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Killing-Yano tensors are natural generalizations of Killing vectors to arbitrary rank anti-symmetric
tensor fields. It was recently shown that Killing-Yano tensors lead to conserved gravitational charges,
called Y-ADM charges. These new charges are interesting because they measure e.g. the mass
density of a p-brane, rather than the total ADM mass which may be infinite. In this paper, we
show that the spinorial techniques used by Witten, in his proof of the positive energy theorem, may
be straightforwardly extended to study the positivity properties of the Y-ADM mass density for
p-brane spacetimes. Although the resulting formalism is quite similar to the ADM case, we show
that establishing a positivity bound in the higher rank Y-ADM case requires imposing a condition
on the Weyl tensor in addition to an energy condition. We find appropriate energy conditions for
spacetimes that are conformally flat or algebraically special, and for spacetimes that have an exact
Killing vector along the brane. Finally we discuss our expression for the Y-ADM mass density from
the Hamiltonian point of view.

PACS numbers: 04.50.+h 11.25.-w 11.27.+d

I. INTRODUCTION

Conserved gravitational charges are associated with
the asymptotic symmetries of a spacetime. For example,
the ADM mass and angular momentum correspond to
asymptotic time translation and rotation Killing vectors
respectively. In D spacetime dimensions these charges
are given by integrals over a (D − 2)-sphere at spatial
infinity. The electric charge carried by matter and black
holes in the spacetime interior is, of course, also given by
an integral over a (D−2)-sphere. Charge conservation al-
lows both these integrals to be evaluated at an arbitrary
time.

For p-branes this coincidence no longer holds. The
ADM mass, in this case, is given by an integral over a
cylinder Rp×SD−(p+2) at transverse spatial infinity that
encloses the entire brane - i.e. the integral includes di-
rections parallel to the brane. A p-brane world-volume
naturally couples to a (p+ 1)-form gauge potential. The
electric charge of the brane is given by an integral over an
SD−(p+2) that encloses only a single point on the brane
world-volume - i.e. the integral excludes directions par-
allel to the brane. Charge conservation allows the ADM
integral to be evaluated at an arbitrary time, while the
electric charge integral may be evaluated at an arbitrary
position along the brane in space or time.

Symmetry may be restored to the formulation of gauge
and gravitational charges for p-branes by the introduc-
tion of new gravitational charges, called Y-ADM charges,
associated with Killing-Yano tensors [1]. A Killing-Yano
tensor is an antisymmetric tensor field of arbitrary rank
that satisfies a natural generalization of Killing’s equa-
tion [2]. A rank 1 Killing-Yano tensor is simply a Killing
vector. It was shown in reference [1] that the Abbott-
Deser (AD) construction of the ADM charge associated

with an asymptotic Killing vector [3] may be generalized
to give a conserved charge associated with an asymp-
totic Killing-Yano tensor of higher rank. The resulting
Y-ADM charge is given by an integral over an SD−(p+2)

at transverse spatial infinity. Like the electric charge
carried by a brane, it is independent of time and also
independent of translations of the surface of integration
parallel to the brane.

For a p-brane spacetime, we focus on the rank (p +
1) asymptotic Killing-Yano tensor given by the anti-
symmetric product of translations in the directions par-
allel to the world-volume of the brane. For a particle
this is just the asymptotic time translation Killing vec-
tor and the corresponding charge is the ADM mass. For
a general p-brane, we call the corresponding charge the
Y-ADM mass density, which we will denote by M below.

One very important result associated with the ADM
mass is the positive energy theorem [4]. It is natural to
ask if any sort of positivity result holds for the Y-ADM
mass density M? In this paper we investigate this ques-
tion, making use of the spinor techniques of Witten [5]
and Nester [6]. We focus on the rank 2 case correspond-
ing to a 1-brane, or string.

