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Abstract: We report on the status of the string-inspired world
line path integral formalism, a recently developed powerful tool
for the reorganisation of standard perturbative amplitudes in
quantum field theory. The method is outlined and the present
range of its applicability surveyed. The emphasis is on QED and
QCD photon/gluon amplitudes, with a short discussion of axial
couplings.
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1 Historical Remarks

50 years ago Feynman developed, in the paper which we are celebrating
at this conference [1], the formulation of quantum mechanics in terms of
path integrals. In the following years he invented the manifestly relativistic
framework for perturbative calculations in second-quantized quantum field
theory which we are still using today. What is perhaps not so well-known
is that, at the time, Feynman was also experimenting with an alternative
approach to quantum field theory based on his previous work on the quan-
tum mechanical path integral. While he did not publish much about this
first-quantized approach, in the appendix A of [2] he shortly discusses it
for the case of scalar quantum electrodynamics, “for its own interest as an
alternative to the formulation of second quantization”. What he states here
is that the amplitude for a charged scalar particle to move, under the influ-
ence of the external potential Aµ, from point x to x′ in Minkowski space is
given by

∫

∞

0
dT

∫

x(T )=x′

x(0)=x
Dx(τ)e−

1

2
im2T exp

[

−
i

2

∫ T

0
dτ(

dxµ

dτ
)
2

− i

∫ T

0
dτ
dxµ

dτ
Aµ(x(τ))

−
i

2
e2

∫ T

0
dτ

∫ T

0
dτ ′

dxµ

dτ

dxν

dτ ′
δ+(x(τ) − x(τ ′))

]

(1.1)

That is, for a fixed value of the proper-time T one can construct the ampli-
tude as a certain quantum mechanical path integral. This path integral is
to be performed over the set of all open trajectories running from x to x′ in
the given proper-time. The action consists of the familiar kinetic term, and
two interaction terms. Of those the first one represents the interaction with
the external field, to all orders in the field, while the second one describes
an arbitrary number of virtual photons emitted and re-absorbed along the
trajectory of the particle (δ+ denotes the photon propagator). This simple
path integral formula thus corresponds to an infinite number of Feynman
diagrams. Feynman then shows how to extend it to a path integral formula
for the complete scalar QED S-matrix. Extensions to spinor QED were also
constructed by Feynman and others [3].

While Feynman himself did not make further use of those formulas, other
authors over the years applied them to a variety of problems in quantum field
theory, ranging from QED [4] to nonabelian gauge theory [5], anomalies
[6], and meson-nucleon theory [7]. Still it is fair to say that this approach
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never became really popular, nor did any standard way for calculating this
type of path integral emerge.

Renewed interest in the first-quantized approach was generated in recent
years following the work of Bern and Kosower, who succeeded in deriving
new rules for the construction of one-loop QCD amplitudes by analyzing the
infinite string tension limits of the corresponding amplitudes in an appro-
priate string model [8]. Those string amplitudes are represented in terms of
the Polyakov path integral, a first-quantized path integral of the same type
as Feynman’s “world line” path integral above. It is thus not too surpris-
ing that it turned out to be possible [9] to rederive those “Bern-Kosower
Rules” by representing the QED/QCD one-loop effective action in terms of
such path integrals, and evaluating them in a way analogous to string theory
[10].

2 Photon Scattering in Quantum Electrodynamics

In the case of spinor QED, the generalization of eq.(1.1) appropriate in the
“stringy” context is the following,

Γ[A] =−2

∫

∞

0

dT

T
e−m2T

∫

DxDψ exp

[

−

∫ T

0
dτ

(1

4
ẋ2+

1

2
ψψ̇+ieAµẋ

µ−ieψµFµνψ
ν
)

]

(2.1)
Here Γ[A] denotes the one-loop (Euclidean) effective action for the Maxwell
field due to an electron loop. Now we have, in addition to a path integral
over the closed loops in spacetime xµ(τ), xµ(T ) = xµ(0), an additional path
integral over the space of antiperiodic Grassmann functions ψµ(τ) represent-
ing the electron spin. In the “string–inspired” approach, the path integrals
over x and ψ are evaluated by one-dimensional perturbation theory, using
the Green’s functions

