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1. Introduction

The solution of an exact renormalization group equation [1]-[10] is a particularly difficult
task. The reason is that such an equation describes the scale dependence of an effective

action, which is characterized by infinitely many couplings multiplying the invariants
consistent with the symmetries of the model under consideration. As a result an exact

renormalization group equation corresponds to infinitely many evolution equations for the
couplings of the theory. The crucial step is developing efficient approximation schemes

which can reduce the complexity of the problem while capturing the essential aspects of

the physical system. Perturbative expansions have been used for proofs of perturbative
renormalizability [5, 11], while the powerful ǫ-expansion [1, 12] has been employed for

the study of fixed points governing second order phase transitions in three dimensions.
In many cases evolution equations for truncated forms of the effective action have been

solved through a combination of analytical and numerical methods (see the review [7] and
references therein, [6, 13], [14]-[20]. Also, numerical solutions for the fixed point potential

of three-dimensional scalar theories have been computed in ref. [21, 22].
In this paper we present analytical solutions of equations which describe the evo-

lution of the running effective potential. We are interested in describing the evolution
not only near the possible fixed points, but also far away from them. This allows us to

study the influence of the initial conditions (the parameters of the classical theory) on
the renormalized theory. We can also investigate theories with first order phase transi-

tions, which do not exhibit universal behaviour. The biggest part of this work concerns
the O(N)-symmetric scalar theory in the large N limit, the spherical model [23]. We

obtain analytical solutions of the evolution equation which describes the dependence of

the running effective potential Uk on an effective infrared cutoff k. This equation, and our
solutions, are exact in the large N limit. In three dimensions, we show that for a certain

range of classical parameters the evolution of the critical theory leads to an infrared at-
tractive fixed point (the Wilson-Fisher fixed point). This results in a second order phase

transition with universal behaviour. For a different parameter range the theory has a
first order phase transition. A tricritical line separates the two regimes. In four dimen-

sions we describe how the renormalized quartic coupling evolves to zero as the infrared
cutoff is removed. Finally in two dimensions we explicitly demonstrate the absence of

symmetry breaking and a phase transition for this model. The incorporation of physical
phenomena of such a wide range is the most prominent and promising characteristic of

our analytical solutions. We subsequently study an approximate evolution equation for
the running effective potential in the context of the Abelian Higgs model in four dimen-

sions. We demonstrate how its solution predicts a first order phase transition driven by
radiative corrections (the Coleman-Weinberg mechanism). Parts of our solutions for the

O(N)-symmetric scalar theory have been obtained previously [14, 7]. However, the start-
ing point for our derivation is a recently proposed renormalization group equation [8], and

our results demonstrate the complete agreement of its physical predictions with those of

other renormalization group equations [2, 4, 6]. We also give a detailed discussion of the
full range of the running effective potential (including its non-convex part), and consider
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a variety of regions for the classical parameters of the theory.
We work in the framework of the effective average action Γk [8, 15], which has been used

for the study of second and first order phase transitions for a variety of four-dimensional
field theories at non-zero temperature [16]-[19]. Also, in ref. [17] an approximate solution

of the evolution equation for the potential for the three-dimensional O(N)-symmetric
scalar theory in the large N limit has been given. The effective average action Γk results

from the integration of quantum fluctuations with characteristic momenta q2 ≥ k2. It
interpolates between the classical action S for k equal to the ultraviolet cutoff Λ of the

theory (no integration of modes) and the effective action Γ for k = 0 (all the modes are
integrated). Its dependence on k is given by an exact renormalization group equation

with the typical form (t = ln(k/Λ))

∂

∂t
Γk =

1

2
Tr
{

(Γ
(2)
k + Rk)

−1 ∂

∂t
Rk

}

. (1.1)

Here Γ
(2)
k is the second functional derivative with respect to the fields, Rk is the effective

infrared cutoff which prevents the integration of modes with q2 ≤ k2, and the trace implies
integration over all Fourier modes of the fields. We work with an approximation which

neglects the effects of wavefunction renormalization. Therefore, only a classical kinetic
term in the effective average action is kept, which takes, for an O(N)-symmetric scalar

theory, the form

Γk =
∫

ddx
{

Uk(φ) +
1

2
∂µφa∂µφ

a
}

, (1.2)

and all invariants which involve more derivatives of the fields are neglected. With this

approximation, eq. (1.1) can be turned into an evolution equation for the potential Uk.
First we shall discuss the O(N)-symmetric scalar theory in the large N limit. In three

dimensions the fixed point solution which governs the second order phase transition will
be identified. We shall also show that, for a certain parameter range, the theory has a first

order phase transition. The two regions in parameter space are separated by a tricritical
line. We shall also study the same theory in four and two dimensions. Finally we shall

discuss the Abelian Higgs model in four dimensions, for which the radiatively induced
first order transition will be reproduced.

