ − φ) formula (5.1) an be rewritten inthe form
T (φ, θ) = ei(θ+φ) + ei(θ−φ) + e−2iθ ,yielding

T (φ, θ) = ( eiφ + e−iφ) eiθ + e−2iθ = 2 cosφ eiθ + e−2iθ = s eiθ + e−2iθ,15



where we have denoted s := 2 cosφ. Thus, in the parametrization (5.3) we have
D =

{
T (s, θ) = s eiθ + e−2iθ ∈ C : (s, θ) ∈ [−2, 2] × [0, π[

}and
∂D =

{
T (s, θ) = s eiθ + e−2iθ ∈ C : θ ∈ [0, π[ , s = 2 or s = −2

}
.But

T (−2, θ) = −2 eiθ + e−2iθ = 2 ei(θ+π) + e−2i(θ+π) = T (2, θ + π) ,and, whene, ∂D oinides with the hypoyloid de�ned above,
∂D =

{
T (θ) = 2 eiθ + e−2iθ ∈ C : θ ∈ [0, 2π[

}
.One easily heks that in terms of x = ℜ(T ) and y = ℑ(T ), D is given by:

D =
{
x + iy ∈ C : 27 − x4 − 2x2y2 − y4 + 8x3 − 24xy2 − 18x2 − 18y2

> 0
}

. (5.5)Theorem 5.2. Let T ∈ C and onsider the equation
λ3 − Tλ2 + T̄ λ − 1 = 0 . (5.6)Its roots λ1, λ2, λ3 obey

|λ1| = |λ2| = |λ3| = 1 , λ1 + λ2 + λ3 = T , λ1λ2λ3 = 1 , (5.7)if and only if T ∈ D . Consequently, tr(SU(3)) = D.Proof: Using Lemma 5.1 we an substitute T (s, θ) = s eiθ + e−2iθ into equation (5.6):
λ3 − (s eiθ + e−2iθ)λ2 + (s e−iθ + e2iθ)λ − 1 = 0 .It is easy to hek that λ1 = e−2iθ is a root of this equation. Thus, we an rewrite it inthe form:

(λ − e−2iθ)(λ2 − s eiθλ + e2iθ) = 0.Let us �nd the two remaining solutions. For |s| 6 2 (T ∈ D) we obtain:
λ2,3 =

s ± i
√

4 − s2

2
eiθ, (5.8)

|λ2,3|2 =
s2 + 4 − s2

4
= 1.For |s| > 2 we get:

λ2,3 =
s ±

√
s2 − 4

2
eiθ,

|λ2,3|2 =

(
s2 ±

√
s2 − 4

2

)2

6= 1.16



One an hek that the sum and the produt of roots have the above properties (in bothases).Finally, reall that the harateristi polynomial of any SU(3)-matrix is of the form(2.9), with eigenvalues uniquely given as roots of this polynomial. Thus, we have shownthat the numbers {λ1, λ2, λ3} are eigenvalues of the harateristi equation of an SU(3)-matrix g and (5.6) oinides with the harateristi equation of g if and only if tr(g) ∈ D,so tr(SU(3)) = D. 2To summarize, ombining theorems 3.1 and 5.2 we get the followingCorollary 5.3. For N = 1 , the redued on�guration spae ĈΛ is isomorphi to D andontains three orbit types haraterized by the following onditions:1. g has three di�erent eigenvalues ⇔ trg lies inside D,2. g has exatly two di�erent eigenvalues ⇔ trg lies on the boundary of D, minusthe orners,3. g ∈ Z ⇔ trg is one of the three orners on the boundary of D.6 The Con�guration Spae for N = 26.1 Strata in Terms of InvariantsWe de�ne a mapping
ρ = (ρ1 . . . ρ9) : G2 −→ R

9by
ρ1(g, h) := ℜ(T1(g, h)) = ℜ(tr(g)), (6.1)
ρ2(g, h) := ℑ(T1(g, h)) = ℑ(tr(g)), (6.2)
ρ3(g, h) := ℜ(T2(g, h)) = ℜ(tr(h)), (6.3)
ρ4(g, h) := ℑ(T2(g, h)) = ℑ(tr(h)), (6.4)
ρ5(g, h) := ℜ(T3(g, h)) = ℜ(tr(hg)), (6.5)
ρ6(g, h) := ℑ(T3(g, h)) = ℑ(tr(hg)), (6.6)
ρ7(g, h) := ℜ(T4(g, h)) = ℜ(tr(hg)), (6.7)
ρ8(g, h) := ℑ(T4(g, h)) = ℑ(tr(hg2)), (6.8)
ρ9(g, h) := ℑ(T5(g, h)) = ℑ(tr(h2g2hg) − tr(h2ghg2)) . (6.9)By Theorem 4.4, the ρi onstitute a set of generators of the algebra of invariant polynomialson G2 with respet to the adjoint ation of G. Aording to [16℄, the mapping ρ induesa homeomorphism of X := G2/AdG onto the image of ρ in R9 . The set {ρi} of generators17



is, by Theorem 4.4, subjet to a relation, given in Appendix B. We rewrite this relation interms of the anonial oordinates {xi} on R9 by substituting
tr(g) = x1 + ix2 , tr(h) = x3 + ix4 , tr(hg) = x5 + ix6 , tr(hg2) = x7 + ix8and

ℑ(tr(h2g2hg) − tr(h2ghg2)) = x9into its right-hand-side. By Lemma 4.3, the resulting polynomial I0(x1, . . . , x8) is realof order 8 (it is of order 4 in every variable x1, . . . , x8). Thus, the relation de�nes ahypersurfae Z1 ⊂ R of odimension 1 de�ned by
Z1 :=

{
(x1, . . . , x9) ∈ R

9 : I0(x1, . . . , x8) = x2
9

}and the image ρ(X) is a subset of Z1 . On the other hand, by simple dimension ounting weknow that X is 8-dimensional. We onlude that there annot exist further independentrelations between generators Ti . Thus, ρ(X) is an 8-dimensional ompat subset of Z1 . Asalready mentioned before, in order to identify ρ(X) expliitly, one has to �nd a number ofinequalities between the above invariants. A full solution of this problem will be presentedin a separate paper [22℄.Next, let Xi denote the stratum of G2/AdG orresponding to orbit type i. We aregoing to haraterize eah Xi in terms of the above invariants. We will �nd a hierarhy ofrelations: Passing from one stratum to a more degenerate one, one has to add some newrelations to those whih are already ful�lled. This way we obtain a sequene of algebraisurfaes,
Z1 ⊃ Z2 ⊃ Z3 ⊃ Z4 ⊃ Z5 ,haraterizing the orbit types. Every Zi has the property that the image of Xi under themapping ρ is a subset of Zi having the dimension of Zi .Aording to Theorem 3.2, a pair (g, h) belongs to a non-generi stratum, i.e., it hasorbit type 2 or higher, i� g and h have a ommon eigenvetor. The following lemma is dueto I.P. Volobuev [23℄:Lemma 6.1. The matries g and h have a ommon eigenvetor if and only if the followingthree relations are simultaneously satis�ed:

T5(g, h) = 0 , (6.10)[
g, C + C−1

]
=

[
h, C + C−1

]
= 0 , (6.11)where C := hgh−1g−1 denotes the group ommutator.Proof: If x is a ommon eigenvetor of g and h then x is an eigenvetor of the ommutator

C with eigenvalue 1. Then the other eigenvalues of C are λ and λ, for some λ obeying
|λ|2 = 1. In partiular, tr(C) is real. Expressing tr(C) in terms of generators we obtain

tr(hgh−1g−1) =
1

2

(
|tr(g)|2 + |tr(h)|2 + |tr(hg)|2 + |tr(hg2)|2

+ |tr(g)tr(hg)|2 − 3 + T5(g, h)
)

+ (6.12)
− ℜ

(
tr(g)tr(h)tr(hg)

)
−ℜ

(
tr(g)tr(hg)tr(hg2)

)
.18



It follows
ℑ(tr(C)) =

1

2i
T5(g, h) , (6.13)hene (6.10). Furthermore, the subspae E orthogonal to x is an eigenspae of the Her-mitean matrix C+C−1 with eigenvalue λ+λ. Then [g, C+C−1]x = 0 and [g, C+C−1]E = 0,hene (6.11). Conversely, assume that (6.10) and (6.11) are satis�ed. Aording to (6.13),then tr(C) is real. Due to Lemma 5.1, we an write tr(C) = seiθ + e−2iθ. The rhs. is reali� s = 2 cos θ. Then the reonstrution formula (5.8) for the eigenvalues of C from tr(C)implies that C has an eigenvalue

λ3 =
2 cos θ − i

√
4 − 4 cos2 θ

2
eiθ = (cos θ − i sin θ)eiθ = 1 .If this eigenvalue is degenerate then C = 1, i.e., g and h ommute and therefore have aommon eigenvetor (even a ommon eigenbasis). If the eigenvalue λ3 = 1 is nondegeneratethen 2 is a nondegenerate eigenvalue of C + C−1. Let x be a orresponding eigenvetor.Aording to (6.11),

[g, C + C−1]x = 2gx − (C + C−1)gx = 0 ,i.e., gx is again an eigenvetor of C + C−1 with eigenvalue 2. It follows that x is aneigenvetor of g and, similarly, of h.In terms of invariants, relation (6.11) an be written as
tr

( [
g, C + C−1

]
·
[
g, C + C−1

]† )
= 0 , (6.14)

tr
( [

h, C + C−1
]
·
[
h, C + C−1

]† )
= 0 . (6.15)We omit the lengthy expressions for these equations in terms of generators. We only stressthat they do not depend on T5. Thus, again using the anonial oordinate system, weobtain two polynomials I1(x1, . . . , x8) and I2(x1, . . . , x8) , whih vanish on the nongeneristrata:

Z2 := {(x1, . . . , x9) ∈ Z1 : x9 = 0, I1(x1, . . . , x8) = 0, I2(x1, . . . , x8) = 0} .The de�nition of Z1 implies that ondition x9 = 0 is equivalent to I0(x1, . . . , x8) = 0, so Z2an be equivalently viewed as a subset of R8 given by equations I0 = 0, I1 = 0 and I2 = 0 .The image of the generi stratum X1 under the map ρ then is ontained in Z1 \Z2. Hene,inside ρ(X), it is given by the inequalities
I0 > 0 or I1 > 0 or I2 > 0 .One an pass to a set of redued (with respet to their degree) polynomials {I0, I

R
1 , IR

2 } ,

IR
1 : =

1

2
I1 + I0 , (6.16)

IR
2 : =

1

2
I2 + I0 , (6.17)19



whih generate the same ideal in the polynomial algebra, see Appendix C for their onreteexpressions.The set of orbits of type 3 or higher onsists of pairs of ommuting matries. Theommutativity of a pair g, h an be expressed in terms of invariants as follows:
tr(hgh−1g−1) − 3 = 0 .Taking the imaginary part yields, aording to (6.13), T5 = 0 . Denoting

I3 = ℜ
(
tr(hgh−1g−1) − 3

)
,we obtain

I3 = 0 .

