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Abstract

Using the Worldline formalism of QED we compute the two-loop effective

action induced by a charged scalar, respectively spinor particle in a general

constant electromagnetic field.

1 Introduction

The Euler-Heisenberg one-loop effective action, i.e. the effective action induced by
an electron loop in a constant electromagnetic field, was one of the first problems
to be adressed in the framework of Quantum Field Theory[1, 2]. In the language of
conventional Quantum Electrodynamics (QED) all corrections caused by a single
electron loop in a constant electromagnetic field were summarized by regarding this
field as a classical background field and introducing an extra term into the electron
propagator. Later on these calculations were generalized to two-loop level[3, 4, 5].

The Worldline formalism was discussed recently[6, 7, 8] as a method inspired by
analogies to string theory in the limit of infinite string tension[9]. It allows the sum-
mation of whole classes of Feynman graphs and therefore highly reduces the effort
of computing loop-corrections. Its power has been demonstrated reproducing field
theoretical results particularly in one- and two-loop QED[10, 11]. An application of
the Worldline formalism to the Euler-Heisenberg problem turns out to be natural,
as the approach chosen in standard field theory in this case is already somewhat
similar to the Worldline philosophy. Indeed it reduces to performing Gaussian path
integrals in the space of periodic and antiperiodic functions on the circle. In this
publication we give a generalization and completion of earlier work by D. Fliegner,
M. Reuter, C. Schubert and one of the authors[12, 13]. While they had only treated
purely magnetic fields before, we now cover general constant electromagnetic field
configurations. We again employ the dimensional regularization scheme, that had
been used to overcome technical problems of proper time regularization. After a
short introduction which will provide the master-formulas for the two-loop correc-
tions we shall separately discuss scalar and spinor QED.
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†E-mail: M.G.Schmidt@Thphys.Uni-Heidelberg.de.



Such results are of immediate use e.g. for testing quantum corrections to the
polarization tensor of the photon by means of a laser beam in an intense electromag-
netic field [14] or for computing corrections to the famous Casimir energy density
between two parallel plates[15]. Using the Worldline formalism it has also recently
been possible to clarify discrepancies between different results for amplitudes of
photon splitting in a background field[16].

2 The Worldline formalism of QED in a general

constant electromagnetic background field

Exploring the Dirac-action of a massive spinor-particle which couples through the
covariant derivative Dµ ≡ ∂µ − ieAµ to an abelian gauge field Aµ in the second
order formalism, one can express the effective action induced by a Dirac-particle
loop in an electromagnetic background field with potential Aµ and field strength
tensor Fµν by:

Γ[A] = −2

∫ ∞

0

dT

T
e−m2TDxDψ exp

(

−
∫ T

0

dτ

(

ẋ2

4
+

1

2
ψψ̇ + ieAµẋ

µ − ieψµFµνψ
ν

)

)

. (1)

The path integrals are performed over scalar fields x(τ) using periodic boundary
conditions x(0) = x(T ) and their Grassmannian superpartners ψ(τ) with antiperi-
odic boundary conditions ψ(0) = −ψ(T ). The “centre of mass” coordinate

x0 ≡
∫ T

0

x(τ)dτ (2)

of the scalar fields will then be subtracted, which results in a delta function for the
overall momentum conservation. The Worldline Lagrangian is invariant under the
world-sheet supersymmetry [17]

δǫx
µ = −1

2
ǫψµ, δǫψ

µ = ǫẋµ (3)

and the interaction part of Γ[A] can therefore be written as a supersymmetric
Wilson-loop. For this the two-loop correction again is known [10] and given by
the double contour integral insertion of

e2

2

Γ (d/2 − 1)

4πd/2

∫ T

0

dτadθa

∫ T

0

dτbdθb
DXµ

aDXµb

(Xa −Xb)d−2
(4)

=
e2

2

∫ T

0

dτadθa

∫ T

0

dτb dθb DX
µ
aDXµb

∫ ∞

0

dT̄ (4πT )−d/2 exp

(

− (Xµ
a −Xµ

b )2

4T̄

)

into the one-loop path integral (1). For brevity we introduced the superfield notation

Xµ
a (τ̂ ) ≡ Xµ

a (τ, θ) ≡ xµ(τa) +
√

2 θψµ(τa), (5)