2. The O(N)-symmetric scalar theory

We first consider the evolution equation describing the dependence of the effective average

potential Uk on the scale k in arbitrary dimensions d, for an O(N)-symmetric scalar
theory. As we have mentioned in the introduction, we neglect the effects of wavefunction

renormalization. The evolution equation reads (t = ln(k/Λ)) [8]

∂Uk(ρ)

∂t
= vd

∫

∞

0
dx x

d

2
−1 ∂P

∂t

{

N − 1

P + U ′

k(ρ)
+

1

P + U ′

k(ρ) + 2U ′′

k (ρ)ρ

}

. (2.1)
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Here ρ = 1
2
φaφa, a = 1...N, and primes denote derivatives with respect to ρ. The variable

x denotes momentum squared x = q2, and

v−1
d = 2d+1π

d

2 Γ

(

d

2

)

. (2.2)

The inverse average propagator

P (x) =
x

1 − f 2
k (x)

(2.3)

incorporates an effective infrared cutoff k, such that modes with x = q2 ≪ k2 do not

propagate. The “cutoff” function f 2
k (x) is given by

f 2
k (x) = exp

{

−2a
(

x

k2

)b
}

(2.4)

and can be made sharper or smoother by an appropriate choice of the two free param-

eters a, b. Up to effects from the wavefunction renormalization eq. (2.1) is an exact
non-perturbative evolution equation [8]. It is easy to recognize the first term in the r.h.s.

of eq. (2.1) as the contribution of the N − 1 Goldstone modes (U ′

k vanishes at the mini-
mum). The second term is related to the radial mode. After performing the momentum

integration the evolution equation (2.1) becomes a partial differential equation for Uk with

independent variables ρ and t. The effective average potential interpolates between the
classical potential V for k = Λ (with Λ the ultraviolet cutoff) and the effective potential U

for k = 0 [8]. As a result the solution of eq. (2.1) with the initial condition UΛ(ρ) = V (ρ)
uniquely determines, for k → 0, the effective 1PI vertices at zero momentum for the

renormalized theory. In order to write eq. (2.1) in a scale invariant form it is convenient
to define the variables

ρ̃ =k2−dρ

uk(ρ̃) =k−dUk(ρ). (2.5)

In terms of these eq. (2.1) can be written as (for the details see refs. [8, 15, 16, 17])

∂u′

∂t
= − 2u′ + (d − 2)ρ̃u′′ + vd(N − 1)u′′Ld

1(u
′) + vd(3u

′′ + 2ρ̃u′′′)Ld
1(u

′ + 2ρ̃u′′). (2.6)

Primes on u denote derivatives with respect to ρ̃ and we omit the subscript k in uk from

now on. The functions Ld
1(w) are given by

Ld
1(w) = −2(2a)

2−d

2b

∫

∞

0
dy y

d−2

2b e−y



1 +

(

2a

y

) 1
b (

1 − e−y
)

w





−2

(2.7)

(where we have used the variable y = 2a (x/k2)
b
). They introduce “threshold” behaviour

in the evolution equation, which results in the decoupling of heavy modes. They approach
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a constant for vanishing argument, and vanish for large arguments. For general a and b
they do not have a simple analytical form. However, in the sharp cutoff limit b → ∞ they

are given by the simple expression

Ld
1(w) = − 2

1 + w
. (2.8)

The resulting evolution equation (with an appropriate rescaling of the fields) is identical
to the one introduced in ref. [2] and studied in refs. [2, 6, 22]. Also, in the large N

limit (see below) it is the same as the evolution equation [7] which results from the exact
renormalization group equation of ref. [4], for which solutions are given in ref. [14].

Our derivation establishes the agreement of the physical predictions resulting from the
formalism of the effective average action with those of previous renormalization group

formulations. We should point out that the use of a sharp cutoff renders the effective
average action Γk non-local. This complication, however, does not affect our analysis,

as we have neglected the effect of the higher derivative terms on the evolution equation
for the potential. For studies which take into account the effects of the wavefunction

renormalization [17] the use of a smooth cutoff is necessary.
Even with the simple form of eq. (2.8) for the “threshold” functions, the evolution

equation (2.6) remains a non-linear partial differential equation which seems very difficult
to solve exactly. 3 The problems arise from the contribution from the radial mode to the

r.h.s. of eq. (2.6) (the last term). An enormous simplification is achieved, however, if this

contribution is neglected. This is justified in the large N limit, in which the contributions
of the Goldstone modes dominate the evolution, and the contribution of the radial mode

becomes a subleading effect. Another important simplification results from the fact that
the anomalous dimension of the field is zero to leading order in 1/N , in four and three

dimensions which are of most interest [24]. As a result, our approximation of neglecting
the wavefunction renormalization is justified in this limit and our solution of eq. (2.6)

becomes exact. We should point out that the contributions of the radial mode cannot
be neglected even in the large N limit in some cases. For certain forms of the classical

potential, the approach to convexity for the effective potential depends crucially on the
radial mode. An example of this behaviour will be given in the following. For N ≫ 1 the

simplified evolution equation reads

∂u′

∂t
− (d − 2)ρ̃

∂u′

∂ρ̃
+

NC

1 + u′

∂u′

∂ρ̃
+ 2u′ = 0, (2.9)

with C = 2vd. It is first order in both independent variables and can be solved with the
method of characteristics.

