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D-LOG AND FORMAL FLOW FOR ANALYTIC

ISOMORPHISMS OF N-SPACE

DAVID WRIGHT AND WENHUA ZHAO

Abstract. Given a formal map F = (F1 . . . , Fn) of the form
z + higher order terms, we give tree expansion formulas and as-
sociated algorithms for the D-Log of F and the formal flow Ft.
The coefficients which appear in these formulas can be viewed as
certain generalizations of the Bernoulli numbers and the Bernoulli
polynomials. Moreover the coefficient polynomials in the formal
flow formula coincide with the strict order polynomials in combina-
torics for the partially ordered sets induced by trees. Applications
of these formulas to the Jacobian Conjecture are discussed.
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2 DAVID WRIGHT AND WENHUA ZHAO

1. Introduction

This work began as an effort to link and extend the results of [W2]
and [Z], placing them in a common framework. Both of these pa-
pers deal with the formal inverse F−1 of a system of power series
F = (F1, . . . , Fn); both give formulas for F−1 in terms of F , the former
being a tree formula, the latter an exponential formula. This quest has
led to a host of interesting connections, algorithms, formulas, and rela-
tionships with combinatorics, Bernoulli numbers, and Bernoulli poly-
nomials.

The former paper deals with tree formulas as they apply to for-
mal inverse, a thread which is also the main thrust of [BCW], [W1],
[W2], and [C. . . ]. It has combinatoric connections with generating
functions and enumeration techniques for trees. The general goal of
power series inversion (sometimed called ”reversion”, perhaps to dis-
tinguish functional inverse from multiplicative inverse) is as follows.
Let F = (F1, . . . , Fn) with Fi ∈ C[[z1, . . . , zn]] for each i and Fi = z1 +
terms of degree ≥ 2. One seeks formulas for the unique G1, . . . , Gn ∈
C[[z1, . . . , zn]] for which Gi(F ) = zi, for i = 1, . . . , n. Perhaps the first
of these was the Lagrange Inversion Formula (see [St2], Chapter 5),
which dealt with the case n = 1, and which was generalized (under
a certain restrictive hypothesis) to all n in the by I. J. Good [Go] in
1960. Good then uses his formula for problems of enumerating certain
trees. In fact, Good’s formula had been discovered and published by
Jacobi in 1830 [Ja]. Another paper which appeared in 1960 was that
of G. N. Raney [R], who also related formal inverse to trees. Raney’s
work was generalized in [C. . . ], which also utilized the work of Jacobi.
A general inversion formula was given by Abhyankar and Gurjar in
1974 [A], and this is the source from which the tree formula of [BCW]
was derived, with the hope of applying it to the Jacobian Conjecture.
Other treatments of the subject of inversion are [HS], [Ge], and [Jo].

The tree formula of [BCW] expresses the formal inverse F−1 as an
infinite Q-linear combination of certain power series PT ∈ C[[z]], which
are constructed using finite rooted trees T . This construction will be
reviewed in §2 and a new (and quick) proof of the inversion formula, us-
ing the tools developed in this paper, will be presented in §5 (Theorem
5.1).

Amongst the results of the latter paper is the realization of the F
by an expression F = exp(A) · z, where A = A(z), called the D-Log
of F , is a differential operator uniquely determined by F and yielding
the formal inverse as F−1 = exp(−A) · z. Furthermore, the formal flow
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Ft = exp(tA) · z encodes all powers F [n] with n ∈ Z of the formal map
F . The D-Log and the formal flow will be reviewed in §3.

A primary goal was to show that the D-Log A can also be expressed
a Q-linear combination of the power series PT . This goal was attained,
yielding a tree formula for the D-Log. Moreover, we discovered that
the rational coefficients φT of this expression can be generated by an
elegant recurrence relationship and possess some intriguing combina-
torial properties. For example, the Bernoulli numbers appear amongst
these coefficients.