D ≡ ∂

∂θ
− θ

∂

∂τ

with Grassmannian variables θa,b, but we shall return to component field represen-
tation later. For simplification of further notation we also define the operator Bab

by

(x(τa) − x(τb))
2 ≡

∫ T

0

dτ1

∫ T

0

dτ2 (x(τ1)Babx(τ2)). (6)

2



Assuming now the gauge field to be a constant, classical background field, we can
employ the Fock-Schwinger gauge Aµ = 1

2Fµνx
ν . Thereby all terms in the expo-

nential become bilinear and the evaluation of the two-loop effective action reduces
to the computation of Gaussian integrals, i.e. the computation of the functional
determinants of the the two bilinear operators considering their respective bound-
ary conditions. To obtain explicit results one can for instance use the spectral
representation in the Fourier basis [12]

DetP

(

− d2

dτ2
+ 2ieF

d

dτ
+
Bab

T̄

)

= (4πT )d det

(

sin(eFT )

eFT

)

det

(

I − Cab

T̄

)

DetA

(

I − 2ieF

(

d

dτ

)−1
)

= det (cos(eFT )) . (7)

The operator Cab will be defined in (12). We now only remain with performing the
ordinary determinants over Lorentz-indices. For this we shall have to specify the
Lorentz-frame we shall be working in in the following.

For scalar QED, the field theory of spinless, massive point particles, coupling to
an abelian gauge field, as expressed by the euclidean action

Sscal = φ†(−D2 +m2)φ, (8)

one finds in the Worldline formalism completely analogously effective actions for the
one- and two-loop level. The corresponding formulas are obtained from (1) and (4),
rewritten in the component field representation, by erasing all terms containing ψ,
as well as the prefactor −2. Alternatively stated in reversed order this means, that
spinor QED is obtained from scalar QED by substituting x(τ) by a supervariable
coordinate X(τ̂ ). In the following two chapters we shall now explicitly compute
the expressions we have got and find their functional and asymptotic dependence
on the field strengths of the electric and magnetic background fields, always using
dimensional regularization. This enables a direct comparison of these results of the
Worldline formalism to similar calculations of ordinary QED.

3 Scalar Quantum Electrodynamics

We shall first treat the simpler case of scalar theory and afterwards find its gen-
eralization to spinning particles. The starting point is the two-loop correction to
the Euler-Heisenberg Lagrangian in the Worldline formalism of scalar QED in a
constant electromagnetic background field. Using (7) in (1) and (4),we find [12]:

L(2)
scal[F ] = − e2

2(4π)d

∫ ∞

0

dT

T d/2+1
e−m2T

∫ ∞

0

dT̄

∫ T

0

dτa

∫ T

0

dτb

×det−1/2

(

sin(eFT )

eFT

)

det−1/2

(

T̄ − 1

2
Cab

)

〈ẋaẋb〉. (9)

The remaining contraction of the bosonic variables ẋa,b ≡ ẋ(τa,b) can be rewritten
in terms of Green’s functions:

〈ẋaẋb〉 = tr

(

G̈Bab +
1

2

(ĠBaa − ĠBab)(ĠBab − ĠBbb)

T̄ − 1
2Cab

)

. (10)

We used the modified Worldline Green’s function

GBab ≡ GB(τa, τb) ≡ 〈τa |
(

1

2

(

d2

dτ2
− 2ieF

d

dτ

))−1

| τb〉 (11)
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=
1

2(eF )2

(

eF

sin(eFT )
e−ieFTĠBab + ieF ĠBab −

1

T

)

and

Cab ≡ GBaa − GBab − GBba + GBbb (12)

=
cos(eFT )− cos(eFT ĠBab)

eFT sin(eFT )
.

The ordinary Worldline Green’s function inverts the operator 1
2∂

2
τ on a circle of

radius T . Up to an irrelevant constant it is given by

GBab ≡ GB(τa, τb) ≡| τa − τb | − (τa − τb)
2

T
, (13)

and its derivative with respect to the first variable is:

ĠBab = sign(τa − τb) − 2
(τa − τb)

T
. (14)

After a partial integration in τa (9) can be rearranged in a form, in which the
divergencies appearing in the integrations over T and τa,b are combined differently
and in a very suitable manner. This will be of particular use when we regularize
the integrations by introducing a new linear combination of the two expressions:

L̂(2)
scal[F ] = − e2

2(4π)d

∫ ∞

0

dT

T d/2+1
e−m2T

∫ ∞

0

dT̄

∫ T

0

dτa

∫ T

0

dτb (15)

×det−1/2

(

sin(eFT )

eFT

)

det−1/2

(

T̄ − 1

2
Cab

)

×1

2

(

tr(ĠBab)tr

(

ĠBab

T̄ − 1
2Cab

)

+ tr

(

(ĠBaa − ĠBab)(ĠBab − ĠBbb)

T̄ − 1
2Cab

))

.