a) Three dimensions

We are interested in the behaviour of the theory in three dimensions, where a non-trivial

fixed point structure arises. The most general solution of the partial differential equation
3See ref. [20] for a numerical solution of eq. (2.6).
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(2.9) for d = 3 is given by the relations

ρ̃√
u′

− NC√
u′

+ NC arctan

(

1√
u′

)

= F
(

u′e2t
)

for u′ > 0 (2.10)

ρ̃√
−u′

− NC√
−u′

− 1

2
NC ln

(

1 −
√
−u′

1 +
√
−u′

)

= F
(

u′e2t
)

for u′ < 0, (2.11)

with

C = 2v3 =
1

4π2
. (2.12)

The function F is undetermined until initial conditions are specified. For t = 0 (k = Λ),

Uk coincides with the classical potential V . The initial condition, therefore, reads

u′(ρ̃, t = 0) = Λ−2V ′(ρ). (2.13)

This uniquely specifies F and we obtain

ρ̃√
u′

−NC√
u′

+ NC arctan

(

1√
u′

)

=

G (u′e2t)√
u′et

− NC√
u′et

+ NC arctan

(

1√
u′et

)

for u′ > 0 (2.14)

ρ̃√
−u′

− NC√
−u′

− 1

2
NC ln

(

1 −
√
−u′

1 +
√
−u′

)

=

G (u′e2t)√
−u′et

− NC√
−u′et

− 1

2
NC ln

(

1 −
√
−u′et

1 +
√
−u′et

)

for u′ < 0,

(2.15)

with the function G determined by inverting eq. (2.13) and solving for ρ̃ in terms of u′

G(u′) = ρ̃(u′)|t=0. (2.16)

We are also interested in the scale invariant (independent of t) solutions of eq. (2.9).

These solutions correspond to the possible fixed points of the evolution and are obtained
by setting the first term in the l.h.s. of eq. (2.9) equal to zero. We can easily identify the

“trivial” solution u′

⋆ = 0, which is independent of the number of dimensions. For d = 3
the only other solution which remains finite for finite ρ̃ is given by the relations

ρ̃√
u′

⋆

− NC√
u′

⋆

+ NC arctan

(

1√
u′

⋆

)

=
π

2
NC for u′

⋆ > 0 (2.17)

ρ̃√−u′

⋆

− NC√−u′

⋆

− 1

2
NC ln

(

1 −√−u′

⋆

1 +
√−u′

⋆

)

= 0 for u′

⋆ < 0. (2.18)

This solution corresponds to the Wilson-Fisher fixed point. A large part of the above

results has been obtained in the past [14, 7]. However, we have explicitly presented here
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the solution for the non-convex part of the potential. We are also mainly interested
in studying the various phase transitions which result for different ranges of classical

parameters of the theory.
I) Classical φ4 theory: Let us first consider a theory with a quartic classical potential.

The initial condition can be written as

u′(ρ̃, t = 0) = λΛ(ρ̃ − κΛ), (2.19)

with

κΛ =
ρ0Λ

Λ
, λΛ =

λ̄Λ

Λ
(2.20)

the rescaled (dimensionless) minimum of the potential and quartic coupling respectively.

The function G in eqs. (2.14), (2.15) is now given by

G(x) = κΛ +
x

λΛ

. (2.21)

The typical form of the effective average potential Uk(ρ) at different scales k, as given by

eqs. (2.14), (2.15), is presented in fig. 1. The theory at the ultraviolet cutoff is defined
in the regime with spontaneous symmetry breaking, with the minimum of the potential

at ρ0Λ = κΛΛ 6= 0. At lower scales k the minimum of the potential moves continuously
closer to zero, with no secondary minimum ever developing. We expect a second order

phase transition (in dependence to κΛ) for the renormalized theory at k = 0. There is a
critical value for the minimum of the classical potential

κΛ = κcr = NC, (2.22)

for which the scale invariant (fixed point) solution of eqs. (2.17), (2.18) is approached

in the limit t → −∞ (k → 0). Eqs. (2.17), (2.18) describe a potential u which has a
minimum at a constant value

κ(k) = κ⋆ = NC. (2.23)

This leads to a potential Uk(ρ) with a minimum at ρ0(k) = kκ⋆ → 0 for k → 0, which

corresponds to the phase transition between the spontaneously broken and the symmetric
phase. (The values for κcr and κ⋆ coincide, but this is accidental.) For the second and

third ρ̃-derivative of u at the minimum λ = u′′(κ), σ = u′′′(κ) we find

λ(k) =λ⋆ =
1

NC
(2.24)

σ(k) =σ⋆ =
2

3(NC)2
, (2.25)

and similar fixed point values for the higher derivarives of u. For 1 ≪ ρ̃/NC ≪ (π/2)e−t

the rescaled potential u has the form

u′

⋆(ρ̃) =
(

2

πNC

)2

ρ̃2. (2.26)
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Notice that the region of validity of eq. (2.26) extends to infinite ρ̃ for t → −∞. From
eq. (2.26) with t → −∞(k → 0) we obtain for the effective potential at the phase

transition

U⋆(ρ) =
1

3

(

2

πNC

)2

ρ3. (2.27)