Our central result is a spinorial boundary integral ex-
pression for the Y-ADM mass density M. Assuming that
the spatial slices have no interior boundaries, e.g. at
horizons, Stokes theorem relates this boundary integral
to a volume integral, whose integrand is the sum of three
terms. The first of these terms involves the stress-energy
tensor; the second term is a positive definite expression
quadratic in the derivative of the spinor field; the third
term involves certain components of the Riemann ten-
sor. The first two terms are similar to those that appear
in Witten’s proof of the positive energy theorem [5], in
which an energy condition is sufficient to ensure posi-
tivity of the mass. The third term, however, cannot be
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written directly in terms of the stress-energy tensor and
- hence - an energy condition is not sufficient to imply
positivity of M. We discuss two types of further condi-
tions under which positivity nevertheless holds: (i) If the
spacetime is conformally flat or algebraically special and
(ii) if the spacetime has an exact translational symmetry
along the brane.

The paper is organised as follows. Section II presents
various preliminaries - definitions and results relating
to Killling-Yano tensors, transverse asymptotically flat
spacetimes, and spinors. In Section III, we briefly review
the construction of Y-ADM charges [1] using the tech-
niques of Abbott and Deser [3]. We show, in particular
for the rank 2 case, that the Y-ADM mass density M
is intrinsic in the sense that it depends only on quanti-
ties intrinsic to the codimension 2 slice transverse to the
string - a result that has a close parallel in the rank 1
case, in the formula for the ADM mass. Our spinorial
construction for Y-ADM charges is presented in Section
IV. In Section V, we demonstrate positivity of the mass
density M under the special conditions mentioned above.
Section VI is a discussion of preliminary results on the
Y-ADM mass density as a p-brane Hamiltonian and some
concluding remarks.

II. PRELIMINARIES

A. Killing-Yano Tensors

A Killing-Yano tensor [2] is a rank n rank antisymmet-
ric tensor field fa1···an = f [a1···an] satisfying

∇(a1
fa2)a3···an+1

= 0. (1)

For rank n = 1 this condition reduces to Killing’s equa-
tion. Flat spacetime has the maximal number of Killing-
Yano tensors of each rank. In this paper we will focus
on the case of rank n = 2. For flat spacetime in Carte-
sian coordinates, a basis for rank 2 Killing-Yano tensors
is given by the translational tensors

f = dxa ∧ dxb, (2)

together with the rotational tensors

f = xadxb ∧ dxc + xbdxc ∧ dxa + xcdxa ∧ dxb. (3)

B. Transverse asymptotically flat spacetimes

The notion of transverse asymptotic flatness in D-
dimensions, as discussed in reference [7], is motivated
by considering p-brane spacetimes. Such spacetimes be-
come flat only as we approach transverse spatial infinity
in the D− (p+ 1) directions transverse to the brane; not
by moving along the p spatial directions parallel to the
brane [14].

Write the full spacetime metric as gab = ηab + hab,
where ηab is the flat Minkowski metric. Let (xµ, xI) with
µ = 0, 1, . . . , p and I = p+ 1, . . . , D− 1 be Cartesian co-
ordinates in the asymptotic region and let r2 = δIJx

IxJ .
Transverse asymptotic flatness requires that in the limit
r → ∞ the components of hab fall-off as

hµν , hIJ ∼ O(
1

rD−(p+3)
), hµI ∼ O(

1

rD−(p+2)
). (4)

Note, in particular, that cross terms between the direc-
tions tangent and transverse to the brane are required to
fall off one power faster than the other components.

In this paper we will focus on the case of 1-branes,
or strings. In addition to transverse asymptotically flat
boundary conditions with p = 1, we will assume that the
spacetime interior can be foliated by codimension two
spatial submanifolds, which we will think of as transverse
to the brane. At infinity these spatial submanifolds are
taken to be aligned with the (x2, . . . , xD−1) hyperplane.
The spacetime metric may then be written as gab = Lab+
qab, with L b

a qbc = 0, where qab is a Euclidean metric on
the (D − 2) dimensional submanifolds and L b

a projects
onto the directions normal to these submanifolds. It will
also prove useful to be able to further split the metric as

gab = −nanb + yayb + qab (5)

where na and ya are normal vectors to the submanifolds
satisfying nan

a = −1, yay
a = 1, nay

a = 0. At infinity,
we take

na = (∂/∂x0)a, ya = (∂/∂x1)a. (6)