I3 an be expressed in terms of T1, . . . , T4 , and in terms of anonial oordinates it takesthe form
I3(x1, . . . , x8) = x1

2 x5
2 + x1

2 x6
2 + x2

2 x5
2 + x2

2 x6
2 − 2 x1 x5 x7 − 2 x1 x5 x3

−2 x1 x6 x8 − 2 x1 x6 x4 − 2 x2 x5 x8 + 2 x2 x5 x4 + 2 x2 x6 x7

−2 x2 x6 x3 + x1
2 + x2

2 + x5
2 + x6

2 + x7
2 + x8

2 + x3
2 + x4

2 − 9 .Then, the image of the stratum X3 under the mapping ρ is a subset of
Z3 := {(x1, . . . , x9) ∈ Z2 : I3(x1, . . . , x8) = 0} .Sine ℜ (tr(hgh−1g−1) − 3) ≤ 0 , the image of the stratum X2 under ρ is given, as a subsetof ρ(X), by the following equations and inequalities

I0 = 0 , I1 = 0 , I2 = 0 , I3 < 0 .The set of orbits of type 4 or higher onsists of ommuting pairs with a ommon
2-dimensional eigenspae. This implies that both matries and all their produts havedegenerate eigenvalues. The invariants Ti, i = 1, . . . , 4 , are trae funtions of produts of
SU(3)-matries, so they take values in D , see Theorem 5.2. Thus, by Corollary 5.3, thevalues of all invariants Ti, i = 1, . . . , 4 , omputed on degenerate elements have to belongto ∂D. The polynomial de�ning this boundary has the following form, see (5.5):

B(x1, x2) := 27 − x1
4 − 2 x1

2 x2
2 − x2

4 + 8 x1
3 − 24 x1 x2

2 − 18 x1
2 − 18 x2

2 .Thus, we have
Z4 := {(x1, . . . , x9) ∈ Z3 : B(x1, x2) = B(x3, x4) = B(x5, x6) = B(x7, x8) = 0} .Aordingly, the image of the stratum X3 under the map ρ is given, as a subset of ρ(X),by the relations

I0 = 0 , I1 = 0 , I2 = 0 , I3 = 020



and the inequalities
B(x1, x2) > 0 or B(x3, x4) > 0 or B(x5, x6) > 0 or B(x7, x8) > 0 .Finally, the subset of orbits of type 5 onsists of pairs of matries belonging to Z. Theyful�ll |tr(g)| = |tr(h)| = 3, so we have

Z5 :=
{
(x1, . . . , x9) ∈ Z4 : x2

1 + x2
2 − 9 = 0, x2

3 + x2
4 − 9 = 0

}and the image of the stratum X4 under the map ρ is given, as a subset of ρ(X), by
I0 = I1 = I2 = I3 = B(x1, x2) = B(x3, x4) = B(x5, x6) = B(x7, x8) = 0and

x2
1 + x2

2 − 9 < 0 or x2
3 + x2

4 − 9 < 0 .6.2 Geometri Struture of StrataIn this setion we give a desription of the strata in terms of subsets and quotients of
G = SU(3) and alulate their dimensions. We use the following notation. Let H be asubgroup of G. Then

N(H) := normalizer of H in G,
G2

H := set of pairs (g, h) with stabilizer H ,
G2

(H) := set of pairs (g, h) invariant under H ,
G2

[H] := set of pairs (g, h) of type [H ].We obviously have G2
H ⊂ G2

(H) and G2
H ⊂ G2

[H]. Sine we have labelled the orbit types [H ]by i = 1, . . . , 5, we denote the strata G2
[H] by G2

i . Moreover, in what follows, the symbol \always means taking the set theoretial omplement, whereas / means taking the quotient.For orbit type 5, Theorem 3.2 immediately yields that the orresponding stratum is
X5 = Z ×Z .It onsists of nine isolated points.For the remainig orbit types, reall from the basi theory of Lie group ations [17℄that the projetion πi : G2

i → Xi is a loally trivial �bre bundle with typial �bre G/Hassoiated with the N(H)/H-prinipal bundle G2
H → Xi, whih is naturally embeddedinto the assoiated bundle. Here H is a representative of the onjugay lass i and we havethe following di�eomorphism

Xi
∼= G2

H

/
N(H)/H , (6.18)where N(H)/H is the right oset group ating by inner automorphisms on G2

H . Thus, foreah orbit type we have to hoose a representative and then ompute the rhs. of (6.18).21



We start with orbit type 4. As a representative, we hoose the subgroup (3.2). Let usdenote it by U(2)1. We have
G2

U(2)1 = G2
(U(2)1)

∖
Z ×Zand

G2
(U(2)1) = C(U(2)1) × C(U(2)1) = U(1)1 × U(1)1 , (6.19)where C(·) denotes the entralizer in G and U(1)1 denotes the subgroup (3.3). Hene,

G2
U(2)1

= U(1)1 × U(1)1

∖
Z × Z .Sine U(2)1 and U(1)1 entralize eah other, their normalizers oinide. Sine the onlyway in whih N(U(1)1) an at on U(1)1 is by a permutation of the entries, it must attrivially. It follows

N(U(2)1) = N(U(1)1) = C(U(1)1) = U(2)1 ,and the fatorization in (6.18) is trivial. Therefore, (6.18) yields
X4

∼= U(1)1 × U(1)1

∖
Z × Z .The dimension of X4 is 2.As a representative for orbit type 3 we hoose the subgroup (3.1) of diagonal matries.Let us denote it by T . The set G2

T onsists of the pairs that are invariant under T minusthose that are of orbit type 4 or higher, i.e., that are onjugate to a pair invariant under
U(2)1:

G2
T = G2

(T )

∖ (⋃
g∈G

g G2
(U(2)1) g−1

)
.We have

G2
(T ) = C(T ) × C(T ) = T × T (6.20)and, from formula (6.19),

g G2
(U(2)1) g−1 = g

(
U(1)1 × U(1)1

)
g−1 =

(
g U(1)1 g−1

)
×

(
g U(1)1 g−1

)
.Subtration of this subset from T × T is only nontrivial if gU(1)1g

−1 ⊆ T . The subgroupsarising this way are U(1)1 as well as
U(1)2 = {diag(β, α, β) : α, β ∈ U(1) , β2 = α} ,

U(1)3 = {diag(β, β, α) : α, β ∈ U(1) , β2 = α} .Thus,
G2

T = T × T
∖ (⋃3

i=1
U(1)i × U(1)i

)
.22



The quotient N(T )/T is the Weyl group of G = SU(3), isomorphi to the permutationgroup S3. Hene,
X3 =

(
T × T

∖ (⋃3

i=1
U(1)i × U(1)i

)) /
S3 ,where S3 ats on the elements of T by permuting the entries. The dimension of the stratum

X3 is 4. Note that if we take the quotient (T × T )/S3, also the points of orbit type 4 and
5 are fatorized in the proper way. One an make this preise by saying that (T × T )/S3is isomorphi, as a strati�ed spae, to the subspae

X3 ∪ X4 ∪ X5 ⊆ X = G2/AdG .As we will see below, this is not true in general.Next, onsider orbit type 2. As a representative, we hoose the subgroup U(1)1, givenby (3.3). Using an argument analogous to that for orbit type 3, together with formula(6.20) and C(U(1)1) = U(2)1, we �nd
G2

U(1)1 = U(2)1 × U(2)1

∖ (⋃
g∈G

g(T × T )g−1
)

.A pair (g, h) ∈ U(2)1 ×U(2)1 is onjugate to an element of T ×T i� g and h belong to thesame maximal toral sugroup in U(2)1. Thus,
G2

U(1)1
= U(2)1 × U(2)1

∖ (⋃
T̃

T̃ × T̃
)

,where the union is over all maximal tori in U(2)1. As for the normalizer, we already knowthat N(U(1)1) = U(2)1, hene we have to fatorize by U(2)1/U(1)1
∼= SU(2), i.e., by U(2)1modulo its enter:

X2
∼=

(
U(2)1 × U(2)1

∖ (⋃
T̃

T̃ × T̃
)) /

U(2)1/U(1)1 .We see that this stratum has dimension 5. We remark that in (6.21) it is important toremove the pairs of higher symmetry, beause they would not be fatorized in the properway here. Sine U(1)1 is the enter of U(2)1, we get
X2

