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Abstract

This paper is an exploration of relationships between the Jones polynomial

and quantum computing. We discuss the structure of the Jones polynomial in

relation to representations of the Temperley Lieb algebra, and give an example

of a unitary representation of the braid group. We discuss the evaluation

of the polynomial as a generalized quantum amplitude and show how the

braiding part of the evaluation can be construed as a quantum computation

when the braiding representation is unitary. The question of an efficient

quantum algorithm for computing the whole polynomial remains open.

1 Introduction

This paper is an exploration of issues interrelating the Jones polynomial [10]
and quantum computing. In section 2 of the paper we review the formalism
of Dirac brackets and some of the quantum physics associated with this for-
malism. The section ends with a brief description of the concept of quantum
computer that we shall use in this paper. In section 3 we discuss the Jones
and Temperley Lieb algebras and how they can be used to produce repre-
sentations of the Artin Braid group. While most of these representations are
not unitary, we show how to construct non-trivial unitary representations of
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the three-strand braid group by considering the structure of two projectors.
It turns out that two elementary projectors naturally generate a Temperley
Lieb algebra. This provides a way to make certain unitary representations
and to motivate the construction of both the Alexander and the Jones poly-
nomial. In regard to the Alexander polynomial, we end this section with a
representation of the Artin Braid Group, constructed using projectors, that
is equivalent to the classical Burau representation. In section 4 we con-
struct the bracket polynomial model for the Jones polynomial and relate its
structure to the representations discussed in the previous section. Section 5
shows how to reformulate the bracket state sum in terms of discrete quan-
tum amplitudes. This sets the stage for our proposal, explained in section
6, for regarding knot invariants as quantum computers. This proposal needs
unitary braiding (a special condition) and the results of the computer are
probabilistic. Nevertheless, I believe that this model deserves consideration.
The dialogue between topology and quantum computing is just beginning.

Acknowledgement. Research on this paper was supported by National
Science Foundation Grant DMS 9802859.

2 Dirac Brackets

We begin with a discussion of Dirac’s notation, < b|a >, [4]. In this notation
< a| and |b > are covectors and vectors respectively. < b|a > is the evaluation
of |a > by < b|, hence it is a scalar, and in ordinary quantum mechanics it
is a complex number. One can think of this as the amplitude for the state
to begin in a and end in b. That is, there is a process that can mediate a
transition from state a to state b. Except for the fact that amplitudes are
complex valued, they obey the usual laws of probability. This means that if
the process can be factored into a set of all possible intermediate states c1,
c2, ..., cn , then the amplitude for a −→ b is the sum of the amplitudes for
a −→ ci −→ b. Meanwhile, the amplitude for a −→ ci −→ b is the product of
the amplitudes of the two subconfigurations a −→ ci and ci −→ b. Formally
we have

< b|a >= Σi < b|ci >< ci|a >
where the summation is over all the intermediate states i = 1, ..., n.
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In general, the amplitude for mutually disjoint processes is the sum of the
amplitudes of the individual processes. The amplitude for a configuration of
disjoint processes is the product of their individual amplitudes.

Dirac’s division of the amplitudes into bras < b| and kets |a > is done
mathematically by taking a vector space V (a Hilbert space, but it can be
finite dimensional) for the kets: |a > belongs to V. The dual space V ∗ is the
home of the bras. Thus < b| belongs to V ∗ so that < b| is a linear mapping
< b| : V −→ C where C denotes the complex numbers. We restore symmetry
to the definition by realising that an element of a vector space V can be
regarded as a mapping from the complex numbers to V. Given |a >: C −→ V ,
the corresponding element of V is the image of 1 (in C) under this mapping.
In other words, |a > (1) is a member of V. Now we have |a >: C −→ V and
< b| : V −→ C. The composition < b| ◦ |a >=< b|a >: C −→ C is regarded
as an element of C by taking the specific value < b|a > (1). The complex
numbers are regarded as the vacuum, and the entire amplitude < b|a > is
a vacuum to vacuum amplitude for a process that includes the creation of
the state a, its transition to b, and the annihilation of b to the vacuum once
more.

Dirac notation has a life of its own. Let

P = |y >< x|.

Let
< x||y >=< x|y > .

Then

PP = |y >< x||y >< x| = |y >< x|y >< x| =< x|y > P.

Up to a scalar multiple, P is a projection operator. That is, if we let

Q = P/ < x|y >,

then

QQ = PP/ < x|y >< x|y >=< x|y > P/ < x|y >< x|y >= P/ < x|y >= Q.

Thus QQ = Q. In this language, the completeness of intermediate states
becomes the statement that a certain sum of projections is equal to the
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identity: Suppose that Σi|ci >< ci| = 1 (summing over i) with < ci|ci >= 1
for each i. Then

< b|a >=< b||a >=< b|Σi|ci >< ci||a >= Σi < b||ci >< ci||a >

< b|a >= Σi < b|ci >< ci|a >
Iterating this principle of expansion over a complete set of states leads to
the most primitive form of the Feynman integral [5]. Imagine that the initial
and final states a and b are points on the vertical lines x = 0 and x = n + 1
respectively in the x− y plane, and that (c(k)i(k), k) is a given point on the
line x = k for 0 < i(k) < m. Suppose that the sum of projectors for each
intermediate state is complete. That is, we assume that following sum is
equal to one, for each k from 1 to n− 1 :

|c(k)1 >< c(k)1| + ...+ |c(k)m >< c(k)m| = 1.

Applying the completeness iteratively, we obtain the following expression for
the amplitude < b|a >:

< b|a >= ΣΣΣ...Σ < b|c(1)i(1) >< c(1)i(1)|c(2)i(2) > ... < c(n)i(n)|a >

where the sum is taken over all i(k) ranging between 1 and m, and k ranging
between 1 and n. Each term in this sum can be construed as a combinatorial
path from a to b in the two dimensional space of the x− y plane. Thus the
amplitude for going from a to b is seen as a summation of contributions from
all the paths connecting a to b. See Figure 1.
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Figure 1 - Intermediates

Feynman used this description to produce his famous path integral ex-
pression for amplitudes in quantum mechanics. His path integral takes the
form

∫

dPexp(iS)

where i is the square root of minus one, the integral is taken over all paths
from point a to point b, and S is the action for a particle to travel from a to
b along a given path. For the quantum mechanics associated with a classical
(Newtonian) particle the action S is given by the integral along the given
path from a to b of the difference T − V where T is the classical kinetic
energy and V is the classical potential energy of the particle.
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2.1 What is a Quantum Computer?