The asymptotic Killing-Yano tensor used to define the
Y-ADM mass density of a string in the x1 direction has
non-zero coomponents f01 = −f10 = 1. At infinity, we
can then also write

fab = nayb − yanb. (7)

The construction of the Y-ADM mass density for a
string takes place on a codimension two volume V with
the two normals na and ya, and metric qab. The em-
bedding of V in the full spacetime is described by the
extrinsic curvature tensor K c

ab = q m
a q n

b ∇mq
e

n . The in-
dices a, b are tangent to V , and the index c is normal, i.e.

qcdK
c

ab = 0. The extrinsic curvature K c
ab is symmetric

on the indices a, b, a result that follows from Frobenius’
Theorem. The Gauss-Codazzi relations, which will be
used in subsequent calculations, are

q e
a q

f
b q r

c q
d
sR

s
efr [g] = R d

abc [q] −K e
ca K

d
b e +K e

cb K
d

a e

(8)
The extrinsic curvature can be decomposed as Kc

ab =
αabn

c + βabx
c, where αab = qc

aq
d
b∇cnd, and βab =

−qc
aq

d
b∇cyd.

C. Spinors and Killing-Yano tensors

We are interested in extending Witten’s spinorial tech-
niques to study the positivity of Y-ADM charges. Hence,
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we assume the existence of a spinor field ψ in the space-
time. At transverse spatial infinity we will assume that
ψ approaches one of the constant spinors ψ(0) of flat
spacetime. We will make use of the quantity fab =

−ψ†γ 0̂1̂γabψ below, where γ 0̂ ≡ −naγ
a and γ 1̂ ≡ xaγ

a.
In the asymptotic limit, where ψ is replaced by ψ(0), the
tensor fab is a Killing-Yano tensor. Note that we can
only construct the translational Killing-Yano tensors (2)
of the background flat spacetime in this way. The par-
ticular Killing-Yano tensor of interest to us (7) is of this
form.

III. Y-ADM CHARGES

We begin by briefly reviewing the construction of Y-
ADM charges in transverse asymptotically flat space-
times [1]. We will continue to focus on the case of rank
2 Killing-Yano tensors. The general case is considered in
[1]. The construction is an extension of the Abbott and
Deser construction of a conserved ADM charge associ-
ated with the Killing vectors of flat spacetime [3].

The construction begins by writing the metric in the
form gab = ηab + hab throughout the spacetime. The
difference hab between the full metric and the flat met-
ric may be large in the interior of the spacetime, but
vanishes at the rates specified by Eqs. (4) near trans-
verse spatial infinity. Let fab be a Yano tensor for the
background metric. Using the Bianchi identities and the
defining properties of Yano tensors, one can construct a
rank 2 antisymmetric tensor current kab which is con-
served with respect to the background derivative opera-

tor, i.e. ∇(0)
a kab = 0. This current is given by

kab = facRL b
c − f bcRL a

c − 1

2
fabRL − 1

2
f cdRL ab

cd , (9)

where RL ab
cd , for example, is the linear term in the formal

power series expansion of R ab
cd in hab.

Conservation of the 2-form current k can be rewritten
as d ∗ k = 0, where ∗ indicates the Hodge dual with
respect to the background flat metric. It then follows
that there locally exists a 3-form l, such that ∗k = d ∗ l.
One finds that the 3-form l is given by

labc = 3δ
[a
k δ

b
l δ

c
mδ

d]
n f

kl(∇̄mhn
d) −

1

4
(∇̄[af bc])hn

d

+
3

4
(∇̄df [ab)h

c]
d, (10)

As in the previous section, let V be a spacelike, codi-
mension two slice with normals na and xa. The con-
served Y-ADM charge is then defined by the integral of
the (D − 3)-form ∗l over ∂V as ∂V → ∞, i.e., over a
closed, codimension two, section of spatial infinity,

Q[fab] =
1

8π

∫

∂V

∗l, (11)

where we have used the notation Q[fab] to denote the
charge associated with an arbitrary asymptotic Killing-
Yano tensor fab.