∼=
(
U(2)1 × U(2)1

∖ (⋃
T̃

T̃ × T̃
)) /

U(2)1 . (6.21)Moreover, ⋃
T̃ T̃ × T̃ ontains all non-generi orbit types of the U(2)1-ation. Hene, therhs. of (6.21) is isomorphi to the generi stratum of the orbit spae of the ation of theabstrat Lie group U(2) by diagonal onjugation on U(2) × U(2), i.e.,

X2
∼=

(
(U(2) × U(2))

/
U(2)

)

gen
. (6.22)One option to analyze this quotient is to restrit the ation to the subgroup SU(2) ⊂ U(2)and to rewrite the two fators U(2) using the Lie group isomorphism

U(2) ∼= (U(1) × SU(2))
/

Z2 ,23



thus obtaining
(U(2) × U(2))

/
U(2) ∼=

(
U(1) × U(1) ×

((
SU(2) × SU(2)

)/
SU(2)

)) / (
Z2 × Z2

)
.Here the quotient (

SU(2) × SU(2)
)
/SU(2) is known as the �pillow�. It onsists of a 3-dimensional stratum (orresponding to the interior), a 2-dimensional stratum (the bound-ary minus the 4 edges) and a 0-dimensional stratum (the 4 edges).Another option is to apply an algorithm whih provides a deomposition of quotients ofdiagonal (or joint) ations on diret produt spaes into quotients of the individual fators.Sine we will use this algorithm again to desribe the generi stratum X1 below, we willexplain it in some generality. Let H be a Lie group ating on a manifold M and onsiderthe diagonal ation of H on M × M (one an easily generalize the proedure to diagonalation on M1 × · · · ×Mn). In what follows, we denote the sets of orbit types of the ationof H on M , of a subgroup K ⊆ H on M and of H on M ×M by O(M, H) , O(M, K) and

O(M × M, H) , respetively. We start with deomposing
(M × M)

/
H =

⋃

[K]∈O(M,H)

(
M[K] × M

) /
H .If two pairs (x1, x2), (y1, y2) ∈ MK × M ⊂ M[K] × M are onjugate under h ∈ H , thenonjugation of the stabilizer of x1 by h yields the stabilizer of y1. Sine both are equal to

K, h is in the normalizer of K in H , h ∈ N(K). Thus,
(
M[K] × M

) /
H =

(
MK × M

) /
N(K) ,for some �xed representative K of the orbit type [K]. Fatorization by N(K) an beahieved by �rst fatorizing by K and then by N(K)/K. Sine K ats trivially on thefator MK , we obtain

(M × M)
/

H =
⋃

[K]∈O(M,H)

(
MK × (M/K)

) /
N(K)/K . (6.23)We deompose M/K by orbit types of the K-ation on M :

M/K =
⋃

[K ′]K∈O(M,K)

(
M/K

)
[K ′]K

. (6.24)Here [K ′]K denotes the onjugay lass of the subgroup K ′ ⊆ K in K. Inserting (6.24)into (6.23), we obtain
(M ×M)

/
H =

⋃

[K]∈O(M,H)



MK ×




⋃

[K ′]K∈O(M,K)

(M/K)[K ′]K








/

N(K)/K . (6.25)24



Consider, on the other hand, the deomposition of (M × M)/H by orbit types,
(M × M)

/
H =

⋃

[L]∈O(M×M,H)

(
(M × M)

/
H

)
[L]

.A representative of the rhs. of (6.25) is given by (x, y), where x ∈ MK and y an be hosensuh that it has orbit type K ′ under the ation of K. The stabilizer of this pair under theation of H is given by interseting the stabilizer of x under the ation of H , whih is K,with the stabilizer of y under the ation of H . The intersetion yields the stabilizer of yunder the ation of K, whih is K ′. Hene, the stabilizer of (x, y) under the ation of His K ′ and the orbit type is [K ′], where the onjugay lass is taken in H . Thus, for every
[L] ∈ O(M × M, H), we have
(
(M × M)

/
H

)

[L]
=

⋃

[K]∈O(M,H)


MK ×




⋃

[K′]K∈O(M,K)

[K′]=[L]

(M/K)[K ′]K







/
N(K)/K .(6.26)At this stage, the equality sign just means bijetive orrespondene on the level of abstratsets. Of ourse, this an be made more preise by saying how the individual manifolds onthe rhs. are glued together to build up the manifold on the lhs. Here we do not elaborateon this, for details we refer to [22℄.Let us apply (6.26) to the quotient given by (6.22), i.e. to the ase M = H = U(2)with onjugate ation. Representatives of orbit types of the U(2)-ation on U(2) are

K = U(2) and K = T , where T denotes the subgroup of U(2) onsisting of diagonalmatries (obviously, if we identify U(2) with the subgroup U(2)1 of SU(3), this is onsistentwith the notation T used above). Representatives of orbit types of the K-ation on U(2)are K ′ = U(2), T for K = U(2) and K ′ = T , U(1) for K = T . Here U(1) denotes theenter of U(2). Hene, the only piee in the deomposition (6.26) that belongs to thegeneri stratum of the U(2)-ation on U(2) × U(2) (orbit type [U(1)]) is that labelled bythe subgroups K = T and K ′ = U(1). The �rst fator of this piee is
U(2)T = T \ U(1) ,the seond one (

U(2)/T
)
[U(1)]T

=
(
U(2)/T

)
gen

.The quotient group N(K)/K = N(T )/T is the Weyl group of U(2). It is isomorphi to thepermutation group S2 and an be represented on U(2) by onjugation by the permutationmatrix [
0 1
1 0

]. Of ourse, on the �rst fator this amounts to interhanging the entries.Thus, we end up with
X2

∼=
((

U(2) × U(2)
) /

U(2)
)

gen
=

((
T \ U(1)

)
×

(
U(2)/T

)
gen

) /
S2 .25



Clearly, (
U(2)/T

)
gen

an be further analyzed, in a similar way as above.Finally, onsider the generi stratum X1. Again, we apply (6.26), where now M = H =
G = SU(3) with onjugate SU(3)-ation. Representatives of orbit types of the G-ationon G are K = G, U(2)1, and T . For K = G, the orbit types of the K-ation on G areagain [G], [U(2)] and [T ], hene these piees do not ontribute to X1. For K = U(2)1 and
K = T , the K-ation on G has one orbit type represented by Z. For both ations, thisorbit type is the generi one. Thus, for X1, the deomposition (6.26) onsists of one pieelabelled by the subgroups K = U(2)1 and K ′ = Z and one piee labelled by K = T and
K ′ = Z. Computing these piees we obtain
X1 =

(
U(1)1 \ Z

)
×

(
G/U(2)1

)
gen

∪
( (

T
∖(⋃3

i=1
U(1)i

))
×

(
G/T

)
gen

) /
S3 ,where the ation of the Weyl group S3 on G an be represented by onjugation by the

3 × 3-permutation matries. These are generated, e.g., by



1 0 0
0 0 1
0 1 0



 ,




0 1 0
1 0 0
0 0 1



 .(Notie that the permutation matries of negative sign have determinant −1, hene theyare not in SU(3).) On the �rst fator, S3 ats by permuting the entries. We note againthat the quotients (
G/U(2)1

)
gen

and (
G/T

)
gen

an be further analyzed.6.3 Representatives of OrbitsAs above, we denote strata by G2
i ⊂ G2 , and the orresponding piees of the strati�edorbit spae by Xi = G2

i /AdG ⊂ G2/AdG, i = 1, . . . , 5 . In this subsetion we presentrepresentatives for eah orbit type. More preisely, we de�ne loal ross setions
Xi ⊃ Ui ∋ [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2

i ,for eah bundle
πi : G2

i → Xi .Here, Ui denotes a dense subset of Xi . For that purpose, we use a system of loal trivial-izations of SU(3), viewed as an SU(2)-prinipal bundle over S5, see Appendix A.The generi stratum: The projetion π1 : G2
1 → X1 of the generi stratum is a loallytrivial prinipal �bre bundle with struture group G/Z. Using arguments developed in[24℄ one an prove that this bundle is non-trivial and that one an �nd a system of loaltrivializations (respetively loal ross setions), de�ned over a overing of X1 with opensubsets, whih are all dense with respet to the natural measure (the one indued by theHaar-measure). 26



Proposition 6.2. There exists a loal ross setion
X1 ⊃ U1 ∋ [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2

1 ,of the generi stratum with s given by
s1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , s2 =

[
a −δ−1b†

b δ
(1− bb†

1+|a|

)
]
×




1 0 0
0 c d
0 −d̄ c̄


 , (6.27)where:

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

b =

[
b1

b2

]
, b1, b2 ∈ R+,

|a|2 + b2
1 + b2

2 = 1, (6.28)
a = |a|δ−2,

|c|2 + |d|2 = 1.Proof: Let
X1 ⊃ U1 ∋ [g] → s([g]) ≡ (s1, s2)([g]) ∈ G2

1be a loal ross setion, with U1 dense in X1 . Sine AdG ats (pointwise) on this rosssetion, we an �x the gauge by bringing s to a speial form. Sine s1 and s2 are in generiposition on U1 , they have no ommon eigenvetor and at least one element of this pair, say
s1, has three di�erent eigenvalues. Thus, on this neighbourhood, we an �x the gauge intwo steps: First, we diagonalize s1 and next we use the stabilizer of this diagonal elementto bring s2 to a speial form. Sine s1 and s2 have no ommon eigenvetor, this �xesthe (remaining) stabilizer gauge ompletely, (up to Z3). Thus, we an assume that s1 isdiagonal, with eigenvalues ordered in a unique way, and that s2 has the form, de�ned bythe ross setion (A.13) in Appendix A,

s2 =

[
a −δib

†

b δ−1
i

(
1 − bb†

1+|a|

)
]
×

[
1 0

0 S

]
, S ∈ SU(2) . (6.29)Let

π−1
1 (U1) ∋ (s1, s2) 7→ f(s1, s2) ∈ Gbelong to the stabilizer of s1 . Sine s1 is diagonal, f an be written in the form

f =




e−i(α+β) 0 0
0 eiα 0
0 0 eiβ


 .

