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Abstract

We study exact renormalization group equations in the framework of the effective
average action. We present analytical approximate solutions for the scale depen-
dence of the potential in a variety of models. These solutions display a rich spectrum
of physical behaviour such as fixed points governing the universal behaviour near
second order phase transitions, critical exponents, first order transitions (some of
which are radiatively induced) and tricritical behaviour.
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Introduction: The solution of an exact renormalization group equation [1]-[7] is
a particularly difficult task. The reason is that such an equation describes the scale

dependence of an effective action, which is characterized by infinitely many couplings
multiplying the invariants consistent with the symmetries of the model under considera-

tion. As a result an exact renormalization group equation corresponds to infinitely many
evolution equations for the couplings of the theory. The crucial step is developing efficient

approximation schemes which can reduce the complexity of the problem while capturing
the essential aspects of the physical system. Perturbative expansions have been used for

proofs of perturbative renormalizability [3, 8], while the powerful ǫ-expansion [1, 9] has
been employed for the study of fixed points governing second order phase transitions in

three dimensions. More recently, evolution equations for truncated forms of the effective
action have been solved through a combination of analytical and numerical methods. A

full, detailed and transparent picture of second and first order phase transitions for a vari-

ety of models has emerged [10]-[13]. Also, numerical solutions for the fixed point potential
of three-dimensional scalar theories have been computed in ref. [14]. Fully analytical so-

lutions have not been obtained, with the exception of ref. [11], where an exact solution
for the three-dimensional O(N)-symmetric scalar theory in the large N limit is given.

In this letter we present analytical approximate solutions of evolution equations for
truncated forms of the effective action. We work in the framework of the effective av-

erage action Γk [5, 15], which results from the integration of quantum fluctuations with
characteristic momenta q2 ≥ k2. The effective average action Γk interpolates between the

classical action S for k equal to the ultraviolet cutoff Λ of the theory (no integration of
modes) and the effective action Γ for k = 0 (all the modes are integrated). Its depen-

dence on k is given by an exact renormalization group equation with the typical form
(t = ln(k/Λ))

∂

∂t
Γk =

1

2
Tr
{

(Γ
(2)
k + Rk)

−1 ∂

∂t
Rk

}

. (1)

Here Γ
(2)
k is the second functional derivative with respect to the fields, Rk is the effective

infrared cutoff which prevents the integration of modes with q2 ≤ k2, and the trace implies

integration over all Fourier modes of the fields. We work with an approximation which
neglects the effects of wave function renormalization. For the models that we shall consider

in four and three dimensions, the anomalous dimensions are small (a few percent). As a
result, wave function renormalization effects generate only small quantitative corrections

without affecting the qualitative behaviour. Therefore, only a classical kinetic term in the
effective average action is kept, which takes, for an O(N)-symmetric scalar theory, the

following form

Γk =
∫

ddx
{

Uk(φ) +
1

2
∂µφa∂µφ

a
}

, (2)

and all invariants which involve more derivatives of the fields are neglected. With this
approximation, eq. (1) can be turned into an evolution equation for the potential Uk. First

we shall discuss the O(N)-symmetric scalar theory in three dimensions. The fixed point
solution which governs the second order phase transition will be identified. We shall also

show that, for a certain parameter range, the theory has a first order phase transition.
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The two regions in parameter space are separated by a tricritical line. Finally we shall
discuss the Abelian Higgs model in four dimensions, for which the radiatively induced

first order transition will be reproduced.

Scalar theory in three dimensions: We first consider the evolution equation de-

scribing the dependence of the effective average potential Uk on the scale k in arbitrary
dimensions d, for an O(N)-symmetric scalar theory. The evolution equation reads [5]

∂Uk(ρ)

∂t
= vd

∫

∞

0
dx x

d

2
−1 ∂P

∂t

{

N − 1

P + U ′

k(ρ)
+

1

P + U ′

k(ρ) + 2U ′′

k (ρ)ρ

}

. (3)

Here ρ = 1
2
φaφa, a = 1...N, and primes denote derivatives with respect to ρ. The variable

x denotes momentum squared x = q2, and

v−1
d = 2d+1π

d

2 Γ

(

d

2

)

. (4)

The inverse average propagator

P (x) =
x

1 − exp
(

− x
k2

) (5)

contains an effective infrared cutoff for the modes with x < k2. For x/k2 → 0 we have

P (x) → k2. Up to effects from the wave function renormalization (which have been ne-
glected as we explained in the introduction) eq. (3) is an exact non-perturbative evolution

equation [5]. It is easy to recognize the first term in the r.h.s of eq. (3) as the contribution
of the N − 1 Goldstone modes (U ′

k vanishes at the minimum). The second term is related

to the radial mode. After performing the momentum integration the evolution equation
(3) becomes a partial differential equation for Uk with independent variables ρ and t.