Through eqs. (2.14), (2.15) we can also study solutions which deviate slightly from
the scale invariant one. For this purpose we define a classical potential with a minimum

κΛ = κcr + δκΛ, (2.28)

with |δκΛ| ≪ NC. A typical solution is depicted in fig. 2. The potential starts its
evolution with its classical form at k = Λ. It subsequently evolves towards the scale

invariant solution given by eqs. (2.17), (2.18). It stays very close this solution for a long
“time” t, which can be rendered arbitrarily long for sufficiently small |δκΛ|. Eventually it

deviates towards the phase with spontaneous symmetry breaking or the symmetric one.
In fig. 2 δκΛ was chosen negative, so that the evolution for k → 0 leads to the symmetric

phase. The curvature of the potential at the origin becomes positive and u′(0) diverges so
that the renormalized mass term U ′

k(0) = k2u′(0) reaches a constant value. The evolution

of the minimum of the potential is given by

κ(k) = κ⋆ + δκΛe−t. (2.29)

Also for λ we find

λ(k) =
λ⋆

1 +
(

λ⋆

λΛ
− 1

)

et
. (2.30)

Eq. (2.29) indicates that the minimum of u stays close to the fixed point value κ⋆ given by

eq. (2.23), for a very long “time” |t| < − ln |δκΛ|. For |t| > − ln |δκΛ| it deviates from the
fixed point, either towards the phase with spontaneous symmetry breaking (for δκΛ > 0),

or the symmetric one (for δκΛ < 0). Eq. (2.30) implies an attractive fixed point for λ,
with a value given by eq. (2.24). Similarly the higher derivatives are attracted to their

fixed point values. The full phase diagram corresponds to a second order phase transition.
For δκΛ > 0 the system ends up in the phase with spontaneous symmetry breaking, with

ρ0 = lim
k→0

ρ0(k) = lim
k→0

kκ(k) = δκΛΛ. (2.31)

In this phase the renormalized quartic coupling approaches zero linearly with k

λR = lim
k→0

kλ(k) = lim
k→0

kλ⋆ = 0. (2.32)

The fluctuations of the Goldstone bosons lead to an infrared free theory in the phase with
spontaneous symmetry breaking. For δκΛ < 0, κ(k) becomes zero at a scale

ts = − ln

(

κ⋆

|δκΛ|

)

(2.33)
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and the system ends up in the symmetric regime (ρ0 = 0). From eq. (2.14), in the limit
t → −∞, with u′, u′′, u′′′ → ∞, so that u′e2t ∼ |δκΛ|2, u′′et ∼ |δκΛ|, u′′′ ∼ 1, we find

U(ρ) = U0(ρ) =
(

2

πNC

)2 [

|δκΛ|2Λ2ρ + |δκΛ|Λρ2 +
1

3
ρ3
]

. (2.34)

Notice how every reference to the classical theory has disappeared in the above expression.

The effective potential of the critical theory is determined uniquely in terms of δκΛ, which
measures the distance from the phase transition. The above results are in exact agreement

with refs. [23, 14, 7, 24, 17, 25]. In particular the values for the critical exponents β, ν,

describing the behaviour of the system very close to the phase transition, correspond to
the large N limit of the model (for details see section 10 of ref. [17])

β = lim
δκΛ→0+

d
(

ln
√

ρ0

)

d(ln δκΛ)
= 0.5

ν = lim
δκΛ→0−

d (ln mR)

d(ln |δκΛ|)
=

d
(

ln
√

U ′(0)
)

d(ln |δκΛ|)
= 1. (2.35)

We also point out that, for a theory with spontaneous symmetry breaking , we can use

eq. (2.15) in order to study the “inner” part of the potential. In particular, for ρ̃ = 0 and
t → −∞ eq. (2.15) predicts a potential u which asymptotically behaves as

lim
t→−∞

u′(0) = −1. (2.36)

This leads to an effective average potential Uk which becomes convex with

lim
k→0

U ′

k(0) = −k2, (2.37)

in agreement with the detailed study of ref. [28].

II) Classical φ6 theory: As a second example we consider a theory defined through a

classical potential with a ρ3 (φ6) term

u′(ρ̃, t = 0) = λΛ(ρ̃ − κΛ) +
σΛ

2
(ρ̃ − κΛ)2, (2.38)

where κΛ, λΛ are defined in eq. (2.20) and the coupling σΛ is dimensionless in d = 3. The

function G in eqs. (2.14), (2.15) is now given by

G(x) =κΛ +
−λΛ +

√

λ2
Λ + 2σΛx

σΛ
for u′′ > 0 (2.39)

G(x) =κΛ +
−λΛ −

√

λ2
Λ + 2σΛx

σΛ

for u′′ < 0. (2.40)

We distinguish two regions in parameter space which result in two different types of

behaviour for the theory:
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(a) For κΛ < 2λΛ/σΛ the classical potential has only one minimum at ρ0Λ = κΛΛ. Near
this minimum the initial condition of eq. (2.38) is very well approximated by eq. (2.19).