We now focus on the Y-ADM mass density M, which
means specifying the background Killing-Yano tensor fab

as in equation (7) and thereabove. In this case, since
∇̄af

bc = 0, only the first term in equation (10) is nonzero.
Substituting the identification (7) into this term and car-
rying out the anti-symmetrization then yields the expres-
sion for the Y-ADM mass density

M =
1

8π

∫

∂V

dsaq
adqcb∇̄[bδgd]c. (12)

We can further specialize to Cartesian coordinates near
infinity, giving the form

M =
1

8π

∫

∂V

dsI(∂Jh
IJ − ∂Ih J

J ) (13)

which is very similar to the usual formula for the ADM
mass M , differing only in the higher codimension of the
surface V and the correspondingly smaller range of the
indices summed over - here I, J = 2, . . . , D − 1.

It is interesting to compare the values of the Y-ADM
mass density M and the ADM mass MADM . As noted
above, if the x1 direction tangent to the string is infinite
in extent, then the ADM mass MADM will itself be infi-
nite. The ADM mass will be finite If we consider space-
times such that x1 compact. If we make the identification
x1 ≡ x1 + L, then the ADM mass is given by

MADM =

∫ L

0

dx1

∫

∂V

dsI(∂Jh
IJ − ∂Ih J

J − ∂Ih 1
1 )

= L (M−Mscalar), (14)

where the scalar charge density Mscalar is defined to by
the integral over ∂V of the final term in the integrand
above.

It is, lastly, instructive to rewrite the expression for
the Y-ADM mass density in terms of Λab, the extrinsic
curvature of ∂V in V . One finds

M =
1

16π

∫

∂V

dv (ΛI
I − Λ I

(bg)I), (15)

where ΛIJ
(bg) is the extrinsic curvature of ∂V within V

evaluated with respect to the background flat metric.
This expression has the same form as that given by Hawk-
ing and Horowitz for the ADM mass in reference [10], ex-
cept that in their work the integral is over the boundary
of a codimension one volume.

IV. SPINOR CONSTRUCTION OF THE Y-ADM

MASS DENSITY M

In his proof of the positive energy theorem [5], Witten
found an expression for the ADM mass boundary integral
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in terms of a spinor field. Stokes’ theorem then provides
an alternative volume integral expression for the ADM
mass which, providing the spinor satisfies a certain Dirac-
type equation on the spacelike hypersurface, is the sum
of two terms. The first of these terms, involving the
Einstein tensor, is positive provided the dominant energy
condition is satisfied. The second term, quadratic in first
derivatives of the spinor field, is manifestly positive and
vanishes only in flat spacetime. Witten’s formalism was
later streamlined by Nester [6].

In this section, we develop a generalization of the
Witten-Nester formalism that yields a spinor expression
for the Y-ADM mass density M for a 1-brane spacetime.
The corresponding volume integral in this case is again
the sum of two terms. The term quadratic in first deriva-
tives of the spinor field is again positive definite. How-
ever, the analogue of the Einstein tensor term now has
contributions from the un-contracted Riemann tensor as
well. Positivity of these terms cannot be ensured by an
energy condition. We explore the issue of conditions that
may be imposed on the spacetime to yield positivity of
this second term in the volume integral expression for M.

Our construction begins with finding an appropriate
generalization of the Nester 2-form [6],

Bab = ψ†γ 0̂γabc∇cψ. (16)

Within the formalism, a 2-form is the correct object in
the ADM case, because the boundary of a spatial hyper-
surface has codimension 2 with respect to the full space-
time. It is also useful to keep in mind that the ADM
mass is defined in terms of the asymptotic Killing vector
∂/∂x0. A similar Nester 2-form was used in reference [8]
to study positivity of the ADM tension of a string [7, 9],
which is defined in terms of the asymptotic spatial Killing
vector ∂/∂x1 tangent to the string. The Nester 2-form,

in this case, differs only in the substitution of γ 1̂ for γ 0̂ in
equation (16), corresponding to the change in asymptotic
Killing vector relevant to the two different charges.