Now all quantities in the Lagrangian are written as functions only depending on
the Schwinger proper time (SPT) variables T , T̄ and τa,b, the Worldline Green’s
function G as well as the field strength tensor F of the electromagnetic field.

It is well known that for any such field strength tensor there either exists a
Lorentz-frame, in which the electric and magnetic fields are parallel and their mag-
nitudes ǫ and η in this frame are relativistic invariants of the field, or they are
perpendicular in any frame[18]. In the latter case a Lorentz transformation can be
used to eliminate one of the fields, so we only have to deal with the first case. There-
fore F takes on a very simple form where only two symplectic block elements are
non zero, so that the determinants just factorize and the traces split into sums of the
different block-traces. One can further diagonalize F by the unitary transformation

U ≡ 1√
2









1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1









(16)

and read off the field strengths from the complex eigenvalues a and b of U †FU . To
simplify the notation by symmetrizing all expressions we introduce the eigenvalues
themselves as new variables:

a ≡ ǫ and b ≡ −iη. (17)
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In the conventional scalar QED parameter integral expressions for the one- [1, 2]
and two-loop [3, 4, 5] contributions to the Euler-Heisenberg Lagrangian are known
for a general, constant, respectively a purely magnetic, constant background field.
Using the above notations the unregularized effective one-loop Euler-Heisenberg
Lagrangian from standard QED is given by:

LQED
scal [F ] = L(0)

scal[F ] + L(1)
scal[F ] (18)

≡ a2 + b2

2
+

1

16π2

∫ ∞

0

dT

T 3
e−m2T

(

e2abT 2

sinh(eaT ) sinh(ebT )

)

.

Later on we shall need the subtracted version of the one-loop correction in dimen-
sional regularization:

L̄(1)
scal[F ] =

1

(4π)d/2

∫ ∞

0

dT

T d/2+1
e−m2

0
T

(

e2abT 2

sinh(eaT ) sinh(ebT )
+
e2(a2 + b2)T 2

6
− 1

)

.

(19)
Compared to the references given above, a Wick rotation of the integration variable
was performed in both formulas. Regarding the antisymmetry and blockform of
the field strength tensor, it is only necessary to know the trigonometric functions of
some matrix σ for the explicit computation of all functional expressions appearing
in the Worldline formula (9):

σ ≡
(

0 1
−1 0

)

. (20)

These are easily obtained by their power series expansions:

sin(σf) = σ sinh(f),

cos(σf) = I cosh(f). (21)

Using the definitions

I ≡
(

1 0
0 1

)

,

I1 ≡
(

I 0
0 0

)

,

σ1 ≡
(

σ 0
0 0

)

, (22)

and analogous expressions for I2 and σ2, F reads

F = aσ1 + bσ2. (23)

It is to be heeded that powers of F are evaluated in the Euclidean metric, otherwise
σ2 would always come with factors of i. Now we can freely employ (21) to calculate
the two-loop correction (9). Futher introducing v ≡ eaT and w ≡ ebT we get:

GBab =
T

2

(

I1

(

cosh(vĠBab)

v sinh(v)
+

1

v2

)

− iσ1

(

sinh(vĠBab)

v sinh(v)
+
ĠBab

v

)

(24)

+ I2

(

cosh(wĠBab)

w sinh(w)
+

1

w2

)

− iσ2

(

sinh(wĠBab)

w sinh(w)
+
ĠBab

w

))

,

ĠBab = I1
sinh(vĠBab)

sinh(v)
− iσ1

(

cosh(vĠBab)

sinh(v)
− 1

v

)

+ (1 ↔ 2, v ↔ w),
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G̈Bab = −I1
2v

T

cosh(vĠBab)

sinh(v)
+ iσ1

2v

T

sinh(vĠBab)

sinh(v)
+ (1 ↔ 2, v ↔ w),

ĠBaa = i cot(eFT )− i

eFT
= iσ1

(

1

v
− coth(v)

)

+ iσ2

(

1

w
− coth(w)

)

,

Cab = −I1
(

cosh(v) − cosh(vĠBab)

v sinh(v)

)

− I2

(

cosh(w) − cosh(wĠBab)

w sinh(w)

)

.