The effective average potential interpolates between the classical potential V for k = Λ
(with Λ the ultraviolet cutoff) and the effective potential U for k = 0 [5]. As a result

the solution of eq. (3) with the initial condition UΛ(ρ) = V (ρ) uniquely determines, for
k → 0, the effective 1PI vertices at zero momentum for the renormalized theory. In order

to write eq. (3) in a scale invariant form it is convenient to define the variables

ρ̃ =k2−dρ

uk(ρ̃) =k−dUk(ρ). (6)

In terms of these eq. (3) can be written as (for the details see ref. [11])

∂u′

∂t
= − 2u′ + (d− 2)ρ̃u′′ − 2ld1vd(N − 1)u′′sd

1(u
′)− 2ld1vd(3u

′′ + 2ρ̃u′′′)sd
1(u

′ + 2ρ̃u′′), (7)

with

ld1 = Γ

(

d

2

)

. (8)
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Primes on u denote derivatives with respect to ρ̃ and we omit the subscript k in uk from
now on. The functions sd

1(w) introduce “threshold” behaviour in the evolution equation,

which results in the decoupling of heavy modes. They approach unity for vanishing
argument, and vanish for large arguments. They do not have a simple analytical form,

but are well approximated 3 for our purposes by

sd
1(w) = (1 + w)−2. (9)

Even with this approximation the evolution equation (7) remains a non-linear partial

differential equation which seems very difficult to solve. The problems arise from the
contribution from the radial mode to the r.h.s. of eq. (7) (the last term). An enormous

simplification is achieved, however, if this contribution is replaced by −6ld1vdu
′′sd

1(u
′).

From the physical point of view this approximation substitutes for the effects of the

radial mode the effects of additional Goldstone modes. It is justified in the large N limit

and near the origin of the potential (ρ̃ = 0). The simplified evolution equation now reads

∂u′

∂t
− (d − 2)ρ̃

∂u′

∂ρ̃
+ 2ld1vd(N + 2)

1

(1 + u′)2

∂u′

∂ρ̃
+ 2u′ = 0. (10)

It is first order in both independent variables and can easily be solved with the method
of characteristics.

We are interested in the behaviour of the theory in three dimensions, where a non-
trivial fixed point structure arises. The most general solution of the partial differential

equation (10) for d = 3 is given by the relations

ρ̃√
u′

− C√
u′

− C

2

√
u′

1 + u′
+

3

2
C arctan

(

1√
u′

)

= F
(

u′e2t
)

for u′ > 0 (11)

ρ̃√
−u′

− C√
−u′

+
C

2

√
−u′

1 + u′
− 3

4
C ln

(

1 −
√
−u′

1 +
√
−u′

)

= F
(

u′e2t
)

for u′ < 0, (12)

with

C = 2v3(N + 2)l31 =
N + 2

8π
3
2

. (13)

The function F is undetermined until initial conditions are specified. For t = 0 (k = Λ),
Uk coincides with the classical potential V . The initial condition, therefore, reads

u′(ρ̃, t = 0) = Λ−2V ′(ρ). (14)

This uniquely specifies F and we obtain

ρ̃√
u′

− C√
u′

− C

2

√
u′

1 + u′
+

3

2
C arctan

(

1√
u′

)

=

3 The choice of the average propagator in eq. (5), which is reflected in the form of s
d
1

is arbitrary
within some general conditions [5]. It may be possible to find a form of P so that eq. (9) becomes exact,
with a suitably chosen value of l

d
1
.
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G (u′e2t)√
u′et

− C√
u′et

− C

2

√
u′et

1 + u′e2t
+

3

2
C arctan

(

1√
u′et

)

for u′ > 0 (15)

ρ̃√
−u′

− C√
−u′

+
C

2

√
−u′

1 + u′
− 3

4
C ln

(

1 −
√
−u′

1 +
√
−u′

)

=

G (u′e2t)√
−u′et

− C√
−u′et

+
C

2

√
−u′et

1 + u′e2t
− 3

4
C ln

(

1 −
√
−u′et

1 +
√
−u′et

)

for u′ < 0,

(16)

with the function G determined by inverting eq. (14) and solving for ρ̃ in terms of u′

G(u′) = ρ̃(u′)|t=0. (17)

I) Classical φ4 theory: Let us first consider a theory with a quartic classical potential.