To compute the Y-ADM mass density M for a 1-brane,
one integrates over the boundary of a co-dimension two
spatial surface transverse to the brane. This boundary
has co-dimension three and we therefore need to intro-
duce a Nester 3-form. Based on the discussion above, we
take this to be

Babc = ψ†γ 0̂1̂γabcd∇dψ. (17)

We show below that M is indeed given in terms of this
Nester form by

M =
1

8π

∫

∂V

dsa nb yc (Babc + Babc∗), (18)

where V is the co-dimension two surface with normals na

and ya, as in section (II B) above, and ∗ denotes complex
conjugation.

We now focus on the volume integral form of M ob-
tained from equation (18) using Stokes theorem [15]

M =
1

8π

∫

V

√
q nb yc ∇a(Babc +Babc∗). (19)

It is then straightforward to show that the volume inte-
grand above may be rewritten as the sum of two terms,
as in the discsussion of the ADM mass above. The first
term, which involves curvature tensors contracted with
bilinears in the spinor field ψ, is given by

(vol)1 = Rabn
aξb −Raby

aχb +
1

2
Rλ (20)

−Rabcdn
aybξcyd,

where λ = ψ†ψ, ξa = −ψ†γ 0̂γaψ and χa = 1
2 (ψ†γ 1̂γaψ+

c.c.). The second term, which is quadratic in derivatives
of the spinor field, is given by

(vol)2 = 2∇aψ
†qab∇bψ−2(∇aψ

†qa
cγ

c)(qb
dγ

d∇bψ) (21)

If ψ is a solution to the Dirac-Witten equation
qa

bγ
b∇aψ = 0, then the second term in (21) vanishes

and (vol)2 is positive definite. The term (vol)1 may be
simplified by choosing the spinor field ψ to be an eigen-

vector of γ 0̂with eigenvalue +i, which is consistent with
the Dirac-Witten equation. The spinor bilinears in equa-
tion (20) are then related according to ξa = −inaλ and
χa = yaλ.

Combining the two volume terms, we then have the
result

M =
1

8π

∫

V

([Rabn
anb −Raby

ayb +
1

2
R (22)

−Rabcdn
aybncyd]ψ†ψ + 2(∇aψ

†)qab∇bψ)

The volume integrand can be further rewritten in a va-
riety of ways. A compact form which is useful in subse-
quent calculations is

(vol)1 =
1

2
Rabcdq

acqbdψ†ψ (23)

This version highlights the similarities with the codimen-
sion one case, see Section VI.

A second form that will also be useful is

M = 1
8π

∫

V
[ (Gabn

anb −Rabcdy
aycqbd)ψ†ψ (24)

+2(∇aψ
†)qab∇bψ]

Here, after making use of Einstein’s equation, the first
term is simply equal to the energy density Tabn

anb, which
supports the idea that the Y-ADM charge M is a kind of
mass per unit length. It is less clear how one should in-
terpret the Riemann tensor term. Since it is not directly
related to the stress energy, one cannot as in the case
of the ADM mass and tension, ensure positivity of M
by imposing an energy condition. However, the fact that
the spinor contribution, as in the ADM case, is positive
definite suggests that one look for additional conditions
on brane spacetimes such that the Riemann term is also
positive. We turn to this issue in Section V below. First,
we return to the issue of the spinor boundary integral in
equation (18).
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A. Further Study of the Spinor Boundary Term

In this section, we demonstrate that the spinor bound-
ary integral in equation (18) does indeed reproduce the
definition of the Y-ADM mass density given in section
III. We also include a further analysis of the Y-ADM
boundary integral, which shows that the Y-ADM mass
density M depends only on the metric qab on the surface
transverse to the brane. This result provides further mo-
tivation for regarding the mass density M as an intrinsic
(rather than extensive) property of the brane.

We consider transverse asymptotically flat spacetimes.
The metric therefore approaches the Minkowski metric
ηab at spatial infinity, and we can assume that the spinor
field ψ approaches one of the constant spinors ψ(0) of flat
spacetime - i.e. satisfying ∇̄aψ

(0) = 0. The Nester 3-form
can then be schematically rewritten as B[∇] = B[∇ −
∇̄]+B[∇̄]. One can check that B[∇̄] vanishes sufficiently
fast as ψ approaches ψ(0) that the boundary term just
depends only on the difference of the derivative operators.
One can then show that (∇a−∇̄a)ψ = − 1

4∇[mhn]aγ
mnψ,

with the result that the boundary integrand becomes

naxb(B
abc + c.c.) = (25)

1

4
∇[mhn]d q

c
a q

d
b ψ†(γabγmn + γmn†γab)ψ.