With some additional simplification of notation:

Gv
Bab ≡ T

2

cosh(v) − cosh(vĠBab)

v sinh(v)
,

Ġv
Bab ≡ sinh(vĠBab)

sinh(v)
,

γv ≡ 1

T̄ +Gv
Bab

,

γ ≡ 1

T̄ +GBab
, (25)

and similar definitions for Gw
Bab, Ġ

w
Bab and γw, one can insert (24) into (9). We

prefer to state the result immediately in dimensional regularization. Therefore we
follow the procedures in [13] and continue the field strength tensor to d = 4 + ǫ
dimensions by zero columns and rows, rescale to the unit circle according to τa,b ≡
ua,bT and finally use the translation invariance on the circle to eliminate the ub-
integration. This leads to:

GBab = ua(1 − ua),

ĠBab = 1 − 2ua =
√

1 − 4GBab. (26)

The contributions of the ǫ additional dimensions are obtained exactly like the terms
from vacuum dimensions in [12] and [13] and before integrating they are of course
of the order ǫ in the integrand. We now get:

det−1/2

(

sin(eFT )

eFT
(T̄ − 1

2
Cab)

)

=
v

sinh(v)

w

sinh(w)
γvγwγd/2−2,

〈ẏaẏb〉 = (4 − d) − 4

(

v
cosh(vĠBab)

sinh(v)
+ w

cosh(wĠBab)

sinh(w)

)

−γv(Ġv2
Bab + 4v2Gv2

Bab) − γw(Ġw2
Bab + 4w2Gw2

Bab) − γ
d− 4

2
Ġ2

Bab, (27)

and for (15) we also need:

1

2

(

tr(ĠBab)tr

(

ĠBab

T̄ − 1
2Cab

)

+ tr

(

(ĠBaa − ĠBab)(ĠBab − ĠBbb)

T̄ − 1
2Cab

))

=

2(Ġv
Bab + Ġw

Bab +
d− 4

2
ĠBab)(γ

vĠv
Bab + γwĠw

Bab + γ
d− 4

2
ĠBab)

−γv(Ġv2
Bab + 4v2Gv2

Bab) − γw(Ġw2
Bab + 4w2Gw2

Bab) − γ
d− 4

2
Ġ2

Bab. (28)

The tadpole contribution proportional to δ(τa − τb) from G̈Bab is vanishing in di-
mensional regularization and was already eliminated in (27). By inserting into (9)
and (15) with (26), we obtain expressions for the integrands that exclusively depend
on T , T̄ and ua. Now a discussion of the divergencies in the various integrations
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is possible and we do this by following carefully the steps of [13] again. Although
the integration over T̄ can also be performed in closed form at fixed and finite T
and ua, we will prefer to expand the integrand in T and ua, the critical variables,
and only then integrate the coefficients of the expansion term by term over T̄ . The
necessary interchange of the integration over T̄ with the differentiation with respect
to T is allowed by a rule of Leibniz. Writing the Worldline two-loop correction

L(2)
scal[F ] = − e2

2(4π)d

∫ ∞

0

dT

T d−1
e−m2T

∫ ∞

0

dT̄

∫ 1

0

dua I(T, T̄ , ua, d), (29)

where we have called the rescaled variable again T̄ , we find that the integration
over T causes divergencies by those terms of the expansion of I(T, T̄ , ua, d), that
are constant or quadratic in T , as no odd powers are occurring at all. The analysis
of the ua-integration is more complicated. Here all powers of GBab that are negative

in d = 4 lead to divergencies. Particularly the power G
1−d/2
Bab contributes a 1/ǫ pole:

∫ 1

0

duaG
1−d/2
Bab =

∫ 1

0

dua

(ua(1 − ua))1+ǫ/2
= B

(

− ǫ

2
,− ǫ

2

)

= −4

ǫ
+ o(ǫ), (30)

with the Euler-Betafunction B(α, β) ≡ Γ(α)Γ(β)/Γ(α + β). Correspondingly the

power G
−d/2
Bab implies another 1/ǫ divergency. In fact, such terms are existing in the

integrated coefficients of the expansion of I(T, T̄ , ua, d) in powers of T :

∫ ∞

0

dT̄ I(T, T̄ , ua, d) = −d− 2 + 8GBab

(d− 2)G
d/2
Bab

− v2 + w2

6d(d− 2)G
d/2
Bab

(31)

×
(

d(2 − d) + 2(d2 − 6d+ 16)GBab + 16(d− 14)G2
Bab

)

+ o(T 4).

