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We study the infrared regime of QCD by means of a Wilsonian renormalisation
group. We explain how, in general, the infrared structure of Green functions is de-
duced in this approach. Our reasoning is put to work in Landau gauge QCD, where
the leading infrared terms of the propagators are computed. The results support
the Kugo-Ojima scenario of confinement. Possible extensions are indicated.

1. Introduction

Many aspects of QCD are well understood in its ultraviolet limit where the

gauge coupling is small as a consequence of asymptotic freedom. There-

fore, perturbation theory is expected to provide a viable description of

QCD phenomena at high energies or high temperature. On the other hand,

in the infrared limit, quarks and gluons are confined to hadronic states

and the gauge coupling is expected to grow large. In consequence, a reli-

able description of low energy phenomena -like confinement, the physics of

bound states, chiral symmetry breaking or the confinement-deconfinement

transition- call for a non-perturbative analysis.

Renormalisation group methods provide important analytical tools in

the study of non-perturbative phenomena. In this contribution, we study

Landau gauge QCD in the non-perturbative infrared regime 1 by means

of an exact (or functional) renormalisation group 2,3. The strength of the
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approach is its flexibility when it comes to approximations. Furthermore,

efficient optimisation procedures are available, increasing the domain of

validity and the convergence of the flow.4 We discuss how, in general, the

momentum structure of Green functions in the infrared is deduced from

non-perturbative renormalisation group equations. As an application we

compute the leading non-perturbative infrared coefficients (or anomalous

dimensions) for the gluon and ghost propagator in Landau gauge. Our

results are discussed in the light of the Kugo-Ojima confinement criterion

and earlier findings based on other non-perturbative methods. For technical

details we refer to the original publication.1

2. Renormalisation group for QCD

The exact renormalisation group is based on the Wilsonian idea of

integrating-out momentum degrees of freedom within a path integral repre-

sentation of quantum field theory. Central to this approach is the effective

action Γk, where quantum fluctuations with momenta q2 > k2 are already

integrated out. The renormalisation group equation for Γk is given by

∂tΓk =
1

2
Tr

1

Γ
(2)
k + R

∂tR . (1)

Here, t = ln k is the logarithmic scale parameter, Tr denotes a trace over

loop momenta q and a sum over indices and fields, and R(q2) is the infrared

momentum cutoff at momentum scale k. R obeys a few restrictions which

ensure that the flow is well-defined and finite both in the ultraviolet and

the infrared. The flow interpolates between the initial (classical) action in

the ultraviolet and the full quantum effective action in the infrared where

the cutoff is removed. For gauge theories, the flow is amended by a set

of modified Slavnov-Taylor identities.5,6 They ensure the requirements of

gauge symmetry for Green functions in the physical limit k → 0. Since

this approach allows even for truncations which are non-local in momenta

and the fields it is particularly useful for gauge theories. Furthermore, it

is worth emphasising that the flow only involves fully dressed propagators

and vertices. Therefore, the correct RG scaling properties are represented

by the full flow and truncations with the correct symmetry properties.

So far the flow equation (1) has been applied to Landau gauge QCD for

a determination of the heavy quark effective potential and effective quark

interactions above the confinement scale.7 For an implementation in axial

gauges and further applications in Yang-Mills theories see Refs. 8.
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3. Infrared regime of QCD

In quantum field theory, important physical information for low energy

phenomena is given through the momentum structure of Green functions

in the deep infrared regime. In QCD, the characteristic scale differentiat-

ing between strong and weak coupling is ΛQCD ≈ 200 MeV. The strongly

coupled deep infrared regime is defined as

p2 ≪ Λ2
QCD (2)

and p denotes a momentum argument of a QCD Green function. As a

consequence of confinement, it is expected that gluon and ghost propagators

display strong deviations from a simple particle pole for sufficiently small

momenta. Within covariant linear gauges, the necessary conditions for

confinement in terms of local fields were formulated by Kugo and Ojima.9

In Landau gauge, they state that the gluonic correlations are suppressed in

the infrared as a consequence of a mass gap, while the ghost correlations

are infrared enhanced and dominant. This type of behaviour has already

been detected in solutions of truncated Schwinger-Dyson equations 10 and

stochastic quantisation 11, and lattice simulations 12.