Here we have replaced γab† by γab since it is projected
by the spatial metric qab. Except for hab, all quantities
in equation (25) are background quantities. Depending
on whether the coordinates xm, xn are timelike or space-
like, either the commutator or the anticommutator of the
gamma matrices in (25) contributes. The asymptotically
flat boundary conditions (4) imply that terms involving

hxi or hti, where the indices i, j are projected by q j
i , are

higher order. It is then straightforward to check that the
only terms which contribute to the sum in equation (25)
are those with m,n = i, j. We then have

M =
1

8π

∫

∂V

dsaq
adqcb∇[bhd]c (26)

which agrees with the expression in section (III).
We have seen that the spinor formalism of this section

gives an alternate construction of Y-ADM charges. The
original formulation [1] based on the AD construction [3]
has the merit of establishing a clear relationship between
the Y-ADM charges and the Killing-Yano tensors of the
background flat spacetime. However, the volume integral
form of the charge, in this construction, involves only the
linearized curvature tensors around the flat background.
The strength of the spinor construction is that it yields
a volume integral expression that depends on the exact
curvature tensor of the spacetime together with a positive
definite spinor term, and is much more useful in trying
to assess positivity properties.

We finish this section by rewriting the Y-ADM mass
density M in terms of the transverse metric perturbation
δqab defined near spatial infinity via the relation qab =

δab + δqab. Again making use of the assumption that hti

and hxi are of higher order at infinity, we find that in the
boundary integral (26) we may write qb

aq
cdqm

n ∇bhmc =
Daδq

d
n, where Da is the flat covariant derivative operator

on the slice V . The formula for M then becomes

M =
1

8π

∫

∂V

dsa(Db(δqcdq
acqbd) −Daδqbcq

bc). (27)

This expression highlights the fact that M is an intrin-
sic quantity on the codimension-two volume V , since it
only depends on qab. Also note that if instead V was a
codimension-one volume, and qab the metric on V , then
equation (27) gives the usual expression for the ADM
mass.

V. POSITIVITY

We have seen above that the volume integral expres-
sion for the Y-ADM mass density M, coming from a rank
two Killing-Yano tensor, differs from the ADM mass,
which comes from a rank one Killing-Yano tensor, in that
the Riemann tensor contributes to the volume integrand,
as well as Ricci and scalar curvature terms which occur in
both cases. These latter terms can be related to the stress
energy tensor via the Einstein equation, so that positiv-
ity, in the ADM mass case, can be phrased in terms of
energy conditions. The prospects for positivity of the
Y-ADM mass density M therefore look less favorable.
However, the fact that the spinor field makes a positive
definite contribution to M, suggests that we look for con-
ditions under which the Reimann tensor term is positive
as well. In this section we derive positivity results for the
Y-ADM mass density M under two kinds of conditions;
first, by requiring conditions on the Weyl tensor of the
spacetime, and second, in the case of exact translational
symmetry in the x1-direction.

A. Conditions on the Weyl Tensor

The idea here is to decompose the Reimann tensor into
trace pieces, the Ricci and scalar contributions, and the
rest, the Weyl tensor. When the Weyl term vanishes, the
remaining terms in the volume integrand can be related
to the stress-energy, which leads to an energy condition
for positivity of M. In D dimensions, the decomposition
of the Riemann tensor is given by

Rabcd = Cabcd +
2

(D − 2)
(ga[cRd]b − gb[cRd]a)

+
2

(D − 1)(D − 2)
Rga[cgd]b (28)

Substitution into equation (20) then yields

(vol)1 = [
D(D − 3)

2(D − 1)(D − 2)
R+

D − 3

D − 2
Rab(n

anb − yayb)

−Cabcdn
aybncyd]ψ†ψ (29)
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One simple condition to consider is the vanishing of the
Weyl tensor, Cabcd = 0. It is then clear that an appro-
priate energy condition would assure positivity of (vol)1.