We are now in a position to explain the definition of quantum computer that
will be used in this paper. Let H be a given finite dimensional vector space
over the complex numbers C. Let {W0,W1, ...,Wn} be an orthonormal basis
for H so that with |i >:= |Wi > denoting Wi and < i| denoting the conjugate
transpose of |i >, we have

< i|j >= δij

where δij denotes the Kronecker delta (equal to one when its indices are
equal to one another, and equal to zero otherwise). Given a vector v in H
let |v|2 :=< v|v > . Note that < i|v is the i-th coordinate of v.

An observation of v returns one of the coordinates |i > of v with probability
| < i|v|2. This model of observation is a simple instance of the situation with
a quantum mechanical system that is in a mixed state until it is observed.
The result of observation is to put the system into one of the basis states.

When the dimension of the space H is two (n = 1), a vector in the space
is called a qubit. A qubit represents one quantum of binary information. On
observation, one obtains either the ket |0 > or the ket |1 >. This constitutes
the binary distinction that is inherent in a qubit. Note however that the
information obtained is probabilistic. If the qubit is

ψ = α|0 > +β |1 >,

then the ket |0 > is observed with probability |α|2, and the ket |1 > is ob-
served with probability |β|2. In speaking of an idealized quantum computer,
we do not specify the nature of measurement process beyond these probabil-
ity postulates.

In the case of general dimension n of the space H , we will call the vectors
in H qunits. It is quite common to use spaces H that are tensor products
of two-dimensional spaces (so that all computations are expressed in terms
of qubits) but this is not neccessary in principle. One can start with a given
space, and later work out factorizations into qubit transformations.

A quantum computation consists in the application of a unitary trans-
formation U to an initial qunit ψ = a1|1 > +... + an|n > with |ψ|2 = 1,
plus an observation of Uψ. An observation of Uψ returns the ket |i > with
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probability |Uψ|2. In particular, if we start the computer in the state |i >,
then the probability that it will return the state |j > is | < j|U |i > |2.

It is the neccessity for writing a given computation in terms of unitary
trasformations, and the probabilistic nature of the result that characterizes
quantum computation. Such computation could be carried out by an ide-
alized quantum mechanical system. It is hoped that such systems can be
physically realized.

3 Braiding, Projectors and the Temperley Lieb

Algebra

The Jones polynomial is one of the great mathematical breakthroughs of the
twentieth century, and like many such breakthroughs it appears basically
simple in retrospect. I will tell two stories in this section. The first story
is a capsule summary of how Jones discovered the polynomial by way of an
apparently strange algebraic structure that first appeared in his research on
von Neumann algebras, and then was pointed out to be an algebra known to
experts in the Potts model in statistical mechanics. The second story shows
that the essential algebra for the needed representation of the braid group is
present in the algebra generated by any two simple projectors (see below for
the definitions of these terms) and that it is graphically illustrated by the
Dirac bra-ket notation for these operators.

Jones was studying the inclusion of one von Neuman algebra N in another
one M . In this context there is a projection e1 : M −→ N so that the
restriction of e to N is the identity mapping, and so that e21 = e1. In his
context the algebra M could be extended to include this projector to an
algebra M1 = M

⋃{e1}. Then we have

N ⊂M ⊂M1

and the construction can be continued inductively to produce

N ⊂M ⊂M1 ⊂M2 ⊂M3 ⊂ ...

and an algebra of projectors

e1, e2, e3, ...

7



such that
e2i = ei, i = 1, 2, 3, ...

eiei±1ei = κei, i = 2, 3, ...

eiej = ejei, |i− j| > 1.

We will call an algebra that can be expressed with generators and relations
as above a Jones algebra. J∞ will denote a Jones algebra on infinitely many
generators as above. Jn will denote the Jones algebra generated by an identity
element 1 and generators e1, ..., en−1.

It was pointed out that the relations

eiei±1ei = κei, i = 2, 3, ...

eiej = ejei, |i− j| > 1

look suspiciously like the basic braiding relations in the Artin Braid group
which read

σiσi±1σi = σi±1σiσi±1, i = 2, 3, ...

σiσj = σjσi, |i− j| > 1.

8
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Figure 2 - Braid Group Generators

This pattern led Jones to first construct a representation of the Artin
Braid Group to his algebra, and then to discover an invariant of knots and
links that is related to this representation. Figure 2 illustrates the generators
of the braid group. The second and third Reidemeister moves shown in
Figure 6 illustrate the braiding relations except for commutativity of distant
generators.

The representation that Jones discovered is a linear one in the form of

ρ : B∞ −→ J∞

where
ρ(σi) = α1 + βei

for appropriate constants α and β. We will elaborate on this representation
shortly. Here J∞ denotes the algebra generated by the ei for i = 1, 2, 3, ....

9



It seems an amazing coincidence that a representation algebra for the Artin
Braid group would appear in a context that seems so far away from this
structure. The complex source of Jones’ algebra makes this connection seem
quite mysterious, and the fact that this same algebra appears in statistical
mechanics also seems mysterious. What is the source of this apparent con-
nection of the Artin Braid group with algebras and structures coming from
quauntum physics?

Remark. In the discussion to follow, we will use the bra and ket notations
of Dirac and we will write < v| for vt, using the notation vt for the transpose
of a vector v. It is to be understood that in the case of a complex vector
space, this is the conjugate transpose, but that in the generalizations that we
use (over more general rings) we will simply take the formal transpose with-
out conjugation. Later we will construct real-valued representations of the
Temperley-Lieb algebra, and there transpose will be the same as conjugate
transpose.

For the purpose of this discussion it will be useful to define a projector to
be a linear map P : V −→ V where V is a vector space or a module over a
ring k, and P 2 is a non-zero multiple of P . Shall call a projector simple if,
in a basis, it takes the form P = vvt where v is a column vector and vt is its
transpose. Then vtv is the dot product of v with itself and hence a scalar.
Therefore

P 2 = PP = vvtvvt = v[vtv]vt

= [vtv]vvt = [vtv]P.

Because of the ubiquity of projectors in quantum physics, the physicist
P.A.M. Dirac devised a beautiful notation for this situation. Dirac would
write |v > for v and < v| for vt. He would write

< v||w >=< v|w >= vtw

for the dot product of two vectors in a given basis.

Then one can write P in Dirac notation by the formula

P = |v >< v|
and we have

P 2 = PP = |v >< v||v >< v| = |v >< v|v >< v|

10



=< v|v > |v >< v| =< v|v > P.

Now consider the algebra generated by two simple projectors P = |v >< v|
and Q = |w >< w|. We have

P 2 =< v|v > P,

Q2 =< w|w > Q

and
PQP = |v >< v||w >< w||v >< v|

= |v >< v|w >< w|v >< v|
=< v|w >< w|v > |v >< v|

=< v|w >< w|v > P

while
QPQ = |w >< w||v >< v||w >< w|

= |w >< w|v >< v|w >< w|
=< w|v >< v|w > |w >< w|

=< w|v >< v|w > Q

=< v|w >< w|v > Q.