The initial condition can be written as

u′(ρ̃, t = 0) = λΛ(ρ̃ − κΛ), (18)

with

κΛ =
ρ0Λ

Λ
, λΛ =

λ̄Λ

Λ
(19)

the rescaled (dimensionless) minimum of the potential and quartic coupling respectively.

The function G in eqs. (15), (16) is now given by

G(x) = κΛ +
x

λΛ

. (20)

The typical form of the effective average potential Uk(ρ) at different scales k, as given
by eqs. (15), (16), is presented in fig. 1. The theory at the ultraviolet cutoff is defined

in the regime with spontaneous symmetry breaking, with the minimum of the potential
at ρ0Λ = κΛΛ 6= 0. At lower scales k the minimum of the potential moves continuously

closer to zero, with no secondary minimum ever developing. We expect a second order
phase transition (in dependence to κΛ) for the renormalized theory at k = 0. Eqs. (15),

(16) contain all the qualitative information for the non-trivial behaviour of the three-
dimensional theory, even though the approximations leading to eq. (10) do not permit

quantitative accuracy in all respects. There is a critical value for the minimum of the
classical potential

κΛ = κcr = C, (21)

for which a scale invariant (fixed point) solution is approached in the limit t → −∞
(k → 0). This solution (which corresponds to the Wilson-Fisher fixed point) is given by

the relations

ρ̃√
u′

⋆

− C√
u′

⋆

− C

2

√
u′

⋆

1 + u′

⋆

+
3

2
C arctan

(

1√
u′

⋆

)

=
3π

4
C for u′

⋆ > 0 (22)

ρ̃√−u′

⋆

− C√−u′

⋆

+
C

2

√−u′

⋆

1 + u′

⋆

− 3

4
C ln

(

1 −√−u′

⋆

1 +
√−u′

⋆

)

= 0 for u′

⋆ < 0. (23)
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Eqs. (22), (23) describe a potential u which has a minimum at a constant value

κ(k) = κ⋆ = C. (24)

This leads to a potential Uk(ρ) with a minimum at ρ0(k) = kκ⋆ → 0 for k → 0, which
corresponds to the phase transition between the spontaneously broken and the symmetric

phase. (The values for κcr and κ⋆ coincide, but this is accidental.) For the second and
third ρ̃-derivative of u at the minimum λ = u′′(κ), σ = u′′′(κ) we find

λ(k) =λ⋆ =
1

2C
(25)

σ(k) =σ⋆ =
1

4C2
, (26)

and similar fixed point values for the higher derivarives of u. For 1 ≪ ρ̃/C ≪ (3π/4)e−t

the rescaled potential u has the form

u′

⋆(ρ̃) =
(

4

3πC

)2

ρ̃2. (27)

Notice that the region of validity of eq. (27) extends to infinite ρ̃ for t → −∞. From

eq. (27) with t → −∞(k → 0) we obtain for the effective potential at the phase transition

U⋆(ρ) =
1

3

(

4

3πC

)2

ρ3. (28)

Through eqs. (15), (16) we can also study solutions which deviate slightly from the

scale invariant one. For this purpose we define a classical potential with a minimum

κΛ = κcr + δκΛ, (29)

with |δκΛ| ≪ 1. We find for the minimum of the potential

κ(k) = κ⋆ + δκΛe−t, (30)

and for λ

λ(k) =
λ⋆

1 +
(

λ⋆

λΛ
− 1

)

et
. (31)

Eq. (30) indicates that the minimum of u stays close to the fixed point value κ⋆ given by
eq. (24), for a very long “time” |t| < − ln |δκΛ|. For |t| > − ln |δκΛ| it deviates from the

fixed point, either towards the phase with spontaneous symmetry breaking (for δκΛ > 0),
or the symmetric one (for δκΛ < 0). Eq. (31) implies an attractive fixed point for λ, with

a value given by eq. (25). Similarly the higher derivatives are attracted to their fixed
point values. The full phase diagram corresponds to a second order phase transition. For