As a result, for κΛ near the critical value of eq. (2.22), the critical theory has exactly the
same behaviour as for a quartic classical potential. The running potential first approaches

the fixed point solution of eqs. (2.17), (2.18) (notice that κ⋆ < 2λ⋆/σ⋆), and subsequently
evolves towards the phase with spontaneous symmetry breaking or the symmetric one.

The behaviour of the critical theory for k = 0 is determined only by the distance from the
phase transition (as measured by δκΛ), without any memory of the details of the classical

theory. This is a manifestation of universality, typical of second order phase transitions.
For κΛ > 2λΛ/σΛ the classical potential has two minima, one at the origin and one at

ρ0Λ = κΛΛ. The minimum at the origin is less deep for κΛ < 3λΛ/σΛ. Again, for κΛ near
κcr the scale invariant solution is approached. We demonstrate this type of behaviour in

fig. 3 for a theory with κΛ = κcr. The classical potential includes a φ6 term and has a (less

deep) second minimum at the origin, but the universal scale invariant solution is again
approached for k → 0. Small deviations of κΛ from the critical value result in universal

behaviour for the renormalized theory.
(b) The minimum of the classical potential at the origin is deeper for κΛ > 3λΛ/σΛ.

An example of the evolution of the effective average potential Uk(ρ) for such a theory is
given in fig. 4. The minimum of the potential at non-zero ρ moves towards the origin for

decreasing scale k. In the same time the positive curvature at the origin decreases. The
combined effect is (very crudely) similar to the whole potential being shifted to the left of

the graph. As a result the minimum at the origin becomes shallower. For a certain range
of the parameter space (for small enough κΛ, such as chosen for fig. 4) the minimum away

from the origin becomes the absolute minimum of the potential at some point during the
evolution. This results in a discontinuity in the running order parameter. Finally the

absolute minimum of the potential settles down at some non-zero ρ0. For even larger κΛ

the minimum at the origin is deep enough for the evolution to stop while this minimum

is still the absolute minimum of the potential. When the minimum of the renormalized

potential ρ0 (which is obtained at the end of the evolution) is considered as a function of
κΛ, a discontinuity is observed in the function ρ0(κΛ). This indicates a first order phase

transition. Unfortunately, an exact quantitative determination of the region in parameter
space which results in first order transitions is not possible within the approximations we

have used. The reason for this is the omission of the “threshold” function for the radial
mode which includes the term 2ρ̃u′′. As a result our approximation is not adequate for

dealing with the shape of the barrier in the limit k → 0, where the theshold function for
the radial mode becomes important. Also the approach to convexity cannot be reliably

discussed (in contrast to the case of a classical φ4 potential). If the shape of the barrier
cannot be reliably determined the relative depth of the two minima cannot be calculated,

and our discussion is valid only at the qualitative level.
However, more information can be extracted from our results. As long as we concen-

trate on regions of the potential away from the top of the barrier the solution given by
eqs. (2.14), (2.39), (2.40) is reliable. This means that we can study the potential around
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its two minima. We are interested in the limit t → −∞ (k → 0), with U ′ = u′e2t, ρ = ρ̃et

approaching finite values. The form of the potential near the minimum away from the

origin is determined by eqs. (2.14), (2.39). We find

ρ

Λ
− κΛ + NC =

−λΛ +
√

λ2
Λ + 2σΛ

U ′

Λ2

σΛ

+ NC

√

U ′

Λ2
arctan





1
√

U ′

Λ2



 . (2.41)

The minimum ρ0 (where U ′(ρ0) = 0) is located at ρ0 = (κΛ−NC)Λ = δκΛΛ. This requires
δκΛ ≥ 0. Eqs. (2.14), (2.40) describe the form of the potential around the minimum at

the origin. Similarly as above we find

ρ

Λ
− κΛ + NC =

−λΛ −
√

λ2
Λ + 2σΛ

U ′

Λ2

σΛ
+ NC

√

U ′

Λ2
arctan





1
√

U ′

Λ2



 . (2.42)

In the parameter range κΛ − 2λΛ/σΛ, 2λΛ/σΛ ≫ NC the above solution reproduces the
classical potential, with a large positive curvature U ′(0)/Λ2 at the origin. This is due

to the fact that the fluctuations which renormalize the potential around the origin are
massive, with their masses acting as an effective infrared cutoff. For the above parameter

range these masses are of the order of the ultraviolet cutoff Λ and no renormalization
of the potential takes place. This is in contrast with the form of the potential near the

minimum ρ0 away from the origin. The presence of the Goldstone modes in this region

always results in strong renormalization. There is a range of parameters for which the
curvature at the origin becomes zero. It is given by the relation

κΛ = NC + 2λΛ/σΛ. (2.43)

For this range the minimum at the origin disappears and the potential has only one

minimum at ρ0 = δκΛΛ = (κΛ − NC)Λ = 2λΛ/σΛ. The above condition does not
determine precisely the first order phase transition, as this takes place when the two

minima are degenerate, and not when the minimum at the origin disappears. However,

it provides a good estimate of its location. The discontinuity in the order parameter is
expected to be O(δκΛ). Weakly first order transitions are obtained for λΛ → 0. We should

emphasize that eq. (2.42) is not valid for arbitrarily small U ′/Λ2. This would correspond
to a range of the potential near the top of the disappearing barrier, where we know that

our approximation fails. This is another reason why eq. (2.43) is only indicative of the
location of the first order phase transition.