Thus, with λ =< v|w >< w|v > we have that

PQP = λP

QPQ = λQ.

We can define e = P/ < v|v > and f = Q/ < w|w > and find

e2 = e

f 2 = f

efe = κe

fef = κf

where κ = λ/(< v|v >< w|w >). In this way we see that any two simple

projectors generate a Jones algebra of type J2. In this sense the appearance
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of such algebras is quite natural. The relationship with braiding remains as
remarkable as ever.

In order to see how these representations work, it is useful to discuss
the combinatorics of these algebras a bit further. The Temperley Lieb al-

gebra TLn [11] is an algebra over a commutative ring k with generators
{1, U1, U2, ..., Un−1} and relations

U2
i = δUi,

UiUi±1Ui = Ui,

UiUj = UjUi, |i− j| > 1,

where δ is a chosen element of the ring k. These equations give the mul-
tiplicative structure of the algebra. The algebra is a free module over the
ring k with basis the equivalence classes of these products modulo the given
relations.

We will make the ground ring specific in the examples to follow. It is
clear that the concepts of Temperley Lieb algebra and Jones algebra are
interchangeable. Given a Jones algebra J∞, with eiei±1ei = κei, let δ = 1/

√
κ

(assuming that this square root exists in the ground ring k. Then let Ui = δei

and we find that U2
i = δUi with

UiUi±1Ui = (1/
√
κ)3eiei±1ei

= (1/
√
κ)3κei = (1/

√
κ)ei = Ui,

converting the Jones algebra to a Temperley Lieb algebra.

It is useful to see the bare bones of the algebra of two projectors. For
this purpose, lets write

P =><

and
Q =][.

Then
PP =><><=<>><=<> P

12



and
QQ =][ ][= []Q

while
PQP =>< ][><=<] [> P

QPQ =][>< ][= [><]Q =<] [> Q.

To see how the representation of the braid group is constructed, lets assume
that the scalars <] and [> are both equal to 1 and that δ =<>= []. Then P
and Q form a two-generator Temperley Lieb algebra TL3. We will illustrate
how to represent the three strand Artin braid group B3 to TL2.

It is useful to use the iconic symbol >< for a projector and to choose
another iconic symbol ≍ for the identity operator in the algebra. With these
choices we have

≍≍ = ≍
≍ >< = >< ≍ = ><

≍][ = ][≍ = ][

We define the representation ρ : B3 −→ TL3 on the generators σ1 = σ and
σ2 = τ of the three strand braid group, whose relations are στσ = τστ plus
the invertibility of the generators. We define

ρ(σ) = A1 +BP = A≍+B ><

ρ(σ−1) = B1 + AP = B≍ + A ><

and
ρ(τ) = A1 +BQ = A≍ +B][

ρ(τ−1) = B1 + AQ = B≍+ A][.

where A and B are commuting indeterminates.

With these definitions, we have

ρ(σ) = A≍+B ><

ρ(σ−1) = B≍ + A >< .

13



Thus
≍ = (A≍+B ><)(B≍+ A ><)

= AB≍≍+ A2≍ >< +B2 >< ≍+ AB ><><

= AB≍+ A2 >< +B2 >< +ABδ ><

≍ = AB≍ + (A2 +B2 + ABδ) ><

Consequently, we will have 1 = ρ(σ)ρ(σ−1) if we take B = A−1 and δ =
−A2 − A−2. We shall take these values from now on so that

ρ(σ) = A≍+ A−1 ><= A1 + A−1P

and
ρ(τ) = A≍+ A−1][= A1 + A−1Q.

With these specializations of A and B, it is easy to verify that ρ is a
representation of the Artin Braid Group. Note that P 2 = δP , Q2 = δQ and
PQP = P.

ρ(σ)ρ(τ)ρ(σ) = (A+ A−1P )(A+ A−1Q)(A + A−1P )

= (A2 +Q+ P + A−2PQ)(A+ A−1P )

= A3 + AQ+ AP + A−1PQ+ AP + A−1QP + A−1P 2 + A−3PQP

= A3 + AQ+ AP + A−1PQ+ AP + A−1QP + A−1δP + A−3P

= A3 + (2A+ +A−1(−A2 − A−2) + A−3)P + AQ+ A−1(PQ+QP )

= A3 + AP + AQ+ A−1(PQ+QP )

ρ(σ)ρ(τ)ρ(σ) = A3 + A(P +Q) + A−1(PQ+QP )

Since this last expression is symmetric in P and Q, we conclude that

ρ(σ)ρ(τ)ρ(σ) = ρ(τ)ρ(σ)ρ(τ).

Hence ρ is a representation of the Artin Braid Group.

This argument generalizes to yield a corresponding representation of the
Artin Braid Group Bn to the Temperley Lieb algebra TLn for each n =

14



2, 3, .... We will discuss the structure of these representations below. In the
next section we show how the Jones polynomial can be constructed by a state
summation model. This model can be also be viewed as a generalisation of
the above representation of the Temperley Lieb algebra.

The very close relationship between elementary quantum mechanics and
topology is very well illustrated by the structure and representations of the
Temperley Lieb algebra.

15



U1U2U1 = U1

U2
1 = δU1

1U2
U1

Figure 3 - Diagrammatic Temperley Lieb Algebra

Figure 3 illustrates a diagrammatic interpretation of the Temperley Lieb
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algebra. In this interpretation, the multiplicative generators of the module
are collections of strands connecting n top points and n bottom points. Top
points can be connected either to top or to bottom points. Bottom points
can be connected to either bottom or to top points. All connections are made
in the plane with no overlapping lines and no lines going above the top row
of points or below the bottom row of points. Multiplication is accomplished
by connecting the bottom row of one configuration with the top row of an-
other. In Figure 3 we have illustrated the types of special configurations that
correspond to the Ui, and we have shown that δ is interpreted as a closed
loop.

ρ(σ1) = AU1 + A−11

1U1σ1

��

��

@
@

@@

Figure 4 - Braid Group Representation
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Figure 5 - Abstract Tensors

One way to make a matrix representation of the Temperley Lieb algebra
(and a corresponding representation of the braid group) is to use the matrix
M defined as follows

M =

[

0 iA
−iA−1 0

]

.

18



Note that M2 = 1 where 1 denotes the (2×2) identity matrix. We will use M
with either upper or lower indices so that Mab = Mab. M will represent both
the cup and the cap in the Temperley Lieb diagrams, with Mab representing
the cap and Mab representing the cup. If U denotes a cup over a cap, then

Uab
cd = MabMcd.