Another condition under which the Weyl tensor term
in equation (29) vanishes is when the metric is alge-
braically special with all four principal null directions
coinciding, and the null vector lies in the plane tan-
gent to the brane. Explicitly, this means assuming that
paCabcd = 0 for a null vector pa = na ± ya. To see this,
define the vectors ka = na + ya and qa = na − ya, which
allows us to write

Cabcdn
aybncyd =

1

4
Cabcdk

aqbkcqd. (30)

If either ka or qa is the principal null vector pa, then this
term vanishes. Note that while either this conditions or
comformal flatness is sufficient to make the Weyl tensor
term in equation (29) vanish, but is more than is needed.
It would be interesting to find a geometrical condition
which was minimal in the sense of being both necessary
and sufficient.

If the Weyl tensor term vanishes, then (vol)1 can be
rewritten in terms of the stress energy tensor using Ein-
stein’s equation. If we make the definitions ρ = Tabn

anb,
pŷ = Taby

ayb and similar definitions for the pressures pî

in directions transverse to the string, then the volume
integral expression for M becomes

M =
(D − 3)

(D − 1)

∫

V

[(ρ− pŷ +
1

D − 2

∑

i

pî)ψ
†ψ

+2(∇aψ
†)qab∇bψ] (31)

where the index i runs over the transverse coordinates.
If we therefore have any set of condition, such as those
suggested above, which lead to the vanishing of the Weyl
tensor term in (29), then we have shown that the Y-
ADM mass density M is positive if the additional energy
condition

(ρ− pŷ +
1

D − 2

∑

i

pî) ≥ 0 (32)

is satisfied [16].

The energy condition (32) has a straightforward phys-
ical interpretation. The quantity −pŷ is simply the ten-
sion along the string, and equation (31) implies that this
tension contributes positively to M. Note that for a stan-
dard cosmic string we have pŷ = −ρ. The pressures pî

in the directions transverse to the string contribute as
they do for a particle-type configuration - positive pres-
sures make a positive contribution to the mass. Note also
that in the non-relativistic limit, where the pressures are
negligible compared to the energy density, equation (31)
implies that M is the energy density integrated over a
transverse slice, plus a positive definite contribution from
the gravitational field.

B. Translational Symmetry and Kaluza-Klein

Reduction

Suppose that translation along the string is a actually
a symmetry of the D-dimensional spacetime. One would
then expect that there is a (D − 1)-dimensional point of
view, in which the Y-ADM mass density M is related to
the (D − 1)-dimensional ADM mass.

We will need the following Gauss-Codazzi relation for
a codimension one submanifold with unit normal vector
wa. If we write the metric as

gab = sab + (w · w)wawb, (33)

where w · w = ±1 depending on whether the normal wa

spacelike or timelike, then the Riemann tensors of gab

and sab are related according to

sm
a s

n
b s

r
cs

p
dRmnrp[g] = Rabcd[s] (34)

+(−w · w)(JacJbd − JadJbc)

where Jab = s c
a ∇cwb is the extrinsic curvature of the

submanifold.
Take the normal vector to be ya, the direction tan-

gent to the string. The metric sab is then Lorentzian.
The volume integrand for M can be expressed in terms
of the Einstein tensor for a (D − 1)-dimensional metric

G
(D−1)
ab [s] as follows. Making use of equation (34) one

finds that

(vol)1 =
1

2
qacqbdRabcd[g]

=
1

2
qacqbd(Rabcd[s] + JacJbd − JadJbc) (35)

= G
(D−1)
ab [s]nanb +

1

2
(βabβ

ab − β2)

where βab = q m
a q n

b ∇myn is the projection of the extrin-
sic curvature Jab onto the directions transverse to the
string.