δκΛ > 0 the system ends up in the phase with spontaneous symmetry breaking, with

ρ0 = lim
k→0

ρ0(k) = lim
k→0

kκ(k) = δκΛΛ. (32)
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In this phase the renormalized quartic coupling approaches zero linearly with k

λR = lim
k→0

kλ(k) = lim
k→0

kλ⋆ = 0. (33)

The fluctuations of the Goldstone bosons lead to an infrared free theory in the phase with
spontaneous symmetry breaking. For δκΛ < 0, κ(k) becomes zero at a scale

ts = − ln

(

κ⋆

|δκΛ|

)

(34)

and the system ends up in the symmetric regime (ρ0 = 0). From eq. (15), in the limit

t → −∞, with u′, u′′, u′′′ → ∞, so that u′e2t ∼ |δκΛ|2, u′′et ∼ |δκΛ|, u′′′ ∼ 1, we find

U(ρ) = U0(ρ) =
(

4

3πC

)2 [

|δκΛ|2Λ2ρ + |δκΛ|Λρ2 +
1

3
ρ3
]

. (35)

Notice how every reference to the classical theory has disappeared in the above expression.

The effective potential of the critical theory is determined uniquely in terms of δκΛ, which
measures the distance from the phase transition. The above results are essentially identical

to those obtained through the study of the evolution equation in the large N limit [11, 16]
(with a redefinition of the constant C in eq. (13)). In particular the values for the critical

exponents β, ν, describing the behaviour of the system very close to the phase transition,
correspond to the large N limit of the model (for details see section 6 of ref. [11])

β = lim
δκΛ→0+

d
(

ln
√

ρ0

)

d(ln δκΛ)
= 0.5

ν = lim
δκΛ→0−

d (ln mR)

d(ln |δκΛ|)
=

d
(

ln
√

U ′(0)
)

d(ln |δκΛ|)
= 1. (36)

This is expected, since the replacement of the contribution from the radial mode to the

evolution equation by a contribution involving additional Goldstone modes is a valid

approximation in the large N limit. However, the purpose of our discussion was to obtain
an insight into the qualitative behaviour of the theory in the context of a simplified

analytical framework. From this point of view, all the essential non-trivial behaviour of
the theory is incorporated in eqs. (15), (16). We also point out that, for a theory with

spontaneous symmetry breaking , we can use eq. (16) in order to study the “inner” part
of the potential. In particular, for ρ̃ = 0 and t → −∞ eq. (16) predicts a potential u

which asymptotically behaves as

lim
t→−∞

u′(0) = −1. (37)

This leads to an effective average potential Uk which becomes convex with

lim
k→0

U ′

k(0) = −k2, (38)
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in agreement with the detailed study of ref. [17].
II) Classical φ6 theory: As a second example we consider a theory defined through a

classical potential with a ρ3 (φ6) term

u′(ρ̃, t = 0) = λΛ(ρ̃ − κΛ) +
σΛ

2
(ρ̃ − κΛ)2, (39)

where κΛ, λΛ are defined in eq. (19) and the coupling σΛ is dimensionless in d = 3. The
function G in eqs. (15), (16) is now given by

G(x) =κΛ +
−λΛ +

√

λ2
Λ + 2σΛx

σΛ
for u′′ > 0 (40)

G(x) =κΛ +
−λΛ −

√

λ2
Λ + 2σΛx

σΛ
for u′′ < 0. (41)

We distinguish two regions in parameter space which result in two different types of

behaviour for the theory:
(a) For κΛ < 2λΛ/σΛ the classical potential has only one minimum at ρ0Λ = κΛΛ. Near

this minimum the initial condition of eq. (39) is very well approximated by eq. (18). As
a result, for κΛ near the critical value of eq. (21), the critical theory has exactly the same

behaviour as for a quartic classical potential. The running potential first approaches
the fixed point solution of eqs. (22), (23) (notice that κ⋆ < 2λ⋆/σ⋆), and subsequently

evolves towards the phase with spontaneous symmetry breaking or the symmetric one.
The behaviour of the critical theory for k = 0 is determined only by the distance from the

phase transition (as measured by δκΛ), without any memory of the details of the classical
theory. This is a manifestation of universality, typical of second order phase transitions.