Note that

(U2)ab
cd = ΣijU

ab
ij U

ij
cd =

= ΣijM
abMijM

ijMcd = [ΣijMijM
ij ]MabMcd

= [ΣijMijM
ij ]Uab

cd .

Note that

ΣijMijM
ij = Σij(Mij)

2 = −A2 − A−2.

Thus, letting δ = −A2 − A−2, we have

U2 = δU.

Then we take Ui as a tensor product of identity matrices corresponding to
the vertical lines in the diagram for this element and one factor of U for the
placement of the cup-cap at the locations i and i+ 1. To see how this works
to give the relation UiUi±1Ui = Ui, we verify that U1U2U1 = U1 in TL3.
In the calculation to follow we will use the Einstein summation convention.
Repeated upper and lower indices are summed across the index set {1, 2}.

U1 = U ⊗ 1

and
U2 = 1 ⊗ U

so that

(U1)
abc
def = MabMdeδ

c
f

19



and
(U2)

abc
def = δa

dM
bcMef .

Therefore

(U1U2U1)
abc
def = (U1)

abc
ijk(U2)

ijk
rst(U1)

rst
def

= (MabMijδ
c
k)(δ

i
rM

jkMst)(M
rsMdeδ

t
f )

= Mab(MrjM
jc)(MsfM

rs)Mde = Mab(δc
r)(δ

r
f)Mde =

= MabMdeδ
c
f = (U1)

abc
def

Thus
U1U2U1 = U1.

This representation of the Temperley Lieb algebra is useful for knot theory
and it is conjectured to be a faithful representation. One may also conjecture
that the corresponding braid group representation is faithful.

Remark. The reader should note that the diagrammatic interpretation of
the Temperley Lieb algebra gives a clear way to follow the index details of the
calculation we have just performed. In the diagrams an index that is not on
a free end is summed over just as in the Einstein summation convention. An
index at the end of a line is a free index and does not receive summation. See
Figure 5 for an illustration of the index algebra in relation to these diagrams.
We will generalize the diagrammatic algebra in section 5.

3.1 Two Projectors and a Unitary Representation of

the Three Strand Braid Group

The Temperley Lieb representation of the braid group that we have described
is not a unitary representation except when A2 = −1, a value that is not of
interest in the knot theory. In order to find elementary unitary representa-
tions of the braid group, one has to go deeper.
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It is useful to think of the Temperley Lieb algebra as generated by pro-
jections ei = Ui/δ so that e2i = ei and eiei±1ei = τei where τ = δ−2 and ei

and ej commute for |i− j| > 1.

With this in mind, consider elementary projectors e = |A >< A| and
f = |B >< B|. We assume that < A|A >=< B|B >= 1 so that e2 = e and
f 2 = f. Now note that

efe = |A >< A|B >< B|A >< A| =< A|B >< B|A > e = τe

Thus
efe = τe

where τ =< A|B >< B|A >.
This algebra of two projectors is the simplest instance of a representation

of the Temperley Lieb algebra. In particular, this means that a representation
of the three-strand braid group is naturally associated with the algebra of
two projectors, a simple toy model of quantum physics!

Quite specifically if we let < A| = (a, b) and |A >= (a, b)t the transpose
of this row vector, then

e = |A >< A| =

[

a2 ab
ab b2

]

is a standard projector matrix when a2 + b2 = 1. To obtain a specific repre-
sentation, let

e1 =

[

1 0
0 0

]

and

e2 =

[

a2 ab
ab b2

]

.

It is easy to check that

e1e2e1 = a2e1

and that
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e2e1e2 = a2e2.

Note also that

e1e2 =

[

a2 ab
0 0

]

and

e2e1 =

[

a2 0
ab 0

]

.

We define
Ui = δei

for i = 1, 2 with a2 = δ−2. Then we have , for i = 1, 2

U2
i = δUi

U1U2U1 = U1

U2U1U2 = U2

and

trace(U1) = trace(U2) = δ

while

trace(U1U2) = trace(U2U1) = 1.

We will use these results on the traces of these matrices in Section 6.

Now we return to the matrix parameters: Since a2 + b2 = 1 this means
that δ−2 + b2 = 1 whence

b2 = 1 − δ−2.

Therefore b is real when δ2 is greater than or equal to 1.
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We are interested in the case where δ = −A2 − A−2 and A is a unit

complex number. Under these circumstances the braid group representation

ρ(σi) = AUi + A−11

will be unitary whenever Ui is a real symmetric matrix. Thus we will obtain
a unitary representation of the three-strand braid group B3 when δ2 ≥ 1.
Specifically, let A = eiθ. Then δ = −2cos(2θ), so the condition δ2 ≥ 1
is equivalent to cos2(2θ) ≥ 1/4. Thus we get the specific range of angles
|θ| ≤ π/6 and |θ − π| ≤ π/6 that gives unitary representations of the three-
strand braid group.

3.2 Pairs of Projectors and the Alexander Polynomial

Just for the record we note a more general braid group representation that
is available via our remarks about the structure of two projectors. Let
{W1,W2, ...,Wn−1,Wn} be the standard basis of column vectors for a module
of dimension n over k = C[A,A−1] where C denotes the complex numbers
and Wk is an n-tuple whose entries are zero in all places except the k-th
place where the entry is one. We shall refer to linear combinations of the Wk

as vectors over k. Given any vector v over k, let |v > denote v as a column
vector, and let < v| = vt denote its transpose (just the transpose, as in our
previous remarks), the corresponding row vector. Then P (v) = |v >< v| is
a matrix such that P 2 =< v|v > P , and < v|v >= vtv is equal to the sum
of the squares of the entries of v.

For k = 1, 2, ..., n− 1 and i2 = −1, let

vk = iAWk − iA−1Wk+1

and

Uk = |vk >< vk|.
Then, with δ = −A2 − A−2,

U2
k = δUk

UkUk±1Uk = Uk
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UkUl = UlUk = 0, |k − l| > 1.

Thus these matrices give a special representation of the Temperley Lieb al-
gebras TLn for each n. Since the loop value is as given above, we can make
correpsonding representations of the Artin Braid Groups Bn by the formulas

ρ(σk) = AIn + A−1Uk,

ρ(σ−1
k ) = A−1In + AUk

where In denotes the n × n identity matrix. It is not hard to verify that
this representation of Bn is equivalent to the classical Burau representation
(See [15]) of the braid group. This shows that there is a pathway from the
algebra of projectors to the Alexander polynomial! We will treat this theme
in a separate paper.

