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Zero Energy States for SU(N):
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Abstract

We show that the requirement of S3 × Spin(d) in-

variance for an “asymptotically free” SU(3)-Cartan

subalgebra wave-function does not give a unique can-

didate for a SU(3)-invariant zero energy state of the

d = 9 supersymmetric matrix model– nor does it

rule out the existence of such a state in the case

d = 3. For d = 9 we explicitly construct various

S3 × Spin(9)-invariant wave-functions.

http://lanl.arxiv.org/abs/hep-th/9909191v2


Due to coherent evidence1 that, asymptotically, a zero energy state of
a SU(N)-invariant supersymmetric matrix model in d = 3, 5 or 9 dimen-
sions factorizes into a part involving only the Cartan subalgebra degrees of
freedom (with effectively free dynamics) and a part forming supersymmetric
harmonic oscillators, the following “wishful conjecture” appeared:

CW: For each N ≥ 2, and d = 9, the free Laplacian (times the unit operator
in a 2(N−1)(d−1)-dimensional Fock space) admits exactly one Spin(d) × SN

invariant wavefunction (where SN denotes the permutation group of N let-
ters) which is square integrable at ∞ and harmonic everywhere except at
the origin, –whereas for d = 5 and 3 no such function exists.

If true, CW would provide further evidence for the global existence of a
unique (normalizable) zero energy state for d = 9, and (assuming effectively
free dynamics for the Cartan subalgebra part) prove the nonexistence of a
global zero energy state for d = 3 and 5.

For N = 2, the d = 9 part of CW is implied by [4], [5], while the
nonexistence for d = 3 and 5 was proven in [6], [3].

In this note we shall prove CW to be wrong (for N = 3), by explicit
construction of five linearly independent S3 × Spin(9)-invariant, and one
S3 × Spin(3)-invariant, wave-functions.

For N = 3, the ingredients are the tensor product of two copies of a
2d−1-dimensional Fock space H, each decomposing as

H4 = {1} ⊕ {1} ⊕ {2} (1)

H16 = {1} ⊕ {1} ⊕ {1} ⊕ {5} ⊕ {4} ⊕ {4} (2)

H256 = {44} ⊕ {84} ⊕ {128} (3)

under Spin(d), respectively (where we write {n} for an irreducible represen-
tation space of dimension n), and the space of all harmonic polynomials in
2d variables z = (x, y) where za =: xa for a ≤ d and za =: ya−d for a > d.
An arbitrary harmonic polynomial of degree l takes the form

h(z) =
∑

1≤a1···al≤2d

ca1···al
za1 · · · zal

(4)

1See e.g. [1] and references therein (note also [2]); a complete derivation for SU(2) can
be found in [3].

1



where the tensor c is totally symmetric and traceless between any two in-
dices. As (setting r :=

√
∑

a(za)
2)

(( ∂

∂r

)2
+

2d− 1

r

∂

∂r
− l(l + 2d− 2

r2

)

r−l−(2d−2) = 0, (5)

each homogeneous harmonic polynomial of degree l may be multiplied by
r−2l−(2d−2) (to ensure a square integrable fall-off at ∞), without losing har-
monicity away from the origin.

The Weyl group for SU(N) is known to be the symmetric group SN ,–
which for N = 3 has only three pairwise inequivalent irreducible repre-
sentations, namely the trivial representation in a one-dimensional module
(denoted by {1}), the alternating representation by the sign of the per-
mutations in a one-dimensional module (denoted by ǫ), and the standard
representation in a two dimensional module (denoted by ρ) which in some
orthonormal basis takes the following form:

1 =

(

1 0
0 1

)

, C = 1
2

(

−1
√

3

−
√

3 −1

)

, C2 = 1
2

(

−1 −
√

3√
3 −1

)

,

P =

(

1 0
0 −1

)

, P ′ = 1
2

(

−1
√

3√
3 1

)

, P ′′ = 1
2

(

−1 −
√

3

−
√

3 1

)

,

(6)

where C and C2 denote the two nontrivial cyclic permutations and P,P ′, P ′′

denote the three transpositions. Taking traces, the characters of the above
irreducible representations are easily computed to take the following values
on the three conjugacy classes {1}, {C,C2}, and {P,P ′, P ′′}:

for 1 : 1, 1, 1
for ǫ : 1, 1, −1
for ρ : 2, −1, 0.