(b) For κΛ > 2λΛ/σΛ the classical potential has two minima, one at the origin and one
at ρ0Λ = κΛΛ. The minimum at the origin is deeper for κΛ > 3λΛ/σΛ. An example of

the evolution of the effective average potential for such a theory is given in fig. 2. The
minimum of the potential at non-zero ρ moves towards the origin for decreasing scale k. In

the same time the positive curvature at the origin decreases. The combined effect is (very

crudely) similar to the whole potential being shifted to the left of the graph. As a result
the minimum at the origin becomes shallower. For a certain range of the parameter space

(for small enough κΛ, such as chosen for fig. 2) the minimum away from the origin becomes
the absolute minimum of the potential at some point during the evolution. This results

in a discontinuity in the running order parameter. Finally the absolute minimum of the
potential settles down at some non-zero ρ0. For even larger κΛ the minimum at the origin

is deep enough for the evolution to stop while this minimum is still the absolute minimum
of the potential. When the minimum of the renormalized potential ρ0 (which is obtained

at the end of the evolution) is considered as a function of κΛ, a discontinuity is observed
in the function ρ0(κΛ). This indicates a first order phase transition. Unfortunately, an

exact quantitative determination of the region in parameter space which results in first
order transitions is not possible within the approximations we have used. The reason for

this is the omission of the term 2ρ̃u′′ in the “threshold” function for the radial mode. As
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a result our approximation is not adequate for dealing with the shape of the barrier in
the limit k → 0, where the theshold function for the radial mode becomes important.

Also the approach to convexity cannot be reliably discussed (in contrast to the case of
a classical φ4 potential). If the shape of the barrier cannot be reliably determined the

relative depth of the two minima cannot be calculated, and our discussion is valid only
at the qualitative level.

However, more information can be extracted from our results. As long as we concen-
trate on regions of the potential away from the top of the barrier the solution given by

eqs. (15), (40), (41) is reliable. This means that we can study the potential around its
two minima. We are interested in the limit t → −∞ (k → 0), with U ′ = u′e2t, ρ = ρ̃et

approaching finite values. The form of the potential near the minimum away from the
origin is determined by eqs. (15), (40). We find

ρ

Λ
− κΛ + C =

−λΛ +
√

λ2
Λ + 2σΛ

U ′

Λ2

σΛ
− C

2

U ′

Λ2

1 + U ′

Λ2

+
3

2
C

√

U ′

Λ2
arctan





1
√

U ′

Λ2



 . (42)

The minimum ρ0 (where U ′(ρ0) = 0) is located at ρ0 = (κΛ −C)Λ = δκΛΛ. This requires
δκΛ ≥ 0. Eqs. (15), (41) describe the form of the potential around the minimum at the

origin. Similarly as above we find

ρ

Λ
− κΛ + C =

−λΛ −
√

λ2
Λ + 2σΛ

U ′

Λ2

σΛ
− C

2

U ′

Λ2

1 + U ′

Λ2

+
3

2
C

√

U ′

Λ2
arctan





1
√

U ′

Λ2



 . (43)

In the parameter range κΛ − 2λΛ/σΛ, 2λΛ/σΛ ≫ C the above solution reproduces the
classical potential, with a large positive curvature U ′(0)/Λ2 at the origin. This is due

to the fact that the fluctuations which renormalize the potential around the origin are
massive, with their masses acting as an effective infrared cutoff. For the above parameter

range these masses are of the order of the ultraviolet cutoff Λ and no renormalization
of the potential takes place. This is in contrast with the form of the potential near the

minimum away from the origin ρ0. The presence of the Goldstone modes in this region
always results in strong renormalization. There is a range of parameters for which the

curvature at the origin becomes zero. It is given by the relation

κΛ = C + 2λΛ/σΛ. (44)

For this range the minimum at the origin disappears and the potential has only one

minimum at ρ0 = δκΛΛ = (κΛ − C)Λ. The above condition does not determine precisely
the first order phase transition, as this takes place when the two minima are degenerate,

and not when the minimum at the origin disappears. However, it provides a good estimate
of its location. The discontinuity in the order parameter is expected to be O(δκΛ). Weakly

first order transitions are obtained for λΛ → 0. We should emphasize that eq. (43) is not
valid for arbitrarily small U ′/Λ2. This would correspond to a range of the potential near

the top of the disappearing barrier, where we know that our approximation fails. This
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is another reason why eq. (44) is only indicative of the location of the first order phase
transition.