4 The Bracket Polynomial

In this section we shall discuss the structure of the the bracket state model
for the Jones polynomial [11]. In this way, we will explicitly construct the
Jones polynomial by using a state summation that is closely related to the
braid group representation described in the last section.

Before discussing the bracket polynomial we recall the basic theorem
of Reidemeister [23] about knot and link diagrams. Reidemeister proved
that the the three local moves on diagrams illustrated in Figure 6 capture
combinatorially the notion of ambient isotopy of links and knots in three-
dimensional space. That is, if two diagrams represent knots or links that are
isotopic in three-dimensional space, then the one diagram can be obtained
from the other by a seqence of Reidemeister moves. It is understood that a
Reidemeister move is a local change on the diagram and that it is locally just
as indicated by the picture of the move. That is, a type one move adds or
eliminates a loop in the underlying 4-regular graph of the knot diagram. A
type two move operates on a two sided region and a type three move operates
on a three sided region. It is also understood that one can simplify a diagram
by a homeomorphism of the plane. This could be called the type zero move,
but it is always available. The equivalence relation generated by the type
two and type three moves is called regular isotopy. The bracket polynomial
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is a regular isotopy invariant that can be normalized to produce an invariant
of all three Reidemeister moves.
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Figure 6 - The Reidemeister Moves

The bracket polynomial , < K >=< K > (A), assigns to each unoriented
link diagram K a Laurent polynomial in the variable A such that

1. If K and K ′ are regularly isotopic links, then < K >=< K ′ >.
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2. If K O denotes the disjoint union of K with an extra unknotted and
unlinked component O, then

< K O >= δ < K >

where
δ = −A2 − A−2.

3. < K > satisfies the following formula where in Figure 7 the small
diagrams represent parts of larger diagrams that are identical except
at the site indicated in the bracket. In the text formula we have used
the notations SAK and SBK to indicate the two smoothings of a single
crossing in the diagram K. That is, K,SAK and SBK differ at the site
of one crossing in the diagram K. The convention for these smoothings
is indicated in Figure 7.

< K >= A < SAK > +A−1 < SBK >

+A= B

= A +B
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Figure 7 - Bracket Expansion

This formula for expanding the bracket polynomial can be indicated symbol-
ically in the same fashion that we used in the previous section to indicate
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the representation of the Artin Braid Group to the Temperley Lieb algebra.
We will denote a crossing in the link diagram by the letter chi, χ. The letter
itself denotes a crossing where the curved line in the letter chi is crossing

over the straight segment in the letter. The barred letter denotes the switch
of this crossing where the curved line in the letter chi is undercrossing the

straight segment in the letter. In the state model a crossing in a diagram
for the knot or link is expanded into two possible states by either smoothing
(reconnecting) the crossing horizontally, ≍, or vertically ><. Coefficients in
this expansion correspond exactly to our representation of the braid group so
that any closed loop (without crossings) in the plane has value δ = −A2−A−2

and the crossings expand accrding to the formulas

χ = A≍+ A−1 ><

χ = A−1≍+ A >< .

The verification that the bracket is invariant under the second Reidemeister
move is then identical to our proof in the previuos section that

χχ = ≍.
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Figure 9 - Bracket States

Knowing that the bracket is invariant under the second Reidemeister
move allows us to verify directly that it is invariant under the third Reide-
meister move. This is illustrated in Figure 8. In this Figure we show the
two equivalent configurations in the third Reidemeister move vertically on
the left, with arrows point to the right of each configuration to an expansion
via the bracket at one crossing. The expansions give the same bracket cal-
culation due to invariance under the second Reidemeister move. Since the
bracket is invariant under the second and third Reidemeister moves, property

1. is a direct consequence of properties 2. and 3.. The second two properties
define the bracket on arbitrary link diagrams.
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In fact we could have begun with the following more general definition:
Let K be any unoriented link diaram. Define a state of K to be a choice of
smoothings for all the crossings of K. There are 2N states of a diagram with
N crossings. A smoothing of a crossing is a local repacement of that crossing
with two arcs that do not cross one another, as shown below. There are two
choices for smoothing a given crossing. In illustrating a state it is convenient
to label the smoothing with A or B to indicate the crossing from which it
was smoothed. The A or B is called a vertex weight of the state.

Label each state with vertex weights A or B as illustrated in Figure 9.
Here A and B are commuting polynomial variables. Define two evaluations
related to the state: The first evaluation is the product of the vertex weights,
denoted

[K|S].

The second evaluation is the number of loops (Jordan curves) in the state S,
denoted

||S||.
Define the state summation, [K], by the formula

[K] =
∑

S

[K|S]δ||S||−1.

It follows from this definition,that [K] satisfies the formulas

[χ] = A[≍] +B[><]

[O K] = δ[K],

and
[O] = 1.

The demand that [K] be invariant under the second Reidemeister move
leads to the conditions B = A−1 and δ = −A2 + A−2. This specialization is
easily seen to be invariant under the third Reidemeister move. Calling this
specialization the topological bracket, and denoting it (as above) by < K >
one finds the following behaviour under the first Reidemeister move

< γ >= −A3 <⌣>
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and
< γ >= −A−3 <⌣>

where γ denotes a curl of positive type as indicated in Figure 10, and γ
indicates a curl of negative type as also seen in this Figure.

The topological bracket is invariant under regular isotopy and can be
normalized to an invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K) < K > (A)

where w(K) is the sum of the crossing signs of the oriented link K. w(K) is
called the writhe of K. The convention for crossing signs is shown in Figure
10.
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Figure 10 - Crossing Signs

By a change of variables one obtains the original Jones polynomial, VK(t)
[10] from the normalized bracket:

VK(t) = fK(t−1/4).
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Figure 11 - Trefoil and Mirror Image

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute fK(A) for the trefoil knot T and determine that fK(A)
is not equal to fK(A−1). This shows that the trefoil is not ambient isotopic
to its mirror image (See Figure 11), a fact that is quite tricky to prove by
classical methods.

Remark. The relationship of the Temperley Lieb algebra with the bracket
polynomial comes through the basic bracket identity. This identity, inter-
preted in the context of the diagrammtic Temperley Lieb algebra becomes a
representation ρ of the Artin braid group Bn on n strands to the Temperley
Lieb algebra TLn defined by the formulas

ρ(σi) = AUi + A−11

ρ(σ−1
i ) = A−1Ui + A1.

Here sigmai denotes the braid generator that twists strands i and i + 1.
For this representation of the Temperley Lieb algebra, the loop value δ is
−A2 − A−2 and the ring k is Z[A,A−1], the ring of Laurent polynomials in
A with integer coefficients.