This situation is placed in a larger context which incorporates formal
inverse by considering the formal flow Ft = exp(tA) · z, where t is an
indeterminate. For n ∈ N, setting t = n gives the n-fold composition
F ◦ · · · ◦ F , and setting t = −n gives the n-fold composition F−1 ◦
· · · ◦ F−1. The system Ft can be written as a Q[t]-linear combination
of the power series PT , producing for each rooted tree T a polynomial
ψT (t) having φT as the coefficient of t. Among these polynomials are
the binomial polynomials

(
t
m

)
, for all positive integers m. We give an

algorithm for calculating ψT (t) using the difference operator ∆. This
formula is used to establish the relationship of certain ψT (t)s with the
Bernoulli polynomials Bm(t) via an integration formula. It is shown
that ψT (t) also provides an interesting combinatorial connection: It
coincides with the strict order polynomial Ω̄(P, t) (see [St1], Chapter
4) for P = T , which, for t = m ∈ Z+, counts the number of strict
order preserving maps from any partially ordered set P to the totally
ordered set with m elements.

We would like to thank Professor John Shareshian for informing us of
Theorem 4.5, and also Professor Steve Krantz for a helpful conversation
on flow of analytic maps.

2. Tree Operations

2.1. Notation. By a rooted tree we mean a finite 1-connected graph
with one vertex designated as its root. The 1-connectivity provides the
notion of distance between two vertices, which is defined as the number
of edges in the unique geodesic connecting the two. The height of a
tree is defined to be the maximum distance of any vertex from the root.
In a rooted tree there are natural ancestral relations between vertices.
We say a vertex w is a child of vertex v if the two are connected
by an edge and w lies further from the root than v. In the same
situation, we say w is the parent of v. Note that a vertex my have
several children, but only one parent. The root is the only vertex
with no parent. A vertex is called a leaf if it has no children. When
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we speak of isomorphisms between rooted trees, we will always mean
root-preserving isomorphisms.

With these notions in mind, we establish the following notation.

(1) We let T be the set of isomorphism classes of all rooted trees
and, for m ≥ 1 an integer, we let Tm the set of isomorphism
classes of all rooted trees with m vertices. The latter is a finite
set.

(2) For any rooted tree T , we set the following notation:
• rtT denotes the root vertex of T .
• E(T ) denotes the set of edges of T .
• V (T ) denotes the set of vertices of T .
• L(T ) denotes the set of leaves of T .
• v(T ) (resp. l(T )) denotes the number of the elements of
V (T ) (resp. L(T )).
• h(T ) denotes the height of T .
• αT denotes the number of the elements of the automor-

phism group Aut(T ).
• For v ∈ V (T ) we denote by αT,v the size of the stabilizer

of v in Aut(T ). Similarly, for e ∈ E(T ), we write αT,e the
size of the stabilizer of e in Aut(T ).
• For e ∈ E(T ) we denote by ve and v′e the two (distinct)

vertices which are connected by e, with ve being the one
closest to
the root.
• For v ∈ V (T ) we denote by v+ the set of vertices which

are children of v.
• For v ∈ V (T ) we define the height of v to be the number

of edges in the (unique) geodesic connecting v to rtT . The
height of T is defined to be the maximum of the heights of
its vertices.
• For v1, . . . , vr ∈ V (T ), we write T\{v1, . . . , vr} for the

graph obtained by deleting each of these vertices and all
edges adjacent to these vertices.

(3) A rooted subtree of a rooted tree T is defined as a connected
subgraph of T containing rtT , with rtT ′ = rtT . In this case we
write T ′ ≤ T . If T ′ 6= T we write T ′ < T . If T ′ < T , we write
T\T ′ for the graph obtained by deleting all vertices of T ′ and
all edges adjacent to its vertices.

(4) For any k ≥ 1, we denote by Ck the rooted tree of height k− 1
having k vertices, and by Sk the rooted tree of height 1 having
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k leaves. We also set S0 = ◦, the rooted tree with one vertex.
We refer to the trees Ck as chains and the Sk as shrubs.

2.2. Power Series Given by a Rooted Tree. Let C[[z1, . . . , zn]] =
C[[z]] denote the ring of formal power series in n indeterminates z1, . . . , zn

over the complex numbers1 C. For i = 1, . . . , n we will write Di for
the differential operator ∂

∂zi
. The operators D1, . . . , Dn are commuting

derivations acting on the ring C[[z]].
Given a vector of power series F = (F1, . . . , Fn) ∈ C[[z]]n, we write

Fi = zi +Hi for i = 1, . . . , n, or just F = z +H .2 In most applications
the power series H = (H1, . . . , Hn) will involve will only monomials of
total degree 2 and higher, and we will often take H to be homogeneous
of degree d ≥ 2. However, these assumptions are not necessary for
what follows here. We will associate to each rooted tree a power series
in n variables based on F (equivalently, on H).