If we introduce a similar integrand Î(T, T̄ , ua, d) for L̂(2)
scal[F ] from (15) and expand

following the same procedures, we find

∫ ∞

0

dT̄ Î(T, T̄ , ua, d) =
(d− 1)(1 − 4GBab)

G
d/2
Bab

− v2 + w2

6dG
d/2
Bab

(32)

×
(

d(d− 1) − (6d2 − 22d+ 16)GBab + 8(d− 2)(d− 7)G2
Bab

)

+ o(T 4).

We now recognize the possibility to arrive at an expression for the integrand, in

which no orders G
−d/2
Bab are present in the expansion in powers of T , by using the

linear combination:
d− 1

d
L(2)

scal[F ] +
1

d
L̂(2)

scal[F ]. (33)

Terms of order G
−d/2
Bab cancel precisely, those in the constant contribution as well as

those in the quadratic. Furthermore we got a cancellation of subdivergencies in the
quadratic term, the one proportional to the Maxwell energy density FµνFµν , which
is now of the order ǫ0. This results in a serious simplification of the regularization
procedure, as we shall experience in the following. We again obtain an expansion:

K(T, ua, d) ≡
∫ ∞

0

dT̄

(

d− 1

d
I(T, T̄ , ua, d) +

1

d
Î(T, T̄ , ua, d)

)

(34)

= K02(T, ua, d) + f(T, d)G
1−d/2
Bab + o

(

T 4, G
2−d/2
Bab

)

,

where now the divergencies are completely separated into

7



K02(T, ua, d) = −4
d− 1

d− 2
G

1−d/2
Bab − 2(v2 + w2)

3d(d− 2)
(35)

×G1−d/2
Bab (GBab(2d

2 − 18d+ 4) − (d− 4)(d− 1)),

f(T, d) = 4
d− 1

d− 2
− 2(d− 4)(d− 1)

3d(d− 2)
(v2 + w2) − 8(d− 1)

d(d− 2)

vw

sinh(v) sinh(w)

×
(

v coth(v) + w coth(w) +
d− 4

2

)

.

K02(T, ua, d) carries all divergent contributions of the T -integration, while f(T, d)
is of fourth order in T and therefore only divergent in the ua-integration. After
subtracting these two terms, the integral

K(T, ua, 4) −K02(T, ua, 4) − f(T, 4)G−1
Bab (36)

can easily be computed elementary and the remaining integrations over T und ua

stay finite. Therefore a set of subtraction terms (35) is found and the Worldline two-
loop correction to the Euler-Heisenberg Lagrangian from (9) is regularized. If one
further wants to obey the correct electron mass renormalization in the subtraction
prescription, i.e. perform on shell subtraction, one has to adjust the finite part of
the subtraction terms, which is determined by f(T, d), in a way that the relation

δL(2)
scal[F ] = δm2

0

∂

∂m2
0

L̄(1)
scal[F ] (37)

with

δm2
0 =

αm2
0

4π

(

−6

ǫ
+ 7 − 3(γ − ln(4π)) − ln(m2

0)

)

+ o(ǫ) (38)

holds. These conditions are derived in standard QFT, γ is the usual Euler constant.
Observing now that f(T, d) satisfies

f(T, d) =
8(d− 1)

d(d − 2)
T 1+d/2 d

dT

(

T−d/2

(

vw

sinh(v) sinh(w)
+
v2 + w2

6
− 1

))

(39)

one verifies by partial integration of the derivative term in f(T, d) and the use of
(30):

δm2
0

∂L̄(1)
scal[F ]

∂m2
0

= − α

2(4π)3

∫ ∞

0

dT

T d−1
e−m2

0
T

∫ 1

0

dua f(T, d) G
1−d/2
Bab (40)

+
αm2

0

(4π)3

∫ ∞

0

dT

T 2
e−m2

0
T

(

−3(γ + ln(m2
0T )) +

3

m2
0T

+
9

2

)

×
(

vw

sinh(v) sinh(w)
+
v2 + w2

6
− 1

)

+ o(ǫ).