We now assume that the spacetime has a spatial trans-
lation Killing field V a that is parallel to the brane. Near
infinity, the Killing vector V a approaches ∂/∂x1, which
also coincides with the unit normal vector ya in this limit.
Further assume that we extend ya into the interior of the
spacetime, such that it is parallel to the Killing field V a,
i.e. let V a = Fya where VaV

a = F 2. We then have
Jab = 0, since Jab = (1/2)£V sab. From the last line of
equation (35), we then have the result

M =
1

8π

∫

V

(

nanbG
(D−1)
ab [s]ψ†ψ + 2(∇aψ

†)qab∇bψ
)

(36)
At this point one needs to know something about the di-
mensionally reduced theory [17], in order to draw a con-
clusion about the Y-ADM mass density M. If the dimen-
sionally reduced Einstein tensor is equal to a stress en-
ergy which satisfies the dominant energy condition, then
M is positive. Indeed, the form of the boundary term
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given in equation (27) is the standard ADM mass for the
metric sab. Therefore, the argument leading to (36) gives
a consistency check on the meaning of the mass per unit
length: when dimensional reduction is possible, the mass
per unit length coincides with the ADM mass of the lower
dimensional theory.

VI. A GENERALIZED HAMILTONIAN FOR

TRANSVERSE ASYMPTOTICALLY FLAT

SPACETIMES?

In this final section we point out that the form of the
volume integral expression for M derived in section IV
suggests that the term (vol)1 might serve as a generalized
Hamiltonian for the evolution for transverse asymptoti-
cally flat brane spacetimes. By generalized Hamiltonian
evolution we mean specifying data on a codimension 2
slice transverse to the brane and evolving the data via
a system of first order PDE’s in the directions tangent
to the brane. In this view, we think of ordinary Hamil-
tonian evolution as specifying data on a codimension 1
slice transverse to the worldline of particle-like sources
and then evolving in the single direction tangent to the
particle worldline.

First recall that in the codimension 1 case, if we write
gab = −nanb + lab, then the Einstein tensor term in the
volume integrand is simply given by

(vol)1 = (Gabn
anb)ψ†ψ (37)

=
1

2
(Rabcdl

aclbd)ψ†ψ (38)

If we then change to Hamiltonian variables we have

(vol)1 =
1

2
(R[l] − kabk

ab + k2)ψ†ψ (39)

where R[l] is the scalar curvature of the D − 1 dimen-
sional metric lab and kab = l c

a l
d

b ∇cnd is the extrinsic
curvature of the slice with normal na. The factor multi-
plying ψ†ψ is, of course, simply proportional to the grav-
itational Hamiltonian. An additional momentum term
would also arise if ψ were not taken to be an eigenvector

of γ 0̂.
In the codimension 2 case addressed in this paper, it is

interesting that the volume term (vol)1 has a very similar
form to equation (38) and may be similarly rewritten in

Hamiltonian form,

(vol)1 =
1

2
(Rabcdq

acqbd)ψ†ψ (40)

=
1

2
(R[q] −Kae

a Ka
ae +K e

ab K
ab

e)ψ
†ψ

It seems natural to speculate that this quantity, along
with the analogous momentum terms that would appear

if we did not take ψ to be an eigenvector of γ 0̂, play
a role in a generalized Hamiltonian evolution of brane
spacetimes of the sort described above. We note, as well,
that extrinsic curvature can be further decomposed as
Kc

ab = αabn
c + βaby

c, where αab = qc
aq

d
b∇cnd and βab =

−qc
aq

d
b∇cyd. We can then write

1

2
Rabcdq

acqbd =
1

2
(R[q] − αabα

ab + α2 (41)

+βabβ
ab − β2),

where all contractions are done with the positive definite
metric qab. We can thus one can read off whether the
extrinsic curvature terms are positive or negative.

It is also interesting to compare equation (40) to the
Hamiltonian in the double null formalism developed by
Hayward [12]. In certain gauge conditions, equation (40)
is identical with the Hamiltonian in double null formal-
ism, at least in four dimensional spacetimes (see reference
[13]). The extension to higher dimensional spacetimes is
straightforward. Since we focus on the codimension 2 in-
tegral manifolds, the twist term also vanishes. Therefore,
we can realise that equation (40) is indeed the Hamilto-
nian. This is a natural consequence because the double
null formalism provides us with a codimension 2 space
normal to two null directions.
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