We have identified two critical surfaces in parameter space. We saw in (a) that the
surface κΛ = C corresponds to second order phase transitions. Also in (b) we argued that

the surface κΛ = C +2λΛ/σΛ corresponds to first order transitions. As a result we expect
tricritical behaviour to characterize their intersection, which is given by the line κΛ = C,

λΛ = 0. This is confirmed if we approach this line close to the critical surface κΛ = C.
More specifically we consider a theory with 0 < −δκΛ = −κΛ + C ≪ 1 and λΛ ≪ 1. For

this choice of parameters the renormalized theory is in the symmetric phase very close
to the second order phase transition. The form of the potential is given by eq. (42) with

U ′/Λ2 ≪ 1

ρ

Λ
+ |δκΛ| =

1

λΛ

U ′

Λ2
+

3π

4
C

√

U ′

Λ2
. (45)

For |δκΛ| ≪ λΛ the potential has the universal form of eq. (35). The initial point of the
evolution is sufficiently close to the critical surface for the flows to approach the Wilson-

Fisher critical point before deviating towards the symmetric phase. The critical exponent
ν takes the large N value ν = 1 according to eq. (36). In the opposite limit |δκΛ| ≫ λΛ

the potential near the origin is given by

U(ρ) = λΛ

(

|δκΛ|Λ2ρ +
1

2
Λρ2

)

(46)

and the exponent ν takes its mean field value ν = 0.5. A continuous transition from one

type of behaviour to the other (a crossover curve) connects the two parameter regions.
Clearly, the line κΛ = C, λΛ = 0 gives tricritical behaviour with mean field exponents.

The Abelian Higgs model in four dimensions: We now turn to gauge theories,
for which exact renormalization equations have also been obtained [6]. As an example

we discuss the Abelian Higgs model with one complex scalar, in four dimensions. The
evolution equation can be written in the form (for the details see ref. [13])

∂u′

∂t
= − 2u′ + 2ρ̃u′′ − 2l41v4u

′′s4
1(u

′)− 2l41v4(3u
′′ + 2ρ̃u′′′)s4

1(u
′ + 2ρ̃u′′)− 12l41v4e

2s4
1(2e

2ρ̃),

(47)

with v4 given by eq. (4) and l41 by eq. (8). We have again neglected the small wave function
renormalization effects for the scalar field. We recognize the contributions of the Goldstone

and radial mode. The last term in eq. (47) is the contribution of the gauge field. It involves
the gauge coupling e2, whose evolution can be computed independently [6, 13]. Since the

resulting running for e2 is only logarithmic in d = 4, it is a good approximation to neglect
it in the following. We assume the form of eq. (9) for the “threshold” functions s4

1. The

contribution of the radial mode introduces higher derivatives in the evolution equation,
making an explicit solution impossible. We shall again resort to the replacement of this

contribution by −6l41v4u
′′s4

1(u
′), as in the first part of the paper. The resulting partial

differential equation is first order and can be solved with the method of characteristics.
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We have not managed to obtain an analytical solution in closed form, even though a
numerical solution is possible. For this reason we make an additional approximation

which is not crucial for the physical behaviour that we are interested in (see below). We
shall set s4

1(u
′) = 1 in the contributions of the scalar field, while maintaining the full

“threshold” function in the contribution of the gauge field. As a result we cannot see the
decoupling of the scalar modes or the approach to convexity for the effective potential.

However, we preserve the full effect of the gauge field on the form of the potential. We
thus finally arrive to the following evolution equation

∂u′

∂t
− 2ρ̃

∂u′

∂ρ̃
+ B

∂u′

∂ρ̃
+

De2

(1 + 2e2ρ̃)2
+ 2u′ = 0, (48)

with

B =8l41v4 =
1

4π2

D =12l41v4 =
3

8π2
. (49)

The most general solution of eq. (48) is given by

u′

2ρ̃ − B
+

De2

2(Be2 + 1)

1

(2e2ρ̃ + 1)(2ρ̃ − B)
+

De4

(Be2 + 1)2

1

2e2ρ̃ + 1

− De4

(Be2 + 1)3
ln

(

2e2ρ̃ + 1

|2ρ̃ − B|

)

= F
(

(2ρ̃ − B)e2t
)

. (50)

The function F is determined throught the initial condition for the potential. Assuming

a quartic classical potential given by eqs. (18), (19) we find

F (x) =λΛ
x + B

2x
− λΛκΛ

1

x
+

De2

2(Be2 + 1)

1

x [e2(x + B) + 1]

+
De4

(Be2 + 1)2

1

e2(x + B) + 1
− De4

(Be2 + 1)3
ln

(

e2(x + B) + 1

|x|

)