We have identified two critical surfaces in parameter space. We saw in (a) that the
surface κΛ = NC corresponds to second order phase transitions. Also in (b) we argued

that the surface κΛ = NC + 2λΛ/σΛ corresponds to first order transitions. As a result we
expect tricritical behaviour to characterize their intersection, which is given by the line

κΛ = NC, λΛ = 0. This is confirmed if we approach this line close to the critical surface
κΛ = NC. More specifically we consider a theory with 0 < −δκΛ = −κΛ+NC ≪ NC and

λΛ ≪ 1/NC. For this choice of parameters the renormalized theory is in the symmetric
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phase very close to the second order phase transition. The form of the potential is given
by eq. (2.41) with U ′/Λ2 ≪ 1

ρ

Λ
+ |δκΛ| =

1

λΛ

U ′

Λ2
+

π

2
NC

√

U ′

Λ2
. (2.44)

For |δκΛ|/NC ≪ λΛNC the potential has the universal form of eq. (2.34). The initial
point of the evolution is sufficiently close to the critical surface for the flows to approach the

Wilson-Fisher critical point before deviating towards the symmetric phase. The critical
exponent ν takes the large N value ν = 1 according to eq. (2.35). In the opposite limit

|δκΛ|/NC ≫ λΛNC the potential near the origin is given by

U(ρ) = λΛ

(

|δκΛ|Λ2ρ +
1

2
Λρ2

)

(2.45)

and the exponent ν takes its mean field value ν = 0.5. A continuous transition from one
type of behaviour to the other (a crossover curve) connects the two parameter regions.

Clearly, the line κΛ = NC, λΛ = 0 gives tricritical behaviour with mean field exponents,
in agreement with the analysis of ref. [26]. 4

b) Four dimensions

In the previous subsection we explored the non-trivial fixed point structure of the three-

dimensional scalar theory. We now look for similar structure in four dimensions. The
most general solution of the partial differential equation (2.9) for d = 4 is given by the

relation
ρ̃

u′
− NC

2

1

u′
+

NC

2
ln

(

1 + u′

|u′|

)

= F
(

u′e2t
)

, (2.46)

where now

C = 2v4 =
1

16π2
. (2.47)

We consider a quartic classical potential according to eq. (2.19), with

κΛ =
ρ0Λ

Λ2
, λΛ = λ̄Λ. (2.48)

This uniquely specifies F and we obtain

ρ̃

u′
− NC

2

1

u′
+

NC

2
ln

(

1 + u′

|u′|

)

=
1

λΛ
+
(

κΛ − NC

2

)

1

u′e2t
+

NC

2
ln

(

1 + u′e2t

|u′|e2t

)

.

(2.49)

There is again a critical value for the minimum of the classical potential

κΛ = κcr =
NC

2
(2.50)

4The Bardeen-Moshe-Bander phenomenon [27] was not considered in our discussion.
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which separates two possible phases. The scale invariant solution is obtained for the above
value of κΛ in the limit t → −∞. The resulting solution is the “trivial” one

u′

⋆ = 0. (2.51)

As a result, no interesting universal (independent of the classical parameters) structure

can be obtained for this theory in four dimensions.
We can also investigate solutions which deviate slightly from the critical one, by con-

sidering a classical potential with a minimum given by eq. (2.28). The renormalized
potential in the limit t → −∞, with u′ → ∞ and finite U ′ = u′e2t, is given by the relation

U ′

Λ2
+

NC

2
λΛ

U ′

Λ2
ln

(

1 + U ′

Λ2

U ′

Λ2

)

= λΛ

(

ρ

Λ2
− δκΛ

)

(2.52)

for U ′ ≥ 0. For theories with characteristic mass scale much smaller than the ultraviolet
cutoff (such as in the symmetric phase in the vicinity of the phase transition) we have

U ′/Λ2 → 0. This gives for the renormalized quartic coupling

U ′′ =
λΛ

1 − NC
2

λΛ ln
(

U ′

Λ2/e

) → 0. (2.53)

The same happens near the minimum of the potential in the phase with spontaneous
symmetry breaking, where no renormalized mass can be generated for the radial mode.

All this is in agreement with the arguments for the “triviality” of the scalar theory in the
limit that the ultraviolet cutoff is removed (see for example ref. [24] and refs. therein).

c) Two dimensions

We finally turn to two dimensions, where the most general solution of eq. (2.9) is given

by
2

NC
ρ + ln

(

|u′|
1 + u′

)

= F
(

u′e2t
)

, (2.54)

with

C = 2v2 =
1

4π
(2.55)

and ρ dimensionless. We consider a quartic classical potential according to eq. (2.19),
with

κΛ = ρ0Λ, λΛ =
λ̄Λ

Λ2
. (2.56)

This leads to

u′e2t = λΛ (ρ − κΛ) +
NC

2
λΛ ln

(

1 + u′e2t

(1 + u′)e2t

)

. (2.57)

For any choice of classical parameters the minimum of the effective average potential runs
to zero at a scale

ts = − κΛ

NC
. (2.58)
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At t = 0 the renormalized potential has a minimum at zero and is given by the expression

U ′

Λ2
= λΛ (ρ − κΛ) − NC

2
λΛ ln

(

U ′

Λ2

1 + U ′

Λ2

)

. (2.59)

The renormalized theory cannot be defined in the phase with spontaneous symmetry

breaking and there is no phase transition, in agreement with the Mermin-Wagner theorem
[29].