27



The ation of f on an arbitrary group element g is given by:



g11 g12 g13

g21 g22 g23

g31 g32 g33


 →




g11 e−i(α+2β)g12 e−i(2α+β)g13

ei(α+2β)g21 g22 e−i(β−α)g23

ei(2α+β)g31 ei(β−α)g32 g33


 . (6.30)Thus, we an hoose the phases α and β in suh a way that after transformation with f ,the entries bi of b ouring in (6.29) are real and positive.By the results of Subsetion 6.1, it is lear that the representative s an be expressedin terms of invariants ti := Ti(s1, s2), i = 1, . . . , 5 . With some e�ort, one an �nd theseexpressions expliitly. Here, we only sketh how to do that. In setion 5 we have alreadyfound the eigenvalues {λ1, λ2, λ3} in terms of t1 = tr(s1). Thus, we are left with alulating

s2 . For that purpose, denote the diagonal entries of s2 by x, y and z. Then, we have
t2 = x + y + z ,

t3 = λ1x + λ2y + λ3z ,

t4 = λ2
1x + λ2

2y + λ2
3z .This is system of linear equations for x, y, z, whih an be trivially solved. The seond, non-trivial step onsists in expressing the parameters a, b, c, d, δ in terms of x, y, z, by solvingthe set of non-linear equations

x = a ,

y = δc − δ

1 + |a|(b
2
1c − b1b2d) , (6.31)

z = δc − δ

1 + |a|(b1b2d + b2
2c) ,where, of ourse, relations (6.28) have to be taken into aount. It an be shown that thisset of equations has two solutions, orresponding to di�erent parameters b1, b2, d:

a = x,

δ =

√
|a|
a

,

c =
δy + δz

1 + |a| ,

b1
± =

1√
2

[
2(c1q1 + c2q2) + (1 − |c|2)(1 − |a|2) ±

√
∆

]1/2

,

b2
± =

√
1 − |a|2 − b2

1 ,

d1
± =

c1b
2
1 − q1

b1b2
,

d2
± =

−c2b
2
1 + q2

b1b2

, 28



where
c1 := Re(c), c2 := Im(c) ,

d1 := Re(d), d2 := Im(d) ,

q1 := −Re(δy − c)(1 + |a|) ,

q2 := −Im(δy − c)(1 + |a|) ,and
∆ =

[
2(c1q1 + c2q2) + (1 − |c|2)(1 − |a|2)

]2 − 4(q2
1 + q2

2) .Next, observe that the matries desribed by these two sets of parameters are related,namely one of them is equal to the transposition of the seond one. On the other hand, allinvariants ti, i = 1, . . . , 4 , are invariant under transposition of matries. The two solutionsare distinguished by the value of T5(s1, s2), whih has the property
T5(s1, s2) = −T5(s

T
1 , sT

2 ) .In terms of matrix elements of s1 and s2, T5 has the following form:
T5(s1, s2) = ±(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

√
∆ .Thus, alulating the value of T5(s1, s2) enables us to hoose the orret sign in front ofthe square root of ∆ and to obtain a unique solution.The U(1)-stratum: Let s be a loal ross setion of the (non-trivial) bundle π2 : G2

2 →
X2 . There exists one ommon eigenvetor of s1 and s2. Assume that it is the �rst eigen-vetor of s1 . After diagonalizing s1, the pair (s1, s2) has the following form

s1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , s2 =

[
det(S)−1 0

0 S

]
, (6.32)where S ∈ U(2). The stabilizer Hs

∼= U(1) of s is given by (3.3). Thus, to obtain a rosssetion, we have to �x the S2-ation, whih permutes the seond and third basis vetorsand the Hs-ation on s2 . First, sine λ2 6= λ3, these eigenvalues an be uniquely ordered,for example by inreasing phase. Next, the Hs-ation is �xed by requiring that the leftlower entry of s2 has to be real and positive. Thus, we get the following loal ross setion:
s1 =




λ1 0 0
0 λ2 0
0 0 λ3



 , s2 =




δ−2 0 0
0 δc −δ2d
0 d δc̄



 , (6.33)where:
|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

|δ| = 1,

|c|2 + d2 = 1, d ∈ R+.29



Again, the representative (6.33) an be expressed in terms of invariants: The eigenvalues
λ1, λ2, λ3 of s1 are given in terms of t1 . If λ1 6= λ2, we an proeed in the same way asfor the generi stratum above, i.e., by solving the set of equations (6.31). This way, weobtain the diagonal omponents δ−2, δc, δc̄ of s2, and we an ompute the oe�ients c and
δ. There exist two solutions for c and δ but they desribe the same matrix. If λ1 = λ2,equations (6.31) imply

(δ−2 + δc) = (x + y) , δc̄ = z ,whih an be solved with respet to c and δ2:
δ2 =

2

(x + y) ±
√

(x + y)2 − 4z̄
, c = δz̄ .(There are two values for δ2, but only one of them satis�es the ondition |δ|2 = 1. Takingthe square root of the orret one then yields two solutions for δ, but these give the samematrix.) Finally, one alulates

d =
√

1 − |c|2 .The U(1) × U(1)-stratum: Let s be a loal ross setion of the (non-trivial) bundle
π3 : G2

3 → X3 . In this ase, s1 and s2 an be jointly diagonalized:
s1 =




λ1 0 0
0 λ2 0
0 0 λ3


 , s2 =




δ1 0 0
0 δ2 0
0 0 δ3


 ,where:

|λ1| = |λ2| = |λ3| = 1, λ1λ2λ3 = 1,

|δ1| = |δ2| = |δ3| = 1, δ1δ2δ3 = 1 .Sine there is no ommon 2-dimensional eigenspae, the remainder of the ation of thestabilizer Hs
∼= U(1) × U(1) is the permutation group S3 . To �x the S3-ation, observethat, aording to Corollary 3.3, either one of the matries has three di�erent eigenvaluesor both have a pair of degenerate eigenvalues orresponding to distint eigenspaes. Inthe �rst ase, we an �x the S3-ation by ordering the three distint eigenvalues. In theseond ase, we an put the unique nondegenerate eigenvalue of s1 in the �rst plae andestablish the order of the two remaining eigenvetors by ordering the orresponding twodistint eigenvalues of s2.Expressing s in terms of invariants is then immediate: All eigenvalues an be alulatedin terms of the traes t1 = tr(s1) and t2 = tr(s2). To determine whih eigenvalues of s1 and

s2 orrespond to the same eigenvetor it is su�ient to know the value of t3 = tr(s1s2). Itan take six values orresponding to the permutations of the eigenvalues of s2 relative tothose of s1. 30



The U(2)-stratum: Let s be a ross setion of the (trivial) bundle π4 : G2
4 → X4 .Obviously, s an be taken in the following form:

s1 =




λ1 0 0
0 λ2 0
0 0 λ2


 , s2 =




δ1 0 0
0 δ2 0
0 0 δ2


 ,where |λ1| = |λ2| = |δ1| = |δ2| = 1, λ1λ

2
2 = δ1δ

2
2 = 1. For expressing (s1, s2) in terms ofinvariants it is su�ient to know the values t1 and t2 , beause there is only one possibleorder.The SU(3)-stratum: Let s be a ross setion of the (trivial) bundle π5 : G2

5 → X5 .Then,
s1 =




λ 0 0
0 λ 0
0 0 λ



 , s2 =




δ 0 0
0 δ 0
0 0 δ



 ,de�ne a unique ross setion, with λ3 = 1 and δ3 = 1. The traes of both matries takeone of the following three values: 3 · ei 2kπ
3 , k = 0, 1, 2 . Thus, expressing them in terms ofinvariants is trivial.AknowledgementsThe authors would like to thank I.P. Volobuev for disussions on how to derive the relationsde�ning the strata. S. C. is grateful to the Graduiertenkolleg 'Quantenfeldtheorie' at theUniversity of Leipzig for �nanial support. G. R. and M. S. aknowledge funding by theGerman Researh Counil (DFG) under the grant RU 692/3-1.
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A A Prinipal Bundle Atlas for the SU(3) group mani-foldIt is well known that the group SU(3) an be viewed as a prinipal bundle over the sphere
S5 with struture group SU(2),

SU(2) →֒ SU(3)
π→ S5 , (A.1)with π being the anonial projetion from SU(3) onto the right oset spae SU(3)/SU(2) ∼=

S5. An expliit desription of π is obtained as follows: Any 3× 3 matrix an be written inthe form
g =

[
a c†

b B

]
, (A.2)with a ∈ C, b, c ∈ C

2 and a omplex 2 × 2-matrix B. The ondition that g belongs to
U(3), namely

gg† = 1 = g†g,translates into the following relations for entries of g:
|a|2 + ‖b‖2 = 1 = |a|2 + ‖c‖2, (A.3)

āb + Bc = 0 = ac + B†b, (A.4)
bb† + BB† = 1 = cc† + B†B. (A.5)We embed the subgroup SU(2) of SU(3) as follows:

SU(2) ∋ S → h =

[
1 0

0 S

]
∈ SU(3).Observe that then SU(2) is the stabilizer of the vetor

e1 :=




1
0
0



 ∈ S5 ⊂ C
3 .The image of the left ation of g ∈ SU(3) on e1 is exatly the �rst olumn of g, whih � onthe other hand � is also invariant under right ation of SU(2). Thus, π(g) an be identi�edwith the �rst olumn of g,