〈xµ(τ1)x
ν(τ2)〉 = −gµνGB(τ1, τ2) = −gµν

[

|τ1−τ2 | −
(τ1−τ2)

2

T

]

〈ψµ(τ1)ψ
ν(τ2)〉 =

1

2
gµνGF (τ1, τ2) =

1

2
gµνsign(τ1 − τ2) (2.2)

(The bosonic Wick contraction is actually carried out in the relative co-
ordinate of the loop, while the integration over its average position yields
energy–momentum conservation.)
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One–loop scattering amplitudes are obtained by specializing the back-
ground to a finite sum of plane waves of definite polarization. In the case of
scalar QED this leads to the following extremely compact “Bern-Kosower
master formula” for the one-loop (off-shell, dimensionally regularized) N-
photon amplitude,

Γ[k1, ε1; . . . ; kN , εN ] = (−ie)N
∫

∞

0

dT

T
[4πT ]−

D
2 e−m2T

N
∏

i=1

∫ T

0
dτi

× exp

{ N
∑

i,j=1

[
1

2
GBijki · kj − iĠBijεi · kj +

1

2
G̈Bijεi · εj ]

}

|multi−linear (2.3)

(GB(τ1, τ2) ≡ GB12 etc.). Here it is understood that only the terms linear
in all the ε1, . . . , εN have to be taken. D denotes the spacetime dimension.
Besides the Green’s function GB also its first and second derivatives appear,
ĠB(τ1, τ2) = sign(τ1 − τ2) − 2 (τ1−τ2)

T
, G̈B(τ1, τ2) = 2δ(τ1 − τ2) −

2
T
. Dots

generally denote a derivative acting on the first variable. For the fermion
QED case an analogous formula can be written using a superfield formalism
[11, 12]. Alternatively the additional terms from the Grassmann path in-
tegration can also be generated by performing a certain partial integration
algorithm on the above expression, and then applying a simple “substitution
rule” on the result [8]. For example, the following representation is obtained
after partial integration for the one-loop 4-photon amplitude in scalar QED
[13],

Γ[{ki, εi}] = e4
∫

∞

0

dT

T
[4πT ]−

D
2 e−m2T

4
∏

i=1

∫ T

0
dτi (Q4

4 +Q3
4 +Q2

4 −Q22
4 )e

1

2
GBijki·kj

Q4
4 = ĠB12ĠB23ĠB34ĠB41Z4(1234) + 2 permutations

Q3
4 = ĠB12ĠB23ĠB31Z3(123)ĠB4iε4 · ki + 3 perm.

Q2
4 = ĠB12ĠB21Z2(12)

{

ĠB3iε3 · kiĠB4jε4 · kj

+
1

2
ĠB34ε3 · ε4

[

ĠB3ik3 · ki − ĠB4ik4 · ki

]

}

+ 5 perm.

Q22
4 = ĠB12ĠB21Z2(12)ĠB34ĠB43Z2(34) + 2 perm.

(2.4)

Here summation over dummy indices from 1, . . . , 4 is understood, and
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Z2(ij) ≡ εi · kjεj · ki − εi · εjki · kj

Zn(i1i2 . . . in) ≡ tr
n

∏

j=1

[

kij ⊗ εij − εij ⊗ kij

]

(n ≥ 3)

This formula has all properties which one could possibly demand from an
integral representation for this amplitude, namely i) it provides a maximal
gauge invariant decomposition, ii) manifest term-by-term UV finiteness, iii)
permutation symmetry, iv) it represents the complete amplitude rather than
a single Feynman diagram. The full set of Bern-Kosower rules allows one
to use it to construct, by mere pattern matching, not only its spinor QED
equivalent, but also the corresponding gluonic amplitudes.