For T ∈ T, a labeling of T in the set {1, . . . , n} is a function f :
V (T ) → {1, . . . , n}. A rooted tree T with a labeling f is called a
labeled rooted tree, denoted (T, f). Given such, and given F = z + H
as above, we make the following definitions, for v ∈ V (T ):

(1) Hv = Hf(v).
(2) Dv = Df(v).
(3) Dv+ =

∏
w∈v+ Dw.

(4) PT,f =
∏

v∈V (T )Dv+Hv.

Finally, we define systems of power series PT = (PT,1, . . . , PT,n) and
PT = (PT,1, . . . ,PT,n) by summing over all labelings of T having a
fixed label for the root:

PT,i =
∑

f :V (T )→{1,...,n}
f(rtT )=i

PT,f

PT,i =
1

αT
PT,i

for i = 1, . . . , n.
One notes that the power series PT and PT are dependent on the inte-

ger n and the system H = (H1, . . . , Hn) ∈ C[[z]]n. They can be viewed
as objects which determine functions C[[z, . . . , zn]]n → C[[z, . . . , zn]]n

1In this paper C can always be replaced by any Q-algebra.
2We should here acknowledge that in almost every other treatment of this subject

the system F is written as z−H , which yields nicer looking formulas for the formal
inverse of F . The reason for our choice is that the formulas involving the D-Log
and formal flow, which will be developed in §3, come out better when we write
F = z + H .
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for all n ≥ 1. We will write PT (H) and PT (H) when we need to em-
phasize this dependence, or when we are dealing with more than one
system H .

2.3. Stable Linear Independence. We begin by establishing an im-
portant independence property of the objects {PT | T ∈ T}.

Definition 2.1. We say rooted trees T1, . . . , Tk are stably linear depen-
dent if there exist c1, . . . , ck ∈ C such that

∑k
i=1 ciPTi

= 0 for any inte-
ger n ≥ 1 and any homogeneous polynomial system H = (H1, . . . , Hn)
in n variables. Otherwise, we say Ti are stably linear independent.

Remark 2.2. If H is homogeneous of degree d and if T ∈ Tm, then
PT (H) is homogeneous of degree (d − 1)m + 1. Thus if we parti-
tion {T1, . . . , Tk} according to the number of vertices in a tree, then
T1, . . . , Tk are stably linear independent if and only if each partition is
a stablly linearly independent set of trees.

Lemma 2.3. Suppose
∑k

i=1 ciPTi
(H) = 0 for any integer n ≥ 1 and

any homogeneous polynomial system H in n variables. Then
∑k

i=1 ciPTi
(H) =

0 for any system of power series H = (H1, . . . , Hn) in n variables.

Proof: We first prove it for any polynomial H (not necessarily ho-
mogeneous) in n variables by introducing a new variable zn+1 and ho-
mogenizing H using zn+1. Call the resulting homogeneous system H̄.

Setting H̃ = (H̄,Hn+1 = 0), we have

k∑

i=1

ciPTi
(H, z) =

k∑

i=1

ciPTi
(H̃, z)|zn+1=1 = 0,

which proves the lemma for H a polynomial system. For an arbitrary
system of power series H we note that if T is a tree with r edges, the
homogeneous summands of degree ≤ d in PT (H) depends only on the
homogeneous summands of H having degree ≤ d+r. Taking r to be the
maximum of the numbers of edges in T1, . . . , Tk, then all terms of degree
≤ d in

∑k
i=1 ciPTi

(H) depend only the homogeneous summands of H

having degree ≤ d+r. Taking Ĥ to be the polynomial truncation of H

of degree d+ r, we see that
∑k

i=1 ciPTi
(H) and

∑k
i=1 ciPTi

(Ĥ) coincide

up through degree d. Since the latter is zero (Ĥ being a polynomial

system) and d is arbitrary, we must have
∑k

i=1 ciPTi
(H) = 0. ✷

Theorem 2.4. Any rooted trees Ti (i = 1, 2, · · · , k) with Ti ≇ Tj for
any i 6= j are stably linear independent.