π(g) =




a
b1

b2



 ∈ S5 ⊂ C
3 ,whih by (A.3) has norm 1, indeed.Next, we onstrut an atlas of loal trivializations of the bundle (A.1). Observe �rstthat, aording to (A.5), det(B) = 0 i� ‖b‖ = 1 and, whene, i� a = 0. Thus, let32



us assume a 6= 0 and onstrut appropriate trivializations of (A.1) over the open set
O = {(a, b)|a 6= 0} ⊂ S5. Using the polar deomposition B = AV , where A > 0,
V ∈ U(2), we an rewrite equation (A.5) as follows:

bb† = 1 − A2 = V c c†V †,yielding
c = − e−iφV †b, φ ∈ R, (A.6)

A2 = 1 − bb†. (A.7)Formulae (A.4) and (A.6) imply
(ā − e−iφA)b = 0,whih means that b is an eigenvetor of the matrix A with eigenvalue ā eiφ. Positivity of

A implies |a| = ā eiφ.From equation (A.7) we have A =
√

1 − bb†. Sine A > 0 this formula de�nes Auniquely. Obviously, it must be of the form
A = α1 + β bb†. (A.8)Plugging this into equation (A.7) yields

A = 1 − 1

1 + |a|bb
†. (A.9)We onlude that any matrix g ∈ U(3) whih ful�ls the ondition a 6= 0 an be written inthe following form:

g =

[
a − eiφb†

b 1 − bb†

1+|a|

]
·
[

1 0

0 V

]
, (A.10)with |a|2 + ‖b‖2 = 1, a = |a| eiφ, V ∈ U(2).Imposing the ondition det g = 1 is equivalent to

det A(a + eiφb†A−1b) det V = 1. (A.11)From (A.3) and (A.9) we have det A = |a| and A−1b = 1
|a|

b. Using this, equation (A.11)takes the form:
|a|(a + e+iφ ‖b‖2

|a| ) det V = 1.Finally, substituting a = |a| eiφ and using (A.3), we obtain:
det V = e−iφ =

a

|a| .33



We deompose V = δ−1S, where S ∈ SU(2) and δ−2 := det V , or δ2 = a
|a|
. Of ourse,

|δ| = 1. Corresponding to the two hoies of the square root of a
|a|
, we hoose two opensubsets Oi ⊂ O,

O1 :=








a
b1

b2



 ∈ O : phase(a) ∈] − π, π[



 ,

O2 :=









a
b1

b2


 ∈ O : phase(a) ∈]0, 2π[




 . (A.12)Then, every element g ∈ π−1(Oi) ⊂ SU(3), an be uniquely represented as
g = si(π(g)) · hi(g) ,with si being two loal ross setions of (A.1) over Oi,

S5 ⊃ Oi ∋ (a, b) → si(a, b) =

[
a −δib

†

b δ−1
i

(
1 − bb†

1+|a|

)
]
∈ SU(3) , (A.13)and

hi(g) =

[
1 0

0 Si(g)

]
⊂ SU(3) , Si(g) ∈ SU(2) . (A.14)Thus, orresponding to the two hoies of the square root, we obtain two loal bijetivemappings

π−1(Oi) ∋ g −→ χi(g) :=
(
π(g), (si(π(g)))−1 · g

)
∈ Oi × SU(2) .Similarly, we hoose the following open neighborhood of a = 0:

O3 :=








a
b1

b2


 ∈ S5 :

(
b1

b2

)
6=

(
0
0

)

 .Then, we �nd a loal ross setion s3 over O3 suh that

g = s3(π(g)) · h(g) =

[
a b†

b −1 + 1−ā
‖b‖2 bb†

]
·
[

1 0

0 S(g)

]
, (A.15)with S(g) ∈ SU(2), and a loal bijetive mapping

π−1(O3) ∋ g −→ χ3(g) :=
(
π(g), (s3(π(g)))−1 · g

)
∈ O3 × SU(2) .Proposition A.1. The loal mappings χi, i = 1, 2, 3, form an atlas of loal trivializationsof the SU(2)-prinipal bundle (A.1). 34



Proof:The proof onsists of heking the following obvious statements:1. The open neighborhoods Oi over S5,
O1 ∪ O2 ∪O3 = S5 .2. The mappings

π−1(Oi) ∋ g −→ χi(g) :=
(
π(g), (si(π(g)))−1 · g

)
∈ Oi × SU(2)are loal di�eomorphisms, for i = 1, 2, 3.3. The mappings {χi} are ompatible with the bundle struture and with the rightgroup ation:

pri
1 ◦ χi = π , (A.16)

(pri
2 ◦ χi)(g · g′) = (pri

2 ◦ χi(g)) · g′ , (A.17)for i = 1, 2, 3, with pri
α , α = 1, 2, denoting the projetion on the �rst, respetivelyseond fator of Oi × SU(2).
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B The Relation for T 2
5The relation for the square of the invariant T5, referred to in Lemma 4.3/4., is

(
tr(h2g2hg) − tr(h2ghg2)

)2

=

− 27 + tr(h)2tr(h)
2
+ 18tr(hg)tr(hg) + tr(hg)2tr(hg)

2
+ tr(hg2)2tr(hg2)

2
+ 18tr(hg2)tr(hg2)

− 4tr(h)3 − 4tr(h)
3 − 4tr(hg2)3 − 4tr(g)

3 − 4tr(hg2)tr(h)2tr(hg) − 4tr(hg2)tr(hg)tr(h)
2

− 4tr(hg)2tr(hg2)tr(g) − 4tr(hg)
2
tr(hg2)tr(g) − 4tr(hg2)tr(hg)tr(g)2 − 6tr(hg2)tr(hg)tr(g)

−4tr(hg)
2
tr(hg2)tr(g)

2
+8tr(hg2)

2
tr(hg)tr(g)+tr(hg2)2tr(hg)

2
tr(g)

2
+tr(hg2)

2
tr(hg)2tr(g)2

+8tr(hg2)2tr(hg)tr(g)−4tr(hg)tr(hg2)tr(g)
2−4tr(hg)2tr(hg2)tr(g)2−4tr(hg)2tr(h)tr(hg2)

+12tr(h)tr(hg2)tr(hg)+12tr(hg2)tr(hg)tr(h)−4tr(hg2)
2
tr(hg)tr(h)−4tr(hg2)2tr(h)tr(hg)

− 4tr(hg2)
3 − 2tr(hg2)tr(hg)tr(hg)tr(hg2) − 2tr(hg2)tr(hg2)tr(h)tr(h) − 4tr(hg)

3

− 2tr(hg2)tr(h)tr(h)tr(hg)tr(g) − 4tr(hg)3 − 2tr(h)tr(hg)tr(h)tr(hg) + 18tr(h)tr(h)

− 2tr(h)tr(hg)tr(hg)
2
tr(g)tr(g)2 − 4tr(hg)tr(h)tr(g)

2 − 6tr(hg)tr(h)tr(g)

+ 12tr(hg2)tr(h)tr(g) − 4tr(hg2)tr(h)2tr(g) − 4tr(hg2)2tr(h)tr(g) − 4tr(hg2)
2
tr(h)tr(g)

+ tr(g)
2
tr(g)2 − 2tr(hg2)tr(hg2)tr(h)tr(hg)tr(g) − 2tr(hg)tr(hg2)tr(hg)

2
tr(g)

2
tr(g)

+ 4tr(hg2)tr(hg)tr(hg)tr(hg2)tr(g)tr(g) − 2tr(hg)2tr(hg2)tr(hg)tr(g)tr(g)2

+ 2tr(hg)tr(hg2)tr(h)tr(hg)tr(g)
2
+ 4tr(hg)tr(hg2)tr(h)tr(hg)tr(g)

+ 2tr(h)tr(hg)tr(hg2)tr(hg)tr(g)2 + 4tr(h)tr(hg)tr(hg2)tr(hg)tr(g)
+ 4tr(hg2)tr(hg)tr(h)tr(g)tr(g) + 4tr(h)tr(hg2)tr(hg)tr(g)tr(g)

+ 2tr(h)tr(hg2)tr(hg)
2
tr(g)tr(g) + 2tr(hg)2tr(h)tr(hg2)tr(g)tr(g) + 4tr(hg)3tr(g)tr(g)

+ 4tr(hg)tr(hg)tr(g)
3
+ 4tr(hg)

3
tr(g)tr(g) − 2tr(hg2)tr(hg)tr(h)tr(h)tr(g)

− 6tr(hg)tr(hg2)tr(g) − 4tr(hg2)tr(h)
2
tr(g) − 4tr(h)tr(hg)2tr(g)

2 − 4tr(h)tr(hg)
2
tr(g)

− 4tr(hg)tr(h)tr(g)2 − 6tr(hg)tr(h)tr(g) − 4tr(h)tr(hg)2tr(g) + 8tr(h)
2
tr(hg)tr(g)

+ 8tr(hg)tr(h)2tr(g) + tr(h)2tr(hg)
2
tr(g)2 + tr(hg)2tr(h)

2
tr(g)

2 − 4tr(hg2)tr(h)tr(g)
2

+ 12tr(hg2)tr(h)tr(g) − 4tr(hg2)tr(h)tr(g)2 − 4tr(h)tr(hg)
2
tr(g)2 + 4tr(hg)tr(hg)tr(g)3

− 2tr(hg2)tr(hg2)tr(hg)tr(h)tr(g) − 2tr(hg)2tr(h)tr(hg)tr(g)
2
tr(g)

+ 4tr(h)tr(hg)tr(h)tr(hg)tr(g)tr(g) − 2tr(h)tr(h)tr(g)tr(g) − 4tr(g)3

− 2tr(hg2)tr(hg2)tr(g)tr(g) − 2tr(hg2)tr(hg2)
2
tr(hg)tr(g) − 2tr(hg2)2tr(hg2)tr(hg)tr(g)