3 QED in a Constant Field

The presence of an additional constant external field Fµν can be shown to
change the master formula eq.(2.3) to [12, 14]

Γ[k1, ε1; . . . ; kN , εN ] = (−ie)N
∫

∞

0

dT

T
[4πT ]−

D
2 e−m2T det−

1

2

[

sin(eFT )

eFT

]

×
N
∏

i=1

∫ T

0
dτi exp

{ N
∑

i,j=1

[
1

2
ki · GBij · kj − iεi · ĠBij · kj +

1

2
εi · G̈Bij · εj ]

}

|multi−linear

(3.1)

where z = eFT , and

GB(τ1, τ2) =
T

2z2

(

z

sin(z)
e−izĠB12 + izĠB12 − 1

)

GF (τ1, τ2) = GF12
e−izĠB12

cos(z)
(3.2)

For example, using this formula with N = 2 it takes only a few lines to
calculate the QED vacuum polarization tensor in a general constant field,
a calculation which in field theory is already substantial. The N = 3 case
was used in [15] for a recalculation of the photon splitting amplitude in a
magnetic field, and also showed a significant gain in efficiency.
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Much less explored are presently the QED amplitudes involving external
scalars [16] or fermions [17], for which no equally elegant formulation has
been found so far as in the photon case.

4 Other Field Theories

Eq.(2.1) generalizes to the case of an external non-abelian gauge field sim-
ply by the addition of a colour trace, and the path-ordering operator. The
accomodation of internal gluons is also possible but more involved; it re-
quires the introduction of auxiliary degrees of freedom in the loop whose
contributions have to be projected out [9, 12].

While worldline representations for gauge couplings have been discussed
for decades, only following the development of the “string-inspired” formal-
ism systematic searches for generalizations to other field theories were un-
dertaken. Appropriate path integrals are now available for the fermion loop
coupled to external (pseudo-)scalars [18, 19], axial-vectors [20, 21], and an-
tisymmetric tensors [21]. Those constructions were based on a dimensional
reduction procedure from six-dimensional gauge theory. A particularly sim-
ple and direct construction exists for the case where only a vector field A

and axial-vector field A5 are present [22]. It expresses the effective action
Γ[A,A5] in terms of the same path integral formula as in eq.(2.1), with the
worldline Lagrangian replaced by

L(τ) −→ L(τ) − 2iγ̂5ẋ
µψµψνA

ν
5 + iγ̂5∂µA

µ
5 + (D − 2)A2

5 (4.1)

Here the operator γ̂5 has the effect of flipping the boundary conditions for
the Grassmann path integral from antiperiodic to periodic. In the presence
of pseudo-scalars or axial-vectors the evaluation of fermion loops is expected
to give rise to ε – tensors. In the worldline formalism those are produced
by the Grassmann zero mode integral which one has for periodic boundary
conditions. The above worldline Lagrangian turned out to be very suitable to
the calculation of the vector – axial vector amplitude in a constant external
field [23].
For an application of the pseudoscalar path integral to axion decay see [24].
Steps towards an extension to curved backgrounds were undertaken in [25].

5



5 Multiloop Extension

Since the one-loop parameter integral representations obtained in the world-
line formalism are generally valid off-shell, they can be used to construct
higher – loop amplitudes by sewing. A more elegant route to multi-loop
extension is provided by the introduction of worldline multiloop Green’s
functions [26]. Those are effective worldline propagators taking the effect
of propagator insertions into the one-loop graph into account. As shown
in [27] they are the leading-order coefficients of the corresponding string-
theoretic worldsheet Green’s functions in the 1

α′ – expansion.
In either case one arrives at integral representations for multiloop am-

plitudes in φ3 – theory [26, 28], QED [11, 16] or QCD [29] that are of
a similar form as our one-loop formulas above. However here we find the
additional interesting feature that a single worldline parameter integral may
contain contributions from many Feynman diagrams of different topologies.
In [11] the usefulness of this property was demonstrated for the case of
the 2-loop scalar and spinor QED β – functions. The concept of multiloop
worldline propagators can be generalized to the constant external field case
as in the one-loop case. This was used for recalculations of the 2-loop scalar
and spinor QED Euler-Heisenberg Lagrangians [12, 30].

6 Conclusions

To summarize, by now there is sufficient practical experience indicating that
the worldline path integral formalism is an excellent tool for the calculation
of the QED photon S-matrix in general, and definitely superior to standard
field theory for problems involving constant external fields. While here we
have concentrated on amplitude calculations, similar improvements on field
theory were found also in calculations of the effective action itself in the
inverse mass expansion [31]. By now a variety of extensions to other types
of amplitudes exist, though those have not been sufficiently tested yet to
allow for general statements on their efficiency as a calculational tool.
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