Remark. There are hints of quantum mechanical interpretations in the com-
binatorics of this state sum model for the Jones polynomial. The expansion
formula for the bracket polynomial
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< K >= A < SAK > +A−1 < SBK >

suggests that the diagram K should be thought of as a superposition of the
diagrams SAK and SBK. That is, we can think of a knot diagram with
respect to a given crossing as the superposition of the diagrams obtained by
smoothing that crossing. Then, with respect to all the crossings, one can
think of the diagram as a superposition of the states obtained by smoothing
each crossing in one of its two possible ways. This is a superposition view of
the bracket state sum as a whole.

< K >=
∑

S

< K|S > δ||S||−1

In this sense the bracket polynomial evaluation is directly analogous to an
amplitude in quantum mechanics. We shall make this analogy more precise
in the sections to follow. However, the topological information is contained
in this amplitude as whole, and not in any specific state evaluation. Thus the
topological model ignores the standard measurement situation in quantum
mechanics where one gets at best information about one state at a time when
a measurement is taken. This means that a quantum computational model
of the bracket polynomial will be essentially probabilistic, only giving partial
information at each measurement.

As a result of this discussion, it is natural to ask to what extent one can
extract partial topological information from an incomplete summation over
the states of the bracket polynomial. It is not clear at this stage what this
answer is to this question. It may require a new exploration of the properties
of the state sum and its corresponding polynomial.

5 Knot Amplitudes

At the end of the first section we said: the connection of quantum mechanics
with topology is an amplification of Dirac notation. In this section we begin
the process of amplification!
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Figure 12 - Circle in Spacetime

Consider first a circle in a spacetime plane with time represented ver-
tically and space horizontally. The circle represents a vacuum to vacuum
process that includes the creation of two ”particles”, and their subsequent
annihilation. See Figures 12 and 13.
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Figure 13 - Creation and Annihilation

In accord with our previous description, we could divide the circle into
these two parts (creation(a) and annihilation (b)) and consider the amplitude
< b|a > . Since the diagram for the creation of the two particles ends in two
separate points, it is natural to take a vector space of the form V ⊗V as the
target for the bra and as the domain of the ket.

We imagine at least one particle property being catalogued by each di-
mension of V. For example, a basis of V could enumerate the spins of the
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created particles. If {ea} is a basis for V then {ea ⊗ eb} forms a basis for
V ⊗ V. The elements of this new basis constitute all possible combinations
of the particle properties. Since such combinations are multiplicative, the
tensor product is the appropriate construction.

In this language the creation ket is a map cup,

cup = |a >: C −→ V ⊗ V,

and the annihilation bra is a mapping cap,

cap =< b| : V ⊗ V −→ C.

The first hint of topology comes when we realise that it is possible to draw
a much more complicated simple closed curve in the plane that is nevertheless
decomposed with respect to the vertical direction into many cups and caps.
In fact, any simple (no self-intersections) differentiable curve can be rigidly
rotated until it is in general position with respect to the vertical. It will then
be seen to be decomposed into these minima and maxima. Our prescriptions
for amplitudes suggest that we regard any such curve as an amplitude via its
description as a mapping from C to C.

Each simple closed curve gives rise to an amplitude, but any simple closed
curve in the plane is isotopic to a circle, by the Jordan Curve Theorem. If
these are topological amplitudes, then they should all be equal to the original
amplitude for the circle. Thus the question: What condition on creation and
annihilation will insure topological amplitudes? The answer derives from
the fact that all isotopies of the simple closed curves are generated by the
cancellation of adjacent maxima and minima as illustrated below.
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Figure 14 - Cancellation of Maxima and Minima

In composing mappings it is necessary to use the identifications (V ⊗V )⊗
V = V ⊗ (V ⊗ V ) and V ⊗ k = k ⊗ V = V. Thus in the illustration above,
the composition on the left is given by

V = V ⊗ k − 1 ⊗ cup→ V ⊗ (V ⊗ V )

= (V ⊗ V ) ⊗ V − cap⊗ 1 → k ⊗ V = V.

This composition must equal the identity map on V (denoted 1 here) for
the amplitudes to have a proper image of the topological cancellation. This
condition is said very simply by taking a matrix representation for the cor-
responding operators.

Specifically, let {e1, e2, ..., en} be a basis for V. Let eab = ea ⊗ eb denote
the elements of the tensor basis for V ⊗ V. Then there are matrices Mab and
Mab such that

cup(1) = ΣMabeab

with the summation taken over all values of a and b from 1 to n. Similarly,
cap is described by

cap(eab) = Mab.
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Thus the amplitude for the circle is

cap[cup(1)] = capΣMabeab = ΣMabMab.

In general, the value of the amplitude on a simple closed curve is obtained
by translating it into an “abstract tensor expression” in the Mab and Mab,
and then summing over these products for all cases of repeated indices.

Returning to the topological conditions we see that they are just that
the matrices (Mab) and (Mab) are inverses in the sense that ΣMaiM

ib = δb
a

and ΣMaiMib = δa
b where δb

a denotes the (identity matrix) Kronecker delta
that is equal to one when its two indices are equal to one another and zero
otherwise.
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Figure 15 - Algebraic Cancellation of Maxima and Minima

In Figure 15, we show the diagrammatic representative of the equation
ΣMaiM

ib = δb
a.

In the simplest case cup and cap are represented by 2 × 2 matrices. The
topological condition implies that these matrices are inverses of each other.
Thus the problem of the existence of topological amplitudes is very easily
solved for simple closed curves in the plane.
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Now we go to knots and links. Any knot or link can be represented by
a picture that is configured with respect to a vertical direction in the plane.
The picture will decompose into minima (creations) maxima (annihilations)
and crossings of the two types shown below. (Here I consider knots and
links that are unoriented. They do not have an intrinsic preferred direction
of travel.) See Figure 16. In Figure 16 we have indicated the crossings as
mappings of V ⊗V to itself , called R and R−1 respectively. These mappings
represent the transitions corresponding to these elementary configurations.
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Figure 16 - Morse Knot Decomposition

That R and R−1 really must be inverses follows from the isotopy shown
in Figure 17 (This is the second Reidemeister move.)
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Figure 17 - Braiding Cancellation

We now have the vocabulary of cup,cap, R and R−1. Any knot or link can
be written as a composition of these fragments, and consequently a choice
of such mappings determines an amplitude for knots and links. In order for
such an amplitude to be topological we want it to be invariant under the
list of local moves on the diagrams shown in Figure 18. These moves are an
augmented list of the Reidemeister moves, adjusted to take care of the fact
that the diagrams are arranged with respect to a given direction in the plane.
The equivalence relation generated by these moves is called regular isotopy.
It is one move short of the relation known as ambient isotopy. The missing
move is the first Reidemeister move shown in Figure 6.