We now have the final result for the on shell renormalized two-loop Worldline cor-
rection to the Euler-Heisenberg Lagrangian for scalar QED:

L̄(2)
scal[F ] = − α

2(4π)3

∫ ∞

0

dT

T 3
e−m2

0
T

∫ 1

0

dua (K(T, ua, 4) −K02(T, ua, 4)) − δm2
0

∂L̄(1)
scal[F ]

∂m2
0

= − α

2(4π)3

∫ ∞

0

dT

T 3
e−m2T

∫ 1

0

dua

(

K(T, ua, 4) −K02(T, ua, 4) − f(T, 4)G−1
Bab

)

+
αm2

(4π)3

∫ ∞

0

dT

T 2
e−m2T

(

e2abT 2

sinh(eaT ) sinh(ebT )
+
e2(a2 + b2)T 2

6
− 1

)

×
(

−3(γ + ln(m2T )) +
3

m2T
+

9

2

)

. (41)

8



Comparing to the result for a purely magnetic field in [13] a rather similar structure
of terms is apparent. One only has to substitute in the sense that terms for the
magnetic field are accompanied by electric ones. Still these substitutions are not
as easy to be guessed in detail as the fairly simple structure of our result might
suggest. Particularly the divergent subtraction terms cannot be copied from the
magnetic case.

In (41) the terms in the expansion, which are constant and quadratic in T ,
are just compensated by K02(T, ua, 4), as are terms proportional to 1/GBab by
f(T, 4)/GBab. The finite contribution derives exclusively from K(T, ua, 4) and the
second integral and is adjusted to reproduce the correct electron mass renormaliza-
tion. If one expands the terms in the integrand to higher orders in the fields and
performs all the integrations, the contributions from f(T, 4)/GBab of course cancel
the divergencies of K(T, ua, 4) and one can identify in the coefficients the relativistic
invariants F 2 and FF̃ in polynomials in a2 and b2. The expansion to the fourth
power of e2 reads:

L̄(2)
scal[F ] =

α3

πm4

(

275(a4 + b4) + 422a2b2

2592

)

(42)

− α4

m8

(

5159(a6 + b6)

16200
+

8881(a4b2 + a2b4)

16200

)

+
πα5

m12

(

751673(a8 + b8)

264600
+

39905(a2b6 + a6b2)

7938
+

323431 a4b4

56700

)

+ o(e10)

=
α3

πm4

(

275(ǫ2 − η2)2

2592
+

4(ǫη)2

81

)

− α4

m8

(

5159(ǫ2 − η2)3

16200
+

1649(ǫ2 − η2)(ǫη)2

4050

)

+
πα5

m12

(

751673(ǫ2 − η2)4

264600
+

628697(ǫ2 − η2)2(ǫη)2

99225
+

132134(ǫη)4

99225

)

+ o(e10),

where we have resubstituted the field strengths from (17). The terms of first order
in e2 coincide exactly with results from conventional QED [3, 4] and for a purely
magnetic field in the limit η → 0 the earlier results [13] of the Worldline formalism
are reproduced. Higher order terms of this expansion are easily extracted from (41).

4 Spinor Quantum Electrodynamics

We first state the unregularized Lagrangian on the one-loop level from conventional
spinor QED [1, 2, 3, 4]:

LQED
spin [F ] = L(0)

spin[F ] + L(1)
spin[F ]

≡ ǫ2 − η2

2
− 1

8π2

∫ ∞

0

dT

T 3
e−m2T vw

tanh(v) tanh(w)
, (43)

and the dimensional regularized one-loop correction:

L̄(1)
spin[F ] = − 2

(4π)d/2

∫ ∞

0

dT

T d/2+1
e−m2

0
T

(

vw

tanh(v) tanh(w)
− (v2 + w2)

3
− 1

)

.

(44)
Again we have performed a Wick rotation of the integration variable, otherwise the
notation is adopted from chapter 3.
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In evaluating the expressions of the Worldline formalism we in general again
follow the methods of [13]. The calculation (7) of the functional determinants in the
Worldline formulas (1) and (4) for the two-loop correction to the supersymmetrized
Lagrangian results in the following SPT-integral:

L(2)
spin[F ] =

e2

(4π)d

∫ ∞

0

dT

T d/2+1
e−m2T

∫ ∞

0

dT̄

∫ T

0

dτadτb

∫

dθadθb (45)

×det−1/2

(

tan(eFT )

eFT

)

det−1/2

(

T̄ − 1

2
Ĉab

)

〈−DxaDxb〉.