+ 2tr(hg2)tr(hg)tr(g)
2
tr(g) + 2tr(hg)tr(hg2)tr(g)tr(g)2 + 2tr(hg)tr(hg2)tr(hg)

2
tr(g)

+ 2tr(hg)2tr(hg2)tr(hg)tr(g) + tr(hg)2tr(hg)
2
tr(g)

2
tr(g)2 − 2tr(hg)2tr(hg)

2
tr(g)tr(g)

− 2tr(hg)tr(hg)tr(g)
2
tr(g)2 − 8tr(hg)tr(hg)tr(g)tr(g) + 2tr(h)tr(hg)tr(hg)

2
tr(g)

+ 2tr(hg)tr(h)tr(g)
2
tr(g) + 2tr(hg)tr(h)tr(g)tr(g)2 + 2tr(hg)2tr(h)tr(hg)tr(g)

− 2tr(h)2tr(h)tr(hg)tr(g) − 2tr(hg)tr(h)tr(h)
2
tr(g) + 18tr(g)tr(g) − 4tr(h)tr(hg2)tr(hg)

2.It an be derived in the following way. Consider the invariant funtions tr(hghgghghhggh)and tr(hghgghhgghgh) of order 12. The sum of them an be expressed in terms of gen-erators T1, . . . , T5 in two di�erent ways. First, we use the trae identity (2.6) for k = 436



and g1 = gh, g2 = gg, g3 = hg, g4 = hhgghh to express tr(hghgghghhggh) in terms oftraes of lower order. Next, we use the trae identity (2.6) for k = 4 and g1 = hh, g2 = gh,
g3 = gghhgg, g4 = hg to express tr(hghgghhgghgh). It turns out that in both ases (whihare atually equivalent, beause one is obtained from the other by interhanging g with h),we obtain expressions whih an be simpli�ed using standard tehniques from Setion 4.The �nal expressions in terms of generators do not depend on T5.On the other hand we observe that the sum
tr(hghgghghhggh)+ tr(hghgghhgghgh) = tr

(
(hg)2(gh)2(hg)(gh)

)
+tr

(
(hg)2(gh)(hg)(gh)2

)an be expressed in terms of invariants of lower order using formula (4.9) (we substitute
h → hg, g → gh). In this ase, we obtain a di�erent formula ontaining T 2

5 . Taking thedi�erene of these two expressions yields the above relation.All alulations desribed above were made by a omputer program written underMaple 8.00. It is worth mentioning that this program automatially generates polynomialexpression in terms of generators for any trae funtion (at least up to order 12) using onlystandard tehniques, namely fundamental trae identities and appropriate substitutions inthe Cayley equation.Finally, let us mention that, one the relation has been found, it an be heked bydiret alulation.
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C The Polynomials I0 , IR
1 and IR