In the first Reidemeister move, a curl in the diagram is created or de-
stroyed. Ambient isotopy (generated by all the Reidemeister moves) corre-
sponds to the full topology of knots and links embedded in three dimensional
space. Two link diagrams are ambient isotopic via the Reidemeister moves
if and only if there is a continuous family of embeddings in three dimen-
sions leading from one link to the other. The moves give us a combinatorial
reformulation of the spatial topology of knots and links.
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Figure 18- Moves for Regular Isotopy of Morse Diagrams

By ignoring the first Reidemeister move, we allow the possibility that
these diagrams can model framed links, that is links with a normal vector
field or,equivalently, embeddings of curves that are thickened into bands. It
turns out to be fruitful to study invariants of regular isotopy. In fact, one
can usually normalise an invariant of regular isotopy to obtain an invariant
of ambient isotopy. We shall see an example of this phenomenon with the
bracket polynomial in a few paragraphs.
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As the reader can see, we have already discussed the algebraic meaning
of moves 0. and 2. The other moves translate into very interesting algebra.
Move 3., when translated into algebra, is the famous Yang-Baxter equation.
The Yang-Baxter equation occurred for the first time in problems related
to exactly solved models in statistical mechanics (See [19].). All the moves
taken together are directly related to the axioms for a quasi-triangular Hopf
algebra (aka quantum group). We shall not go into this connection here.

There is an intimate connection between knot invariants and the structure
of generalised amplitudes, as we have described them in terms of vector space
mappings associated with link diagrams. This strategy for the construction
of invariants is directly motivated by the concept of an amplitude in quantum
mechanics. It turns out that the invariants that can actually be produced
by this means (that is by assigning finite dimensional matrices to the caps,
cups and crossings) are incredibly rich. They encompass, at present, all
of the known invariants of polynomial type (Alexander polynomial, Jones
polynomial and their generalisations.).

It is now possible to indicate the construction of the Jones polynomial
via the bracket polynomial as an amplitude, by specifying its matrices. The
cups and the caps are defined by (Mab) = (Mab) = M where M is the 2 × 2
matrix (with ii = −1).

M =

[

0 iA
−iA−1 0

]

Note that MM = I where I is the identity matrix. Note also that the
amplitude for the circle is

ΣMabM
ab = ΣMabMab = ΣM2

ab

= (iA)2 + (−iA−1)2 = −A2 −A−2.

The matrix R is then defined by the equation

Rab
cd = AMabMcd + A−1δa

c δ
b
d,
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Since, diagrammatically, we identify R with a (right handed) crossing, this
equation can be written diagrammatically as the generating identity for the
bracket polynomial:

χ = A≍+ A−1 ><

ηb
a = MaiM
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Figure 19 - Pairing Maxima and Minima for Braid Closures

Taken together with the loop value of −A2 − A−2 that is a consequence of
this matrix choice, these equations can be regarded as a recursive algorithm
for computing the amplitude. This algorithm is the bracket state model for
the (unnormalised) Jones polynomial [11]. We have discussed this model in
the previous sections.

The upshot of these remarks is that the bracket state summation can
be reformulated as a matrix model as described in this section. Thus the
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values of the bracket polynomial can be regarded as generalized quantum
amplitudes. Note also that the model that we have described in this section
can be seen as a generalization of the representation of the Temperley Lieb
algebra from Section 3 with basic matrix M as above. In fact, in the case
where the knot or link is a closure of a braid, we can say even more. Suppose
that K = b where b is an n-strand braid in Bn. Then the cups and caps can
be paired off as hown in Figure 19 so that

Z(K) = δ < K >= Trace(η⊗nρ(b)).

Here

ηa
b = ΣiMbiM

ai

so that η = MM t where M t denotes the transpose of the matrix M .
and ρ : Bn −→ TLn is the matrix representation of the Temperley Lieb alge-
bra specified in Section 3. The key to the workings of this representation of
the bracket calculation for braids is the fact that for any pure connection el-
ement Q (obtained from a product of the U ′

is) in the Temperley-Lieb algebra
TLn, the evaluation

Trace(η⊗nQ)

is equal to δλ(Q) where λ(Q) is the number of loops in the (braid) closure of
the diagram for Q.

In general, if we have a linear function TR : TLn −→ Z[δ] such that
TR(Q) = δλ(Q) for elements Q as above, then TR(ρ(b)) = δ < b > for any
n-strand braid b.

6 Quantum Computing

In this paper I have concentrated on giving a picture of the general frame-
work of the Jones polynomial and how it is related to a very general, in
fact categorical, view of quantum mechanics. Many algorithms in quantum
topology are configured without regard to unitary evolution of the amplitude
since the constraint has been topological invariance rather than conforma-
tion to physical reality. This gives rise to a host of problems of attempting to
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reformulate topological amplitudes as quantum computations. A particular
case in point is the bracket model for the Jones polynomial. It would be of
great interest to see a reformulation of this algorithm that would make it a
quantum computation in the strict sense of quantum computing. One way to
think about this is to view the bracket model as a vacuum-vacuum amplitude
as we have done in the last section of this paper. Then it can be configured
as a composition of operators (cups, caps and braiding). If the braiding is
unitary. Then at least this part can be viewed as a quantum computation.

To see how this can be formulated consider the vacuum-vacuum compu-
tation of a link amplitude as we have described it in section 4. In Figure
20 we have indicated an amplitude where the temporal decomposition con-
sists first in a composition of cups (creations), then braiding and then caps
(annihilations). Thus we can write the amplitude in the form

ZK =< CUP |M |CAP >

x

xxx

x xx
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Figure 20 - ZK =< CUP |M |CAP > - A Knot Quantum Computer

where < CUP | denotes the composition of cups, M is the composition of
elementary braiding matrices and |CAP > is the composition of caps. We
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then regard < CUP | as the preparation of this state and |CAP > as the
detection of this state. In order to view ZK as a quantum computation,
we need that M be a unitary operator. This will be the case if the R-
matrices (the solutions to the Yang-Baxter equation used in the model for
this amplitude) are unitary. In this case, each R-matrix can be viewed as a a
quantum gate (or possibly a composition of quantum gates) and the vacuum-
vacuum diagram for the knot is interpreted as a quantum computer. This
quantum computer will probabalistically compute the values of the states in
the state sum for ZK . In order to do so, we would need to specify those
observations and preparations that corresopond to the cups and the caps in
the diagram. A more modest proposal is to regard the braiding sector of
the diagram as a quantum computer. That braiding sector will represent a
unitary evolution, and one can ask more generally what can be computed by
using such a gate derived from a braid.