(7)

In the sequel we shall identify the characters with the equivalence class of
irreducible representations they define.

The generators of (the Lie algebra of) Spin(d) can be represented in
fermionic Fock space ∧C

(d−1)(N−1) as operators in the following way where
sd := 4, 8, 16 for d = 3, 5, 9):

Md,d−1 = i
2

(

µαn∂µαn − N−1
4 sd

)

Md,j = 1
4Γj

αβ

(

µαnµβn − ∂µαn∂µβn

)

Md−1,j = −i
4 Γj

αβ

(

µαnµβn + ∂µαn∂µβn

)

Mjk = 1
2Γjk

αβµαn∂µβn

(8)
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Here the µαm and ∂µβn
(1 ≤ α, β ≤ d− 1, 1 ≤ m,n ≤ N − 1) are fermionic

creation (left exterior multiplication) and annihilation (interior product)
operators, 1 ≤ j, k ≤ d−2, the (d−2) Γj are purely imaginary, antisymmetric
matrices satisfying the anticommutation relations

{Γj ,Γk} = 2δjk1(d−1)×(d−1)

and the Γjk
αβ are the commutators 1

2 [Γj ,Γk]αβ. For N = 3 we denote µα1 by
λα and µα2 by µα.

For d = 3, H4 ⊗ H4 gives five Spin(3)-singlets, four 2-dimensional
Spin(3)-representations, and one 3-dimensional one spanned by

1, λ1λ2 + µ1µ2, λ1λ2µ1µ2. (9)

While the one-dimensional spaces spanned by λ1µ1, λ2µ2, and λ1µ2 +λ2µ1,
respectively, are isomorphic to ǫ under S3, the remaining two Spin(3)-
singlets span a S3-module isomorphic to ρ with basis

|1〉 :=
1√
2
(µ1λ2 − µ2λ1), |2〉 :=

1√
2
(λ1λ2 − µ1µ2). (10)

On the other hand one can easily check that the two SO(3)-scalars ~x2 − ~y2

and 2~x · ~y transform the same way under the two transpositions P and P ′

(hence, under S3) as |1〉 and |2〉. Therefore

ψd=3(~x, ~y) :=
1

r8

(

(~x2 − ~y2)(λ1λ2 − µ1µ2) + 2~x · ~y(µ1λ2 − µ2λ1)
)

(11)

is invariant under Spin(3) × S3, as well as asymptotically normalizable
∫ ∞

Λ
r5drr−12 < ∞

and harmonic

∆R6ψd=3 = 0, (12)

thus disproving the d = 3 part of CW.

For d = 9, things are somewhat more complicated: while the decompo-
sitions into irreducible Spin(9)-modules in the tensor product of two copies
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of the fermionic Fock space can be computed using the formulas (where we
agree upon writing m{n} for the direct sum of m copies of the irreducible
module {n})2.

{44} ⊗ {44} = {1} ⊕ {36} ⊕ {44} ⊕ {450} ⊕ {495} ⊕ {910} (13)

{44} ⊗ {84} = {84} ⊕ {231} ⊕ {924} ⊕ {2457} (14)

{84} ⊗ {84} = {1} ⊕ {36} ⊕ {44} ⊕ {84} ⊕ {126} ⊕ {495} ⊕ {594}
⊕{924} ⊕ {1980} ⊕ {2772} (15)

{44} ⊗ {128} = {16} ⊕ {128} ⊕ {432} ⊕ {576} ⊕ {1920} ⊕ {2560}
(16)

{84} ⊗ {128} = {16} ⊕ 2{128} ⊕ 2{432} ⊕ {576} ⊕ {672} ⊕ {768}
⊕ {2560} ⊕ {5040} (17)

{128} ⊗ {128} = {1} ⊕ {9} ⊕ 2{36} ⊕ {44} ⊕ 2{84} ⊕ 2{126}
⊕{156} ⊕ 2{231} ⊕ {495} ⊕ 2{594} ⊕ {910}
⊕2{924} ⊕ {1650} ⊕ {2457} ⊕ {2772} ⊕ {3900} (18)

found in the literature (see e.g. [7, p.103, Table 40]) the individual trans-
formation properties under S3 are more difficult to obtain: according to the
general theory of compact Lie groups this would amount to a finer decom-
position of the above space into tensor products of irreducible S3-modules
with irreducible Spin(9)-modules; note however that there is only one (!)
9-dimensional representation on the right hand sides of the previous six
equations (which, therefore, must be equivalent either to {1} ⊗ {9} or to
ǫ⊗ {9}).