The contractions of superderivatives can be expressed in terms of super Green’s
functions, substituting the Green’s function of the scalar case. Instead we imme-
diately write the result in the component field representation, in which the super
Green’s functions split into modified bosonic and fermionic Green’s functions GBab

and GFab, and use a partial integration in τa to remove second derivative terms and
do the Grassmann-integrations as well:

L(2)
spin[F ] =

e2

2(4π)d

∫ ∞

0

dT

T d/2+1
e−m2T

∫ ∞

0

dT̄

∫ T

0

dτa

∫ T

0

dτb (46)

×det−1/2

(

tan(eFT )

eFT

)

det−1/2

(

T̄ − 1

2
Cab

)

×
(

tr
(

ĠBab

)

tr

(

ĠBab

T̄ − 1
2Cab

)

− tr (GFab) tr

( GFab

T̄ − 1
2Cab

)

+ tr

(

(ĠBaa − ĠBab)(ĠBab − ĠBbb + 2GFaa) + GFabGFab − GFaaGFbb

T̄ − 1
2Cab

))

.

The modified fermionic Green’s function is defined by:

GFab ≡ GF (τa, τb) ≡ 〈τa |
(

1

2

(

d

dτ
− 2ieF

))−1

| τb〉 (47)

= GF (τa, τb)
e−ieFTĠBab

cos(eFT )
.

The usual fermionic Worldline Green’s function GFab is the inverse of 1
2∂τ on the

circle with antiperiodic boundary conditions:

GF (τa, τb) ≡ sign(τa − τb). (48)

Some of the expressions in (46) can already be found in (27) and (28), some more
are still to be computed. Using (21) first we find an explicit representation for the
fermionic Green’s function GFab and its coincidence limit GFaa:

GFab = sign(τa − τb)

(

I1
cosh(vĠBab)

cosh(v)
− iσ1

sinh(vĠBab)

cosh(v)
+ (1 ↔ 2, v ↔ w)

)

,

GFaa ≡ −i tan(eFT ) = −iσ1 tanh(v) − iσ2 tanh(w). (49)

Together with (24) the remaining determinants and traces can be calculated easily
and are stated directly in d = 4 + ǫ dimensions:

det−1/2

(

tan(eFT )

eFT

)

=
v

tanh(v)

w

tanh(w)
, (50)

tr (GFab) tr

( GFab

T̄ − 1
2Cab

)

= 4

(

cosh(vĠBab)

cosh(v)
+

cosh(wĠBab)

cosh(w)
+
d− 4

2

)
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×
(

γv cosh(vĠBab)

cosh(v)
+ γw cosh(wĠBab)

cosh(w)
+ γ

d− 4

2

)

,

tr

(

2GFaa(ĠBaa − ĠBab)

T̄ − 1
2Cab

)

= 4

(

γv

(

1 − cosh(vĠBab)

cosh(v)

)

+ γw

(

1 − cosh(wĠBab)

cosh(w)

))

,

tr

(GFabGFab − GFaaGFbb

T̄ − 1
2Cab

)

= 2

(

γv cosh2(vĠBab) + sinh2(vĠBab) − sinh2(v)

cosh2(v)

+ γw cosh2(wĠBab) + sinh2(wĠBab) − sinh2(w)

cosh2(w)
+ γ

d− 4

2

)

.

Inserting into (46), we can arrange the integrand in a form, in which it explicitly
only depends on the SPT-variables, respectively the Green’s functions. As in the
scalar case we rescale the T̄ -integration to the unit cirle and employ translation
invariance of the zero-point to set τb = 0, which implies sign(τa − τb) = 1, so
that (26) is also satisfied again. We then introduce an integrand J(T, T̄ , ua, d) in
accordance with

L(2)
spin[F ] =

e2

(4π)d

∫ ∞

0

dT

T d−1
e−m2T

∫ ∞

0

dT̄

∫ 1

0

duaJ(T, T̄ , ua, d), (51)

which we expand under the integral in powers of T and GBab. To identify the sub-
traction terms, integration and differentiation are interchanged and the T̄ -integration
is performed coefficient by coefficient:

L(T, ua, d) ≡
∫ ∞

0

dT̄ J(T, T̄ , ua, d) = L02(T, ua, d)+g(T, d)G
1−d/2
Bab +o

(

T 4, G
2−d/2
Bab

)

.