It should be noted that because the quantum computer gives probabilistic
data, it cannot compute the knot invariants exactly. In fact, the situation
is more serious than that. If we assume that the parameters in the knot
invariant are complex, then the computer will only find (probabilistically)
the absolute squares of the various complex parameters. Important phase
information will be lost, and it is not obvious that topologically invariant
information about the knot can be extracted.

6.1 A Unitary Representation of the Three Strand Braid

Group and the Corresponding Quantum Computer

Many questions are raised by the formulation of a quantum computer asso-
ciated with a given Morse link diagram. First of all, unitary solutions to the
Yang-Baxter equation (or unitary representations of the Artin braid group)
that also give link invariants are not so easy to come by. We gave a small
example of a unitary representation of the three-strand braid group in the
first section of this paper. Thus we, are prepared to look at some aspects of
the computation of a knot invariant as a quantum computation. In fact, we
can use this representation to compute the Jones polynomial for closures of
3-braids, and therefore this representation provides a test case for the corre-
sponding quantum computation. We now analyse this case by first making
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explicit how the bracket polynomial is computed from this representation.

First recall that the representation depends on two matrices U1 and U2

with

U1 =

[

δ 0
0 0

]

and

U2 =

[

δ−1
√

1 − δ−2√
1 − δ−2 δ − δ−1

]

.

The representation is given on the two braid generators by

ρ(σ1) = AI + A−1U1

ρ(σ2) = AI + A−1U2

for any A with δ = −A2 − A−2, and with A = eiθ, then δ = −2cos(2θ). We
get the specific range of angles |θ| ≤ π/6 and |θ−π| ≤ π/6 that give unitary
representations of the three-strand braid group.

Note that tr(U1) = tr(U2) = δ while tr(U1U2) = tr(U2U1) = 1. If b is
any braid, let I(b) denote the sum of the exponents in the braid word that
expresses b. For b a three-strand braid, it follows that

ρ(b) = AI(b)I + τ(b)

where I is the 2×2 identity matrix and τ(b) is a sum of products in the Tem-
perley Lieb algebra involving U1 and U2. Since the Temperley Lieb algebra
in this dimension is generated by I,U1, U2, U1U2 and U2U1, it follows that

< b >= AI(b)δ2 + tr(τ(b))

where b denotes the standard braid closure of b, and the sharp brackets denote
the bracket polynomial as described in previous sections. From this we see
at once that

< b >= tr(ρ(b)) + AI(b)(δ2 − 2).
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It follows from this calculation that the question of computing the bracket
polynomial for the closure of the three-strand braid b is mathematically
equivalent to the problem of computing the trace of the matrix ρ(b). To
what extent can our quantum computer determine the trace of this matrix?

The matrix in question is a product of unitary matrices, the quantum
gates that we have associated with the braids σ1 and σ2. The entries of
the matrix ρ(b) are the results of preparation and detection for the two
dimensional basis of qubits for our machine:

< i|ρ(b)|j > .

Given that the computer is prepared in |j >, the probability of observing it in
state |i > is equal to | < i|ρ(b)|j > |2. Thus we can, by running the quantum
computation repeatedly, estimate the absolute squares of the entries of the
matrix ρ(b). This will not yield the complex phase information that is needed
for either the trace of the matrix or the absolute value of that trace. Thus
we conclude that our quantum computer can compute information relating
to the braiding process, but that it cannot approximate the full value of the
bracket polynomial.

Note that our quantum computer does indeed have the capability to de-
tect three strand braiding, since for a braid b the matrix ρ(b) can have non-
trivial off-diagaonal elements. The absolute squares of these elements are
approximated by successive runs of the quantum computer. In this quantum
computer, braiding corresponds to entangled quatum states and is dectable
by that token. The bracket polynomial itself depends upon subtler phase
relationships and is not detectable by this quantum computer.

6.2 Comments

These results are less than satisfying since there does not seem to be a way to
calculate the entire knot polynomial even by probabilisitic approximations.
It is not clear what the practical value of such a computation will be for
understanding a given link invariant. Nevertheless, it is to be expected that
a close relationship between quantum link invariants and quantum computing
will be fruitful for both fields.
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There are other ideas in the topology that deserve comparison with the
quantum states. For example, topological entanglement in the sense of link-
ing and braiding is intuitively related to the entanglement of quantum states.
In our general model using a unitary representation of the braid group, topo-
logical entanglement entails quantum entanglement. The quantum topo-
logical states associated with the bracket polynomial would certainly figure
strongly in a quantum computing model of this algorithm. The specific
model that we have given uses only one qubit and so does not produce en-
tanglement. There are other representations of the Artin Braid group that
do produce quantum entanglements corresponding to topological braiding.
These phenomena will be the subject of a subsequent paper [20].

We mention one further possibility. In the paper [21] by Lidar and Bi-
ham the authors show how to simulate special cases of the Ising model on a
quantum computer. Their method is more combinatorial and less algebraic
than the approach sketched in this section using braiding. It is possible that
a generalization of their approach will work for the state sum of the bracket
polynomial. This is a topic for further research.

6.3 And Quantum Field Theory

Finally, it is important to remark that there is an interpretation of the Jones
polynomial in terms of quantum field theory. Witten [26] writes down a
functional integral for link invariants in a 3-manifold M:

Z(M,K) =
∫

dAexp[(ik/4π)S(M,A)]tr(Pexp(
∫

K
A)).

Here M denotes a 3-manifold without boundary and A is a gauge field (gauge
connection) defined on M. The gauge field is a one-form on M with values
in a representation of a Lie algebra. S(M,A) is the integral over M of the
trace of the Chern-Simons three-form CS = AdA+(2/3)AAA. (The product
is the wedge product of differential forms.)

With the standard representation of the Lie algebra of SU(2) as 2 × 2
complex matrices, one can see that the formalism of Z(S,K) (S3 denotes
the three-dimensional sphere.) yields the Jones polynomial with the basic
properties as we have discussed. See Witten’s paper or [26] or [15],[16].
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The question is: How does the quantum field theory approach to the Jones
polynomial relate to quantum computing? One way to discuss this question
is to reformulate (topological) quantum field theories as state summations,
as we did for the Jones polynomial, and then proceed in a fashion analogous
to our amplitudes discussion above. It is more challenging to try to imagine
reformulating quantum computing at the level of quantum field theory. If
this were accomplished, the subject of quantum computing and the Jones
polynomial might well take a new road.

7 Summary

In relating quantum computing with knot polynomials the key themes are
unitarity and measurement. Much is now surely unforseen. For a good
survey of quantum computing we recommend [1] and [22] and for another
view of topological issues see [6] and [7]. See [25] for an excellent treatment
of measurement theory in quantum mechanics and a useage of the Dirac
formalism that is in resonance with the concerns of this paper.
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