3. The Abelian Higgs model in four dimensions:

We now turn to gauge theories, for which exact renormalization equations have also been

obtained [9]. As an example we discuss the Abelian Higgs model with N real scalars, in
four dimensions. The evolution equation can be written in the form (for the details see

ref. [19])

∂u′

∂t
= − 2u′ +2ρ̃u′′ +(N − 1)v4u

′′L4
1(u

′)+ v4(3u
′′ +2ρ̃u′′′)L4

1(u
′ +2ρ̃u′′)+ 6v4e

2L4
1(2e

2ρ̃),

(3.1)

with v4 given by eq. (2.2). We have again neglected the small wavefunction renormal-
ization effects for the scalar field. We recognize the contributions of the Goldstone and

radial modes. The last term in eq. (3.1) is the contribution of the gauge field. It involves
the gauge coupling e2, whose evolution can be computed independently [9, 19]. Since

the resulting running for e2 is only logarithmic in d = 4, it is a good approximation to

neglect it in the following and use a constant e2. The “threshold” functions L4
1 are given

by eq. (2.8). The contribution of the radial mode introduces higher derivatives in the

evolution equation, making an explicit solution impossible. We shall again neglect this
contribution, as in the first part of the paper. We should point out, however, that the

resulting approximate evolution equation does not become exact any more in the large
N limit. The purpose of this section is simply to demonstrate that the correct physical

behaviour is incorporated in the full evolution equation, even though the approximate
equation that we are using does not permit quantitative accuracy. After the omission

of the contribution of the radial mode, the resulting partial differential equation is first
order and can be solved with the method of characteristics. We have not managed to

obtain an analytical solution in closed form, even though a numerical solution is possible.
For this reason we make an additional approximation which is not crucial for the physical

behaviour that we are interested in (see below). We set L4
1(u

′) = L4
1(0) = −2 in the con-

tributions of the Goldstone modes, while maintaining the full “threshold” function in the

contribution of the gauge field. As a result we cannot observe the decoupling of the scalar

modes or the approach to convexity for the effective potential. However, we preserve the
full effect of the gauge field on the form of the potential. We thus finally arrive to the

following evolution equation

∂u′

∂t
− 2ρ̃

∂u′

∂ρ̃
+ B

∂u′

∂ρ̃
+

De2

1 + 2e2ρ̃
+ 2u′ = 0, (3.2)
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with

B =2(N − 1)v4 =
N − 1

16π2

D =12v4 =
3

8π2
. (3.3)

The most general solution of eq. (3.2) is given by

u′

2ρ̃ − B
+

De2

2(Be2 + 1)

1

2ρ̃ − B
− De4

2(Be2 + 1)2
ln

(

2e2ρ̃ + 1

|2ρ̃ − B|

)

= F
(

(2ρ̃ − B)e2t
)

. (3.4)

The function F is determined through the initial condition for the potential. Assuming a

quartic classical potential given by eqs. (2.19), (2.48) we find

F (x) = λΛ
x + B

2x
− λΛκΛ

1

x
+

De2

2(Be2 + 1)

1

x
− De4

2(Be2 + 1)2
ln

(

e2(x + B) + 1

|x|

)

. (3.5)

In fig. 5 we plot the potential which results from eqs. (3.4), (3.5) for a certain choice of the
parameters of the theory. Initially the effective average potential has only one minimum

at a non-zero value of ρ. As k is lowered a second minimum appears around zero, which
eventually becomes the absolute minimum of the potential. The discontinuity in the

expectation value signals the presence of a first order phase transition. The development
of the minimum around zero is caused by the logarithmic terms in eqs. (3.4), (3.5).

The situation is typical of a Coleman-Weinberg phase transition triggered by radiative
corrections [30]. The effective potential U = U0 can be calculated from eqs. (3.4), (3.5)

in the limit t → −∞, with u′, ρ̃ → ∞, so that u′e2t ∼ 1, ρ̃e2t ∼ 1. We find

U ′(ρ)

Λ2
= λΛ

[

ρ

Λ2
−
(

κΛ − B

2
− De2

2λΛ(Be2 + 1)

)]

+
De4

(Be2 + 1)2

ρ

Λ2
ln





2e2 ρ
Λ2

e2
(

2 ρ
Λ2 + B

)

+ 1



 .