(52)
In contrast to scalar QED right from the beginning no terms are appearing that

were proportional to G
−d/2
Bab , and the Maxwell term is of the order ǫ0, so that the

Lagrangian from (46) can be regularized analogously to (34) without any further
modification. For the divergent coefficients we find:

L02(T, ua, d) = −4(d− 1)G
1−d/2
Bab − v2 + w2

3d
(53)

×
(

4(d− 1)(d− 4)G
1−d/2
Bab + 4(d− 2)(d− 7)G

2−d/2
Bab

)

,

g(T, d) = −4(d− 1)

3d

((

vw

tanh(v) tanh(w)

)

(6v(coth(v) − tanh(v))

+ 6w(coth(w) − tanh(w)) + 3(d− 4)) − (d− 4)(v2 + w2) − 3d
)

.

Because of g(T, d) = o(T 4) the divergencies are completely seperated. To obey the
on shell subtraction scheme, i.e. to choose the finite subtraction term appropriate

to have (37) satisfied by δL(2)
spin[F ] as well, we relate g(T, d) to L̄(1)

spin[F ] again by a
partial integration:

g(T, d) =
8(d− 1)

d
T d/2+1 d

dT

(

T−d/2

(

vw

tanh(v) tanh(w)
− v2 + w2

3
− 1

))

. (54)

Using further

δm2
0 =

αm2
0

4π

(

−6

ǫ
+ 4 − 3(γ − ln(4π)) − 3 ln(m2

0)

)

+ o(ǫ) (55)
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with (30), one now confirms by partial integration of the derivative term in g(T, d)
that:

δm2
0

∂L̄(1)
spin[F ]

∂m2
0

=
α

(4π)3

∫ ∞

0

dT

T d−1
e−m2

0
T

∫ 1

0

dua g(T, d) G
1−d/2
Bab (56)

+
αm2

0

(4π)3

∫ ∞

0

dT

T 2
e−m2

0
T

(

vw

tanh(v) tanh(w)
− v2 + w2

3
− 1

)

×
(

18 − 12γ − 12 ln(m2
0T ) +

12

m2
0T

)

.

Finally we obtain the result for the on shell renormalized two-loop correction to the
Euler-Heisenberg Lagrangian in spinor QED:

L̄(2)
spin[F ] =

α

(4π)3

∫ ∞

0

dT

T 3
e−m2

0
T

∫ 1

0

dua (L(T, ua, 4) − L02(T, ua, 4)) − δm2
0

∂L̄(1)
spin[F ]

∂m2
0

=
α

(4π)3

∫ ∞

0

dT

T 3
e−m2T

∫ 1

0

dua

(

L(T, ua, 4) − L02(T, ua, 4) − g(T, 4)G−1
Bab

)

− α

(4π)3

∫ ∞

0

dT

T 2
e−m2T

(

e2abT 2

tanh(eaT ) tanh(ebT )
− e2(a2 + b2)T 2

3
− 1

)

×
(

18 − 12γ − 12 ln(m2T ) +
12

m2T

)

. (57)

The T̄ -integration of J(T, T̄ , ua, d) can again be performed elementarily for finite
values of the other variables and the remaining parameter integral stays finite. The
cancellations of the divergent parts of the integral over L(T, ua, 4) occurr exactly
in the same manner as in the scalar expression and the second integral adjusts the
electron mass renormalization. We also find structural similarities to the results for
a purely magnetic background field. The expansion of the integrand to the fourth
order in e2 leads to:

L̄(2)
spin[F ] =

α3

πm4

(

16(ǫ2 − η2)2

81
+

263(ǫη)2

162

)

(58)

− α4

m8

(

1219(ǫ2 − η2)3

2025
+

8656(ǫ2 − η2)(ǫη)2

2025

)

+
πα5

m12

(

541232(ǫ2 − η2)4

99225
+

470912(ǫ2 − η2)2(ǫη)2

11025
+

3815584(ǫη)4

99225

)

+ o
(

e10
)

.

It is very easy to obtain higher orders from the given formulas. The lowest order in
e2 is perfectly matching the results from standard spinor QED[3, 4]. Of course, the
expansion reproduces earlier Worldline results for the purely magnetic field [13] in
the limit η → 0.
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