2

I0(x1, x2, x3, x4, x5, x6, x7, x8) =
− x1

4 x5
4 − 2x1

4 x5
2 x6

2 − x1
4 x6

4 − 2x1
2 x2

2 x5
4 − 4x1

2 x2
2 x5

2 x6
2 − 2x1

2 x2
2 x6

4 − x2
4 x5

4

− 2x2
4 x5

2 x6
2 − x2

4 x6
4 + 4x1

3 x3 x5
3 + 4x1

3 x3 x5 x6
2 + 4x1

3 x4 x5
2 x6 + 4x1

3 x4 x6
3

+ 4x1
3 x5

3 x7 + 4x1
3 x5

2 x6 x8 + 4x1
3 x5 x6

2 x7 + 4x1
3 x6

3 x8 + 4x1
2 x2 x3 x5

2 x6

+ 4x1
2 x2 x3 x6

3 − 4x1
2 x2 x4 x5

3 − 4x1
2 x2 x4 x5 x6

2 + 4x1
2 x2 x5

3 x8

− 4x1
2 x2 x5

2 x6 x7 + 4x1
2 x2 x5 x6

2 x8 − 4x1
2 x2 x6

3 x7 + 4x1 x2
2 x3 x5

3

+ 4x1 x2
2 x3 x5 x6

2 + 4x1 x2
2 x4 x5

2 x6 + 4x1 x2
2 x4 x6

3 + 4x1 x2
2 x5

3 x7

+ 4x1 x2
2 x5

2 x6 x8 + 4x1 x2
2 x5 x6

2 x7 + 4x1 x2
2 x6

3 x8 + 4x2
3 x3 x5

2 x6 + 4x2
3 x3 x6

3

− 4x2
3 x4 x5

3 − 4x2
3 x4 x5 x6

2 + 4x2
3 x5

3 x8 − 4x2
3 x5

2 x6 x7 + 4x2
3 x5 x6

2 x8

− 4x2
3 x6

3 x7 + 2x1
4 x5

2 + 2x1
4 x6

2 + 4x1
2 x2

2 x5
2 + 4x1

2 x2
2 x6

2 − 6x1
2 x3

2 x5
2

− 2x1
2 x3

2 x6
2 − 8x1

2 x3 x4 x5 x6 − 8x1
2 x3 x5

2 x7 − 8x1
2 x3 x5 x6 x8 − 2x1

2 x4
2 x5

2

− 6x1
2 x4

2 x6
2 − 8x1

2 x4 x5 x6 x7 − 8x1
2 x4 x6

2 x8 + 2x1
2 x5

4 + 4x1
2 x5

2 x6
2

− 6x1
2 x5

2 x7
2 − 2x1

2 x5
2 x8

2 − 8x1
2 x5 x6 x7 x8 + 2x1

2 x6
4 − 2x1

2 x6
2 x7

2

− 6x1
2 x6

2 x8
2 − 8x1 x2 x3

2 x5 x6 + 8x1 x2 x3 x4 x5
2 − 8x1 x2 x3 x4 x6

2

− 8x1 x2 x3 x5
2 x8 − 8x1 x2 x3 x6

2 x8 + 8x1 x2 x4
2 x5 x6 + 8x1 x2 x4 x5

2 x7

+ 8x1 x2 x4 x6
2 x7 − 8x1 x2 x5

2 x7 x8 + 8x1 x2 x5 x6 x7
2 − 8x1 x2 x5 x6 x8

2

+ 8x1 x2 x6
2 x7 x8 + 2x2

4 x5
2 + 2x2

4 x6
2 − 2x2

2 x3
2 x5

2 − 6x2
2 x3

2 x6
2

+ 8x2
2 x3 x4 x5 x6 − 8x2

2 x3 x5 x6 x8 + 8x2
2 x3 x6

2 x7 − 6x2
2 x4

2 x5
2 − 2x2

2 x4
2 x6

2

+ 8x2
2 x4 x5

2 x8 − 8x2
2 x4 x5 x6 x7 + 2x2

2 x5
4 + 4x2

2 x5
2 x6

2 − 2x2
2 x5

2 x7
2

− 6x2
2 x5

2 x8
2 + 8x2

2 x5 x6 x7 x8 + 2x2
2 x6

4 − 6x2
2 x6

2 x7
2 − 2x2

2 x6
2 x8

2

− 4x1
3 x3 x5 − 4x1

3 x4 x6 − 8x1
3 x5

2 − 4x1
3 x5 x7 − 8x1

3 x6
2 − 4x1

3 x6 x8

− 4x1
2 x2 x3 x6 + 4x1

2 x2 x4 x5 − 4x1
2 x2 x5 x8 + 4x1

2 x2 x6 x7 + 8x1
2 x3 x5

2

− 8x1
2 x3 x5 x7 − 8x1

2 x3 x6
2 + 8x1

2 x3 x6 x8 − 16x1
2 x4 x5 x6 + 8x1

2 x4 x5 x8

+ 8x1
2 x4 x6 x7 − 8x1

2 x5
3 + 8x1

2 x5
2 x7 + 24x1

2 x5 x6
2 − 16x1

2 x5 x6 x8

− 8x1
2 x6

2 x7 − 4x1 x2
2 x3 x5 − 4x1 x2

2 x4 x6 + 24x1 x2
2 x5

2 − 4x1 x2
2 x5 x7

+ 24x1 x2
2 x6

2 − 4x1 x2
2 x6 x8 + 32x1 x2 x3 x5 x6 + 16x1 x2 x4 x5

2 − 16x1 x2 x4 x6
2

− 16x1 x2 x5
2 x8 − 32x1 x2 x5 x6 x7 + 16x1 x2 x6

2 x8 + 4x1 x3
3 x5 + 4x1 x3

2 x4 x6

+ 4x1 x3
2 x5 x7 + 4x1 x3

2 x6 x8 + 4x1 x3 x4
2 x5 − 4x1 x3 x5

3 − 8x1 x3 x5
2 x7

− 4x1 x3 x5 x6
2 + 4x1 x3 x5 x7

2 + 4x1 x3 x5 x8
2 − 8x1 x3 x6

2 x7 + 4x1 x4
3 x6

+ 4x1 x4
2 x5 x7 + 4x1 x4

2 x6 x8 − 4x1 x4 x5
2 x6 − 8x1 x4 x5

2 x8 − 4x1 x4 x6
3

− 8x1 x4 x6
2 x8 + 4x1 x4 x6 x7

2 + 4x1 x4 x6 x8
2 − 4x1 x5

3 x7 − 4x1 x5
2 x6 x8

− 4x1 x5 x6
2 x7 + 4x1 x5 x7

3 + 4x1 x5 x7 x8
2 − 4x1 x6

3 x8 + 4x1 x6 x7
2 x8 + 4x1 x6 x8

3

− 4x2
3 x3 x6 + 4x2

3 x4 x5 − 4x2
3 x5 x8 + 4x2

3 x6 x7 − 8x2
2 x3 x5

2 − 8x2
2 x3 x5 x7

+ 8x2
2 x3 x6

2 + 8x2
2 x3 x6 x8 + 16x2

2 x4 x5 x6 + 8x2
2 x4 x5 x8 + 8x2

2 x4 x6 x7

− 8x2
2 x5

3 − 8x2
2 x5

2 x7 + 24x2
2 x5 x6

2 + 16x2
2 x5 x6 x8 + 8x2

2 x6
2 x7 + 4x2 x3

3 x6

− 4x2 x3
2 x4 x5 + 4x2 x3

2 x5 x8 − 4x2 x3
2 x6 x7 + 4x2 x3 x4

2 x6 − 4x2 x3 x5
2 x6

+ 8x2 x3 x5
2 x8 − 4x2 x3 x6

3 + 8x2 x3 x6
2 x8 + 4x2 x3 x6 x7

2 + 4x2 x3 x6 x8
2

− 4x2 x4
3 x5 + 4x2 x4

2 x5 x8 − 4x2 x4
2 x6 x7 + 4x2 x4 x5

3 − 8x2 x4 x5
2 x7

+ 4x2 x4 x5 x6
2 − 4x2 x4 x5 x7

2 − 4x2 x4 x5 x8
2 − 8x2 x4 x6

2 x7 − 4x2 x5
3 x8

+ 4x2 x5
2 x6 x7 − 4x2 x5 x6

2 x8 + 4x2 x5 x7
2 x8 + 4x2 x5 x8

3 + 4x2 x6
3 x7 − 4x2 x6 x7

3

− 4x2 x6 x7 x8
2 − x1

4 − 2x1
2 x2

2 + 2x1
2 x3

2 + 8x1
2 x3 x5 + 8x1

2 x3 x7 + 2x1
2 x4

2

+ 8x1
2 x4 x6 + 8x1

2 x4 x8 + 8x1
2 x5

2 + 8x1
2 x5 x7 + 8x1

2 x6
2 + 8x1

2 x6 x8 + 2x1
2 x7

2

+ 2x1
2 x8

2 − 16x1 x2 x3 x6 + 16x1 x2 x3 x8 + 16x1 x2 x4 x5 − 16x1 x2 x4 x738



− 16x1 x2 x5 x8 + 16x1 x2 x6 x7 − 16x1 x3
2 x5 + 8x1 x3

2 x7 + 32x1 x3 x4 x6

− 16x1 x3 x4 x8 + 8x1 x3 x5
2 − 8x1 x3 x6

2 + 8x1 x3 x7
2 − 8x1 x3 x8

2 + 16x1 x4
2 x5

− 8x1 x4
2 x7 − 16x1 x4 x5 x6 − 16x1 x4 x7 x8 + 8x1 x5

2 x7 − 16x1 x5 x6 x8

− 16x1 x5 x7
2 + 16x1 x5 x8

2 − 8x1 x6
2 x7 + 32x1 x6 x7 x8 − x2

4 + 2x2
2 x3

2

− 8x2
2 x3 x5 − 8x2

2 x3 x7 + 2x2
2 x4

2 − 8x2
2 x4 x6 − 8x2

2 x4 x8 + 8x2
2 x5

2

− 8x2
2 x5 x7 + 8x2

2 x6
2 − 8x2

2 x6 x8 + 2x2
2 x7

2 + 2x2
2 x8

2 − 16x2 x3
2 x6

− 8x2 x3
2 x8 − 32x2 x3 x4 x5 − 16x2 x3 x4 x7 − 16x2 x3 x5 x6 + 16x2 x3 x7 x8

+ 16x2 x4
2 x6 + 8x2 x4

2 x8 − 8x2 x4 x5
2 + 8x2 x4 x6

2 + 8x2 x4 x7
2 − 8x2 x4 x8

2

+ 8x2 x5
2 x8 + 16x2 x5 x6 x7 + 32x2 x5 x7 x8 − 8x2 x6

2 x8 + 16x2 x6 x7
2

− 16x2 x6 x8
2 − x3

4 − 2x3
2 x4

2 + 2x3
2 x5

2 + 8x3
2 x5 x7 + 2x3

2 x6
2 − 8x3

2 x6 x8

+ 2x3
2 x7

2 + 2x3
2 x8

2 + 16x3 x4 x5 x8 + 16x3 x4 x6 x7 + 8x3 x5
2 x7 + 16x3 x5 x6 x8

+ 8x3 x5 x7
2 − 8x3 x5 x8

2 − 8x3 x6
2 x7 + 16x3 x6 x7 x8 − x4

4 + 2x4
2 x5

2 − 8x4
2 x5 x7

+ 2x4
2 x6

2 + 8x4
2 x6 x8 + 2x4

2 x7
2 + 2x4

2 x8
2 − 8x4 x5

2 x8 + 16x4 x5 x6 x7

+ 16x4 x5 x7 x8 + 8x4 x6
2 x8 − 8x4 x6 x7

2 + 8x4 x6 x8
2 − x5

4 − 2x5
2 x6

2 + 2x5
2 x7

2

+ 2x5
2 x8

2 − x6
4 + 2x6

2 x7
2 + 2x6

2 x8
2 − x7

4 − 2x7
2 x8

2 − x8
4 + 8x1

3 − 24x1 x2
2

+ 12x1 x3 x5 − 24x1 x3 x7 + 12x1 x4 x6 − 24x1 x4 x8 + 12x1 x5 x7 + 12x1 x6 x8

+ 12x2 x3 x6 + 24x2 x3 x8 − 12x2 x4 x5 − 24x2 x4 x7 + 12x2 x5 x8 − 12x2 x6 x7

+ 8x3
3 − 24x3 x4

2 − 24x3 x5 x7 + 24x3 x6 x8 + 24x4 x5 x8 + 24x4 x6 x7 + 8x5
3

− 24x5 x6
2 + 8x7

3 − 24x7 x8
2 − 18x1

2 − 18x2
2 − 18x3

2 − 18x4
2 − 18x5

2 − 18x6
2

− 18x7
2 − 18x8

2 + 27

IR
1 (x1, x2, x3, x4, x5, x6, x7, x8) =

27 − 9x8
2 − 9x7

2 − 9x3
2 − 9x4

2 − 6x2 x6 x7 + 2x7
3 − 6x7 x8

2 − 9x6
2 − 9x5

2 + 6x1 x5 x7

+ 6x2 x5 x8 − 8x1 x2 x3 x6 + 8x1 x2 x4 x5 + 2x5
3 − 6x5 x6

2 + 4x1
2 x3 x5 − 4x2

2 x3 x5