Calculating the decomposition into irreducible S3×Spin(9)-submodules
of the space of all cubic harmonic polynomials one finds

Sym3
harm = {1} ⊗ {9} ⊕ ǫ⊗ {9} ⊕ ρ⊗ {9} ⊕ {1} ⊗ {156}

⊕ǫ⊗ {156} ⊕ ρ⊗ {156} ⊕ ρ⊗ {231}. (19)

To obtain this, we first used the decomposition into irreducible Spin(9)-

2In this note we shall not encounter inequivalent irreducible Spin(d)-modules of the
same dimension.
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submodules

Sym3(R9 ⊕ R
9) = 2{Sym3(R9)} ⊕ 2{Sym2(R9) ⊗ R

9}
= 2{156 ⊕ 9} ⊕ 2{{1 ⊕ 44} ⊗ 9}
= 6{9} ⊕ 4{156} ⊕ 2{231} (20)

(21)

as well as the decomposition into irreducible S3-submodules (using ρ⊗ ρ =
{1} ⊕ ǫ⊕ ρ, see the character table (7)):

Sym3(R9 ⊕ R
9) = 165{1} ⊕ 165ǫ ⊕ 405ρ (22)

where these have to be distributed among (20) (which turns out to be doable
by just counting dimensions); finally, one of the emerging ρ ⊗ {9} modules
had to be dropped, as it corresponds to the submodule spanned by the
r2xa and r2ya (1 ≤ a ≤ 9) which does not contain any nonzero harmonic
functions. In any case, as (19) contains both {1} ⊗ {9} and ǫ ⊗ {9}, the
single Spin(9)-submodule of dimension 9 in the fermionic sector (18) –no
matter whether it is of type {1}⊗{9} or ǫ⊗{9}–can be matched in the final
tensor products of bosons and fermions to form a S3 × Spin(9) invariant
wave function of the form

Ψ(z) = r−22
9

∑

s=1

ψs(z)|9; s〉 (23)

where the |9; s〉 form an orthonormal basis of the {9}-module in (18) and
the ψs form an orthonormal basis of the module of the same type in the
space of harmonic cubic polynomials.

One could be tempted to deduce that this must be the Cartan subalgebra
factor in the asymptotic form of the d = 9, N = 3 zero energy wave-function.
However, at least (!) four other S3×Spin(9) candidate wave-functions exist
(thus disproving the uniqueness of the d = 9 part of CW); to see this,
replace 9 by 156 in the previous argument (which gives the second invariant
ground state), or consider the space of all quartic harmonic polynomials,
which after some work can be concluded to decompose into

Sym4
harm(R18) = {1} ⊗ {450} ⊕ 2ρ⊗ {450} ⊕ ρ⊗ {910} ⊕ ǫ⊗ {910}

⊕ {1} ⊗ {495} ⊕ {1} ⊗ {44} ⊕ ǫ⊗ {44} ⊕ 2ρ⊗ {44}
⊕ ρ⊗ {36} ⊕ ρ⊗ {1} ⊕ {1} ⊗ {1} (24)
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under S3 × Spin(9).
Now note that the r.h.s of eqs (13)-(18) contains three Spin(9)-submodules

of dimension 495. The submodule of dimension 128 in (3) consists of all
forms of odd degree over R

8 (see e.g. [5]) whereas the two submodules of
dimension 44 and 84 give all corresponding forms of even degree. It follows
that the transposition P ∈ S3, which maps (λα, µα) to (λα,−µα), is equal
to the identity on the two irreducible modules of dimension 495 contained
in (13) and (15) since they imply even forms in λ and µ separately, whereas
it is equal to minus identity on the irreducible module of dimension 495
contained in (18) since it consists of forms which are odd both in λ and
in µ. Out of the 6 apriori possibilities to decompose the sum of the three
modules of dimension 495 into irreducibles under S3 ×Spin(9), the two not
containing {1} ⊗ {495}, namely ǫ⊗{495} ⊕ ρ⊗{495} and 3ǫ⊗{495}, are
therefore impossible, as their +1-eigenspace under P would be too small.
Therefore the fermionic sector contains at least one S3×Spin(9)-submodule
of type {1} ⊗ {495} that can be matched with the irreducible submodule of
dimension 495 in (24) in the same manner as in the cubic case (see (23)),
viz.