Now we turn to the infrared analysis based on (1), where two-point

functions and propagators depend additionally on the cutoff scale k. As

long as k2 ≫ p2, the propagators barely differ from the classical ones, given

that no quantum fluctuations with momenta p or smaller have yet been

integrated out. In turn, as soon as

k2 ≪ p2 (3)

all quantum fluctuations have been integrated out and physical quantities

as well as general vertex functions upon appropriate rescaling, are no longer

affected by the infrared cutoff. Consequently, the non-trivial infrared be-

haviour of physical Green functions resides in the momentum regime given

by (2) and (3). It can be shown that Green functions in the regime (2)

depend on the cutoff scale k only parametrically through dimensionless ra-

tios, or through k-dependent renormalisation group factors that leave the

full action invariant.1 This property implies a fixed point behaviour and

strongly facilitates the evaluation of (1) in given truncations.

In order to integrate the flow (1) in the infrared regime, we introduce an

appropriate truncation of Γk and retain the full momentum dependence of

the QCD propagators. The truncation is amended by vertices which fulfil

the truncated Slavnov-Taylor identities. The validity of the truncation has

recently been confirmed on the lattice.13 The gluon and ghost two-point
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function are parametrised as

Γ
(2)
k,A/C(p2) = zA/C · ZA/C(x) · p2 . (4)

Here, x = p2/k2, z denotes a possibly k-dependent RG factor, and Z(x) =

xκ(1+ δZ(x)) parametrises the non-trivial modifications of the momentum

structure through quantum fluctuations. The indices A/C refer to the

gluon/ghost fields, respectively. In (4), we have suppressed the trivial colour

structure and the transversal projector for the gluons. The longitudinal

modes do not contribute to the flow in Landau gauge. Note that (4) is the

most general parametrisation of the propagators and no assumptions have

been made upon their structure. In the deep infrared region the behaviour

of (4) is dominated by the term xκ, where κA/C is a non-perturbative

anomalous dimension of the gluon and ghost propagator in Landau gauge.

The function δZ constitutes the transition behaviour between the deep

infrared regime and the cutoff regime. In addition, non-renormalisation of

the ghost-gluon vertex implies 14

κA = −2κC , αs =
g2

4π

1

zAz2
C

. (5)

The coefficients κA/C and the value for αs in the deep infrared regime are

deduced from integrating the flow for the propagators using (2) and (3).

This leads to two integral equations for δZA/C of the form

δZA/C(x) = FA/C [δZA/C , κA/C , αs] . (6)

Explicit expressions for the integrals F are given in Ref. 1. The simulta-

neous solutions of (6) lead to explicit solutions for the infrared coefficients

κ, αs and δZ. To leading order, the back-coupling of δZ on the right hand

side of (6) can be neglected. In this limit, we find

κC = 0.59535 · · · αs = 2.9717 · · · (7)

independently of the cutoff function R. Furthermore, the numerical values

agree with the most advanced results obtained within the Dyson-Schwinger

approach and stochastic quantisation. Iterating (6) beyond leading order

(δZ 6= 0), we find that κC varies slightly with the cutoff, ranging between

0.539 for the sharp cutoff and (7) for appropriately optimised ones. More

recently, the infrared region has also been studied in Ref. 15.
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4. Discussion

We have shown how, in general, the momentum dependence of Green func-

tions is extracted in the infrared regime based on an exact renormalisation

group. Applied to QCD in the Landau gauge, we detected a strong en-

hancement of the ghost propagator while the gluon propagator develops

a mass gap. Our results provide a further independent evidence for the

Kugo-Ojima scenario of confinement. In the simplest possible truncation

with dressed propagators our results match the state-of-the-art within both

the Dyson-Schwinger and the stochastic quantisation approach. This is

quite remarkable, in particular in view of the conceptual and technical dif-

ferences between these methods. Current work deals with straightforward

extensions of the present analysis and covers vertex corrections, investiga-

tions of QCD Green functions at finite temperature, and dynamical quarks.

In either case, the correct RG scaling as well as the inherent finiteness of

the integrated flow are most important.
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