+ 6x1 x3 x5 + 6x2 x3 x6 − 6x2 x4 x5 + 4x1
2 x4 x6 − 4x2

2 x4 x6 + 2x3
3 − 6x3 x4

2

+ 4x1 x2 x4 x5
2 − 4x2 x3 x5 x6 − 4x1

2 x4 x5 x6 + 4x2
2 x4 x5 x6 − 4x1 x4 x5 x6

− 4x1 x2 x4 x6
2 − 4x1

2 x5 x6 x8 + 4x2
2 x5 x6 x8 + 4x1 x4

2 x5 + 2x1
2 x3 x6 x8

+ 2x2
2 x3 x6 x8 + 2x1

2 x4 x6 x7 + 2x2
2 x4 x6 x7 + 2x1

2 x4 x5 x8 + 2x2
2 x4 x5 x8

+ 4x1
2 x5 x7 + 6x1 x4 x6 − 4x2

2 x5 x7 + 4x1
2 x6 x8 − 4x2

2 x6 x8 − 4x1 x3
2 x5

− 4x2 x3
2 x6 + 4x2 x4

2 x6 + 8x1 x2 x6 x7 − 8x1 x2 x5 x8 − 2x1
2 x3 x5 x7

− 2x2
2 x3 x5 x7 + x1

4 x6
2 + x2

4 x6
2 − 4x1

3 x6
2 + 2x1

2 x2
2 x5

2 + x2
4 x5

2 − 4x1
3 x5

2

+ 2x1 x3
2 x7 − 2x1 x4

2 x7 − 2x2 x3
2 x8 + 2x2 x4

2 x8 + 2x1 x3 x7
2 − 2x1 x3 x8

2

+ 2x2 x4 x7
2 − 2x2 x4 x8

2 + x1
2 x7

2 + x2
2 x7

2 + x1
2 x8

2 + x2
2 x8

2 − 8x1 x2 x4 x7

+ 8x1 x2 x3 x8 − 4x2 x3 x4 x7 − 4x1 x3 x4 x8 − 4x1 x4 x7 x8 + 4x2 x3 x7 x8

− 8x1 x2 x5 x6 x7 + 4x1
2 x3 x7 − 4x2

2 x3 x7 − 12x1 x3 x7 − 12x2 x4 x7 + 12x2 x3 x8

+ 4x1
2 x4 x8 − 4x2

2 x4 x8 − 12x1 x4 x8 + 12x1 x2
2 x5

2 + 2x1
2 x2

2 x6
2 + 12x1 x2

2 x6
2

− 2x1
3 x5 x7 − 2x1 x2

2 x5 x7 − 2x1
2 x2 x5 x8 + 2x1

2 x2 x6 x7 − 2x1 x2
2 x6 x8

+ 8x1 x6 x7 x8 + 8x2 x5 x7 x8 + 4x2 x5 x6 x7 − 4x1 x2 x5
2 x8 + 4x1 x2 x6

2 x8

− 4x1 x5 x6 x8 − 4x1 x5 x7
2 + 4x1 x5 x8

2 + 4x2 x6 x7
2 − 4x2 x6 x8

2 − 2x2
3 x5 x8

+ 2x2
3 x6 x7 − 2x1

3 x6 x8 + 2x1 x5
2 x7 − 2x1 x6

2 x7 + 2x2 x5
2 x8 − 2x2 x6

2 x8

+ 4x1
2 x5

2 + 4x2
2 x5

2 + 4x1
2 x6

2 + 4x2
2 x6

2 + 2x2 x4 x6
2 + 2x1

2 x5
2 x7 − 2x2

2 x5
2 x7

− 2x1
2 x6

2 x7 + 2x2
2 x6

2 x7 + 8x1 x2 x3 x5 x6 + 2x1
2 x3 x5

2 − 2x2
2 x3 x5

2 + 2x1 x3 x5
2

− 2x2 x4 x5
2 − 2x1

2 x3 x6
2 + 2x2

2 x3 x6
2 − 2x1 x3 x6

2 + 8x1 x3 x4 x6 − 8x2 x3 x4 x5

+ 6x3 x6 x8 + 6x4 x5 x8 − 6x3 x5 x7 + 6x4 x6 x7 − 2x1
3 x4 x6 − 2x1 x2

2 x3 x5

− 2x1
2 x2 x3 x6 + 2x1

2 x2 x4 x5 − 2x1 x2
2 x4 x6 + x1

2 x3
2 + x2

2 x3
2 − 2x1

3 x3 x5

− 2x2
3 x3 x6 + 2x2

3 x4 x5 + 6x1
2 x5 x6

2 + 6x2
2 x5 x6

2 − 2x1
2 x5

3 − 2x2
2 x5

3 + x1
2 x4
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+ x2
2 x4

2 − 18x1
2 − 18x2

2 + 6x1 x6 x8 − 24x1 x2
2 + 8x1

3 + x1
4 x5

2 − 2x1
2 x2

2 − x1
4

− x2
4

IR
2 (x1, x2, x3, x4, x5, x6, x7, x8) =

27 − 2x1 x3
2 x5

2 + 4x2 x3
2 x5 x6 − 4x2 x4

2 x5 x6 + 2x1 x4
2 x5

2 + 2x1 x3
2 x6

2 − 2x1 x4
2 x6

2

+ 2x1
2 x3 x5 x6

2 − 2x2
2 x3 x5 x6

2 − 4x1 x2 x3 x6
3 + 2x1

2 x4 x5
2 x6 − 2x2

2 x4 x5
2 x6

+ 4x1 x2 x4 x5
3 + 6x1 x2

2 x5
3 + 6x1

3 x5 x6
2 − 6x2

3 x5
2 x6 − 6x1

2 x2 x6
3 − 2x1

3 x5
3

+ 2x2
3 x6

3 − 18x1 x2
2 x5 x6

2 + 18x1
2 x2 x5

2 x6 − 4x1 x2 x3 x5
2 x6 + 4x1 x2 x4 x5 x6

2

+ 2x1
2 x3 x5

3 − 2x2
2 x3 x5

3 + 2x1
2 x4 x6

3 − 2x2
2 x4 x6

3 − 9x8
2 − 9x7

2 − 18x3
2

− 18x4
2 − 12x2 x6 x7 + 2x7

3 − 6x7 x8
2 − 9x6

2 − 9x5
2 + 12x1 x5 x7 + 12x2 x5 x8

− 16x1 x2 x3 x6 + 16x1 x2 x4 x5 + 2x5
3 − 6x5 x6

2 − 2x3
2 x4

2 + 8x1
2 x3 x5

− 8x2
2 x3 x5 + 6x1 x3 x5 + 6x2 x3 x6 − 6x2 x4 x5 + 8x1

2 x4 x6 − 8x2
2 x4 x6 + 8x3

3

− 24x3 x4
2 − 16x2 x3 x5 x6 − 16x1 x4 x5 x6 − 12x1

2 x5 x6 x8 + 12x2
2 x5 x6 x8

+ 8x1 x4
2 x5 + 4x1

2 x3 x6 x8 + 4x2
2 x3 x6 x8 + 4x1

2 x4 x6 x7 + 4x2
2 x4 x6 x7

+ 4x1
2 x4 x5 x8 + 4x2

2 x4 x5 x8 − 4x1 x3 x5
2 x7 − 4x2 x4 x5

2 x7 + 6x1 x4 x6

− 8x1 x3
2 x5 − 8x2 x3

2 x6 + 8x2 x4
2 x6 + 4x2 x3 x5

2 x8 − 4x1 x4 x5
2 x8 + 4x2 x3 x6

2 x8

− 4x1 x4 x6
2 x8 − 4x1

2 x3 x5 x7 − 4x2
2 x3 x5 x7 + 2x3 x5

2 x7 − 2x3 x6
2 x7

+ 2x1 x3 x4
2 x5 − 2x2 x3

2 x4 x5 + 2x1 x3
2 x4 x6 + 2x2 x3 x4

2 x6 − 2x2 x3 x5
2 x6

− 2x1 x3 x5 x6
2 − 2x1 x4 x5

2 x6 + 2x2 x4 x5 x6
2 + 4x4 x5 x6 x7 + 4x3 x5 x6 x8 + x3

2 x5
2

+ x4
2 x5

2 + x3
2 x6

2 + x4
2 x6

2 + 4x1 x3
2 x7 − 4x1 x4

2 x7 − 4x2 x3
2 x8 + 4x2 x4

2 x8

+ 2x1 x3 x7
2 − 2x1 x3 x8

2 + 2x2 x4 x7
2 − 2x2 x4 x8

2 − 4x1 x2 x4 x7 + 4x1 x2 x3 x8

− 8x2 x3 x4 x7 − 8x1 x3 x4 x8 − 4x1 x4 x7 x8 + 4x2 x3 x7 x8 − 24x1 x2 x5 x6 x7

+ 2x1
2 x3 x7 − 2x2

2 x3 x7 − 12x1 x3 x7 − 12x2 x4 x7 + 12x2 x3 x8 + 2x1
2 x4 x8

− 2x2
2 x4 x8 − 12x1 x4 x8 − x1

2 x3
2 x5

2 − x2
2 x3

2 x5
2 − x1

2 x4
2 x5

2 − x2
2 x4

2 x5
2

− x1
2 x3

2 x6
2 − x2

2 x3
2 x6

2 − x1
2 x4

2 x6
2 − x2

2 x4
2 x6

2 + 2x1 x3
3 x5 − 2x2 x4

3 x5

+ 2x1 x4
3 x6 + 2x2 x3

3 x6 + 12x1 x6 x7 x8 + 12x2 x5 x7 x8 − 12x1 x2 x5
2 x8

+ 12x1 x2 x6
2 x8 + 4x3

2 x5 x7 − 4x4
2 x5 x7 − 6x1 x5 x7

2 + 6x1 x5 x8
2 + 6x2 x6 x7

2

− 6x2 x6 x8
2 + 4x3 x6 x7 x8 + 4x4 x5 x7 x8 + 8x3 x4 x5 x8 + 8x3 x4 x6 x7 − 3x1

2 x5
2

− 3x2
2 x5

2 − 3x1
2 x6

2 − 3x2
2 x6

2 + 2x3 x5 x7
2 + 8x2 x4 x6

2 + 6x1
2 x5

2 x7

− 6x2
2 x5

2 x7 − 6x1
2 x6

2 x7 + 6x2
2 x6

2 x7 − 2x3 x5 x8
2 − 2x4 x6 x7

2 + 2x4 x6 x8
2

− 4x3
2 x6 x8 + 4x4

2 x6 x8 + 8x1 x3 x5
2 − 8x2 x4 x5

2 − 8x1 x3 x6
2 − 4x1 x3 x6

2 x7

− 4x2 x4 x6
2 x7 + 16x1 x3 x4 x6 − 16x2 x3 x4 x5 − x3

4 − x4
4 + x3

2 x8
2 + x4

2 x8
2

+ 12x3 x6 x8 + 12x4 x5 x8 − 2x4 x5
2 x8 + 2x4 x6

2 x8 − 12x3 x5 x7 + 12x4 x6 x7

− 2x1
3 x4 x6 − 2x1 x3 x5

3 − 2x2 x3 x6
3 + 2x2 x4 x5

3 − 2x1 x4 x6
3 − 2x1 x2

2 x3 x5

− 2x1
2 x2 x3 x6 + 2x1

2 x2 x4 x5 − 2x1 x2
2 x4 x6 + x3

2 x7
2 + x4

2 x7
2 + x1

2 x3
2 + x2

2 x3
2

− 2x1
3 x3 x5 − 2x2

3 x3 x6 + 2x2
3 x4 x5 + x1

2 x4
2 + x2

2 x4
2 − 9x1

2 − 9x2
2 + 12x1 x6 x8

− 6x1 x2
2 + 2x1

3 + 2x1
3 x3 x5

2 − 2x1
3 x3 x6

2 − 8x1 x3 x4 x5 x6 − 4x1
2 x2 x3 x5 x6

− 4x1 x2
2 x4 x5 x6 + 2x1

2 x2 x4 x6
2 − 2x1 x2

2 x3 x6
2 + 2x1 x2

2 x3 x5
2 − 2x1

2 x2 x4 x5
2

+ 8x1 x2 x3 x4 x5 − 2x1
2 x3

2 x5 + 2x2
2 x3

2 x5 + 2x1
2 x4

2 x5 − 2x2
2 x4

2 x5

− 2x2
3 x4 x5

2 + 2x2
3 x4 x6

2 − 4x2
3 x3 x5 x6 − 4x1

3 x4 x5 x6 − 4x2 x3 x4 x5
2

+ 4x2 x3 x4 x6
2 + 4x1 x2 x3

2 x6 − 4x1 x2 x4
2 x6 + 4x1

2 x3 x4 x6 − 4x2
2 x3 x4 x6The polynomials IR

1 and IR
2 are both inhomogeneous polynomials of total degree 6.

IR
1 is a polynomial of degrees 4, 4, 3, 2, 3, 2, 3, 2 and IR

2 is of degrees 3, 3, 4, 4, 3, 3, 3, 2 invariables x1, . . . , x8 respetively. 40
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