. (51)

In fig. 3 we plot the potential which results from eqs. (50), (51) for a certain choice of the

parameters of the theory. Initially the effective average potential has only one minimum
at a non-zero value of ρ. As k is lowered a second minimum appears around zero, which

eventually becomes the absolute minimum of the potential. The discontinuity in the ex-

pectation value signals the presence of a first order phase transition. The development
of the minimum around zero is caused by the logarithmic terms in eqs. (50), (51). The

situation is typical of a Coleman-Weinberg phase transition triggered by radiative correc-
tions [18]. The effective potential U = U0 can be calculated from eqs. (50), (51) in the

limit t → −∞, with u′, ρ̃ → ∞, so that u′e2t ∼ 1, ρ̃e2t ∼ 1. We find

U ′(ρ)

Λ2
=λΛ

(

ρ

Λ2
− κΛ

)

+ λΛ
B

2
+

De2

2(Be2 + 1)

1

e2
(

2 ρ
Λ2 + B

)

+ 1
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+
2De4

(Be2 + 1)2

ρ
Λ2

e2
(

2 ρ
Λ2 + B

)

+ 1
+

2De4

(Be2 + 1)3

ρ

Λ2
ln





2e2 ρ
Λ2

e2
(

2 ρ
Λ2 + B

)

+ 1



 .(52)

Without the logarithmic term the phase transition in dependence to κΛ would have been
second order. The presence of the last term in eq. (52) results in the development of

a barrier near a secondary minimum at the origin. This leads to a weakly first order

transition, with a discontinuity for the expectation value much smaller than the minimum
of the classical potential. (For a detailed discussion of the Coleman-Weinberg transition

using the full evolution equation see ref. [13].) The effective potential of eq. (52) is not
convex. As we have mentioned already, the reason for this is the approximation of the

“threshold” function by a constant in the evolution equation.

Conclusions: In this letter we presented analytical approximate solutions of the exact

renormalization group equation for the effective average action. We neglected the effects
of wave function renormalization and approximated the action by the potential and a

standard kinetic term. This approximation is justified by the smallness of the anomalous
dimension for the models that we considered. We solved the evolution equation for the

potential as a function of the field and the running scale k. In order to achieve this
we resorted to additional approximations, which, however, do not affect the qualitative

behaviour of the solutions.
a) For the O(N)-symmetric scalar theory in three dimensions we distinguish two types

of behaviour: I) For a classical φ4 potential given by eq. (18) the renormalized theory has
a second order phase transition in dependence on κΛ. The universal behaviour near

the transition is governed by the Wilson-Fisher fixed point and can be parametrized
by critical exponents. Due to our approximations, the valued we obtained for these

exponents correspond to the large N limit of the theory. II) For a classical φ6 potential

given by eq. (39) there is a parameter range for which the renormalized theory has a
second order phase transition in dependence on κΛ, with universal critical behaviour. For

another parameter range the theory has a first order phase transition. The two regions
are separated by a tricritical line (at λΛ = 0) which displays tricritical behaviour with

mean field exponents.
b) For the Abelian Higgs model in four dimensions we reproduced the Coleman-Weinberg

first order phase transition which is triggered by radiative corrections.
Our results on the universal behaviour of the three-dimensional scalar theory and the

four-dimensional Abelian Higgs model are in perfect agreement with refs. [10, 11, 13]
and provide an additional argument for the validity and applicability of the method of

the effective average action in a wide range of problems. The most important aspect of
our solutions, however, is that they are fully analytical. They encode all the relevant

qualitative information for the dependence of the potential on the field and the running
scale k. They provide a concise, transparent picture of the physical system, with which

numerical results can be easily compared.
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Figure captions

Fig. 1 The effective average potential Uk(ρ) at different scales for a scalar model with N = 4
and a classical potential given by eq. (18) with κΛ = 0.162 and λΛ = 0.1 (d = 3).

Fig. 2 The effective average potential Uk(ρ) at different scales for a scalar model with N = 4

and a classical potential given by eq. (39) with κΛ = 0.202, λΛ = 0.1 and σΛ = 2.228
(d = 3).

Fig. 3 The effective average potential Uk(ρ) at different scales for an Abelian Higgs model

with one complex scalar. The classical potential is given by eq. (18) with κΛ = 1

and λΛ = 0.003, and e2 = 0.185 (d = 4).
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