Ψ(z) = r−24
495
∑

s=1

ψs(z)|495; s〉 (25)

where the |495; s〉 form an orthonormal basis of the {1} ⊗ {495}-module in
the fermionic sector and the ψs form an orthonormal basis of the module of
the same type in the space of harmonic quartic polynomials. The ψs can all
be chosen out of the quartic polynomials taking the following form3:

ψs(x, y) =
∑

c(s)a1a2a3a4(xa1xa2 −
1

9
xaxaδa1a2)(ya3ya4 −

1

9
yayaδa3a4) (26)

where c(s) is a tracless tensor of rank four in R
9, corresponding to the Young

diagram ⊞. This will give a third candidate for the Cartan subalgebra factor
of an asymptotic zero-energy state of the d = 9 SU(3) matrix model.

A fourth candidate is obtained by noting that the decomposition (24)
contains the three pairwise nonequivalent irreducible S3 × Spin(9)-modules
{1} ⊗ {44}, ǫ ⊗ {44}, and ρ ⊗ {44}. According to eqs (13), (15), and (18)

3Note that the Weyl-invariant 450-dimensional representation ψ̄(450) occurring in (24)
is of the form cstuv(xsxtxuxv + ysytyuyv + 2xsxtyuyv) with cstuv totally symmetric and
traceless; contracting it with the unique, Weyl-invariant, 450-dimensional representation
formed out of the fermions, yields yet another S3 × Spin(9)-invariant wavefunction.
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the fermionic sector contains two of these modules which again match to at
least two S3 × Spin(9)-invariant states of the form

Ψ(z) = r−24
44

∑

s=1

ψs(z)|44; s〉 (27)

with the obvious notations.
Last, but not the least, consider the space of all quadratic harmonic

polynomials which decomposes as

Sym2
harm = ρ⊗ {1} ⊕ ρ⊗ {44} ⊕ {1} ⊗ {44} ⊕ ǫ⊗ {36} (28)

under S3 × Spin(9) (corresponding to the space spanned by ~x2 − ~y2 and
2~x · ~y, the space of polynomials

∑

cab(xaxb − yayb) and
∑

cab(xayb) with
c symmetric traceless, the space of polynomials

∑

cab(xaxb + yayb) with
c symmetric traceless, and the space of polynomials

∑

dab(xayb) with d

antisymmetric, respectively). Again, one of the above modules containing
{44} as a factor can be matched with an equivalent fermionic one, as at
least one of the two fermionic modules containing {44} as a factor is not
isomorphic to ǫ⊗{44}: otherwise all the three Spin(9)-modules of type {44}
in (13), (15), and (18) would have to change sign under the transposition
P which is not the case for the two modules of type {44} in (13) and (15),
compare the discussion of {495}.

Finally, note that while Hψ = 0 implies Qψ = 0 if Q is hermitean
and H = Q2, care is needed when looking at the corresponding differential
equations only asymptotically, or when deriving ‘effective’ operators (as done
in [1]). As stressed by A.Smilga [1, 8], it may well be that the additional
condition Qeffψ = 0 will single out a unique d = 9 wave-function and/or
exclude any d = 3, 5 SN × Spin(d)-wave-function. It should be easy to test
this using our S3 × Spin(d)-invariant wave-functions.

Acknowledgements: J.H. would like to thank J.Plefka and A.Smilga
for valuable discussions, while M.B. thanks the Albert-Einstein-Institut for
friendly hospitality.

Note added: It is easy to see that neither (27){1}⊗{44} (nor (25)), nor
r−24 times the {1} ⊗ {1} in (24) times a Weyl invariant singlet formed out

of the fermions, cf. (13)-(18), nor r−24ψ̄
(450)
stuv |stuv〉 can be supersymmetric:

just note that each of the free supercharges is a sum of two terms, the first
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of which changes the number of λ’s by ±1, and squares to the x-Laplacian,
while the second, squaring to the y-Laplacian, does not contain λ nor ∂λ.
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