(3.6)

Without the logarithmic term the phase transition in dependence to κΛ would have been

second order. The presence of the last term in eq. (3.6) results in the development
of a barrier near a secondary minimum at the origin. This leads to a weakly first order

transition, with a discontinuity for the expectation value much smaller than the minimum
of the classical potential. (For a detailed discussion of the Coleman-Weinberg transition

using the full evolution equation see ref. [19].) The effective potential of eq. (3.6) is not
convex. As we have mentioned already, the reason for this is the approximation of the

“threshold” function by a constant in the evolution equation. Starting from eq. (3.6)
we can derive a relation between the different mass scales in this model. We denote the

scalar field mass at the minimum ρ0 of the potential by m2 = 2U ′′(ρ0)ρ0, the gauge field
mass by M2 = 2e2ρ0, and the scalar mass around the origin by m2

s = U ′(0). We find

m2

M2
+ 2

m2
s

M2
=

3e2

8π2

1

(Be2 + 1)(Be2 + 1 + M2/Λ2)
. (3.7)

The well-known result of Coleman and Weinberg [30] is obtained for M2/Λ ≪ 1, if we
neglect the scalar contributions by setting B = 0, and consider a potential with zero

curvature at the origin by setting m2
s = 0.
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4. Conclusions

We presented analytical solutions of the exact renormalization group equation for the
effective average action which are not restricted in the vicinity of a possible infrared

attractive fixed point. This allowed us to investigate universal and non-universal aspects
of phase transitions for a variety of models. We neglected the effects of wavefunction

renormalization and approximated the action by the potential and a standard kinetic
term. We solved the evolution equation for the potential as a function of the field and the

running scale k. We presented analytical solutions for the O(N)-symmetric scalar theory

in the large N limit in three, four and two dimensions. The omission of the effects of
wavefunction renormalization is justified in four and three dimensions by the vanishing

of the anomalous dimension to leading order in 1/N . Parts of our results have been
obtained in the past [14, 7]. However, the emphasis of our work lies in the detailed study

of the influence of the classical parameters of the theory on the possible phase transitions.
We also gave a crude treatment of the Abelian Higgs model in four dimensions. The

enhanced complexity of the evolution equation for this last model made necessary the use
of additional approximations, which, however, do not affect the qualitative conclusions.

a) For the O(N)-symmetric scalar theory in the large N limit in three dimensions we
distinguish two types of behaviour: I) For a classical φ4 potential given by eq. (2.19) the

renormalized theory has a second order phase transition in dependence on κΛ. The uni-
versal behaviour near the transition is governed by the Wilson-Fisher fixed point and can

be parametrized by critical exponents. II) For a classical φ6 potential given by eq. (2.38)
there is a parameter range for which the renormalized theory has a second order phase

transition in dependence on κΛ, with universal critical behaviour. For another parameter

range the theory has a first order phase transition. The two regions are separated by a
tricritical line (at λΛ = 0) which displays tricritical behaviour with mean field exponents.

b) For the same theory in four dimensions the solution reproduces the “triviality” of the
critical theory and the vanishing of the renormalized quartic coupling.

c) In two dimensions the solution demonstrates that the renormalized theory cannot be
defined in the phase with spontaneous symmetry breaking and there is no phase transi-

tion, in agreement with the Mermin-Wagner theorem.
d) For the Abelian Higgs model in four dimensions we reproduce the Coleman-Weinberg

first order phase transition which is triggered by radiative corrections.
Our results on the universal behaviour of the three-dimensional scalar theory and on

the four-dimensional Abelian Higgs model are in agreement with refs. [16, 17, 20, 19],
where the evolution equations for the effective average action were studied with other

methods. Thus they provide an additional argument for the validity and applicability of
the method of the effective average action in a wide range of problems. The most impor-

tant aspect of our solutions, however, is that they are fully analytical and not restricted
in the vicinity of a possible infrared fixed point. They provide a concise, transparent pic-

ture of universal and non-universal behaviour, at all values of the field and the effective

infrared cutoff, for a variety of physical systems.
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Figure captions

Fig. 1 The effective average potential Uk(ρ) at different scales for a scalar model in the
large N limit. The classical potential is given by eq. (2.19) with κΛ = 1.2NC and

λΛ = 0.3/NC (d = 3).

Fig. 2 The derivative u′(ρ̃) of the rescaled potential at different scales for a scalar model
in the large N limit. The classical potential is given by eq. (2.19) with κΛ slightly

smaller than NC and λΛ = 0.3/NC (d = 3).

Fig. 3 The derivative u′(ρ̃) of the rescaled potential at different scales for a scalar model

in the large N limit. The classical potential is given by eq. (2.38) with κΛ = NC,
λΛ = 0.3/NC and σΛ = 0.84/(NC)2 (d = 3).

Fig. 4 The effective average potential Uk(ρ) at different scales for a scalar model in the

large N limit. The classical potential is given by eq. (2.38) with κΛ = 1.2NC,
λΛ = 0.3/NC and σΛ = 1/(NC)2 (d = 3).

Fig. 5 The approximate effective average potential Uk(ρ) at different scales for an Abelian

Higgs model with e2 = 2 and N = 11 real scalars. The classical potential is given by
eq. (2.19) with κΛ = 1 and λΛ = 0.01 (d = 4).
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