D-LOG AND FORMAL FLOW FOR ANALYTIC ISOMORPHISMS 7

Before giving the proof we will define a polynomial system depending
on a rooted tree. Given a rooted tree T with m vertices, we create
variables z1, . . . , zm. Label the edges e2, . . . , em and assign each variable
zi with 2 ≤ i ≤ m to the edge ei. Label the vertices as follows: v1 = rtT ,
and for i = 2, . . . , m let vi be the vertex of ei which is furthest from
the root. For each vertex vi ∈ V (T ), we define Hi to be the product of
all the variables assigned to the edges connecting vi with its children.
(Thus if vi is a leaf, we have Hi = 1.) Set HT = (H1, . . . , Hm). We
have:

Lemma 2.5. Let T and T ′ be two rooted trees with same number of
vertices, then

PT ′(HT ) =

{
(0, . . . , 0) if T ≇ T ′

(αT , 0, . . . , 0) if T ≃ T ′

Proof: The following facts are not difficult to verify, and provide a
sketch of the proof: Each coordinate HT,i of HT is a monomial which
is linear or constant with respect to each variable zi Each coordinate
is constant with respect to in z1. Each variable zi with i ≥ 2 appears
in precisely one coordinate HT,j, and i 6= j. PT ′(HT ) is a homoge-
neous system of degree zero, and must be equal to either 0 or 1. If a
labeling f : V (T ′) → {1, . . . , m} is not bijective, then PT ′,f = 0 since
it would entail differentiating two different coordinates HT,i, HT,j with
respect to the same variable, or differentiating some HT,i twice by the
same variable, or differentiating some HT,i by zi, all of which give zero.
Moreover, if f(rtT ′) 6= 1 then PT ′,f = 0, since it would entail differen-
tiation by z1, and therefore PT ′(HT ) is zero except possibly in the first
coordinate.

With this it is not hard to show: If f : V (T ′) → {1, . . . , m} is a
labeling for which PT ′,f 6= 0, then the function V (T ′) → V (T ) defined
by w 7→ vf(w) gives and isomorphism of ϕ : T ′ → T . Finally, the group
AutT acts freely and transitively on the set of labelings f : V (T ) →
{1, . . . , m} for which PT,f 6= 0. The lemma follows easily from these
statements. ✷

Proof of Theorem 2.4: Suppose that
∑k

i=1 ciPTi
(z) = 0 with c1 6= 0.

Choose H = HT1, then there must exist j 6= 1 such that PTj
(HT1) 6= 0.

By the lemma above, we have T1 ≃ Tj . ✷

If H = (H1, . . . , Hn) is a system of power series such that each Hi has
only terms of degree d and higher, the power series PT has only terms
of degree (d− 1)v(T )+ 1 and higher. Hence if d ≥ 2 a sum of the form



8 DAVID WRIGHT AND WENHUA ZHAO

∑
T∈T

cT PY makes sense, since only finitely many terms contribute to
any specified homogeneous summand. With this observation, we state
the following consequence of stable linear independence.

Corollary 2.6. Suppose we have a collection {cT} ⊂ C indexed by the
rooted trees T ∈ T such that

∑
T∈T

cT PT = 0 for for any integer n ≥ 1
and any system of power series H = (H1, . . . , Hn) with H having only
terms of degree ≥ 2. Then cT = 0 for all T ∈ T.

Proof: We consider systems H which are homogeneous polynomial
systems of degree d ≥ 2. In this case PT is homogeneous of degree
(d− 1)v(T ) + 1, so the homogeneous summands of

∑
T∈T

cT PT are the
finite sums

∑
T∈TN

cT PT forN ∈ N, so these must be zero. By Theorem
2.4 applied to the finite set of trees TN , we must have cT = 0 for all
T ∈ TN . ✷

Recall that we are writing Di for the operator ∂
∂zi

. We will denote

by D the column vector (D1, . . . , Dn)t. We now define a differential
operator on C[[z]] for each T ∈ T.

Definition 2.7. For T ∈ T, we denote by DT the differential operator
PTD =

∑n
i=1 PT,iDi. We will write DT for the operator PTD = 1

αT
DT .

2.4. Tree Surgery. We will now discuss some “surgical” procedures
on trees. Given T ∈ T and e ∈ E(T ), the removal of the edge e from T
gives a disconnected graph with two connected components which are
trees. We denote by Te the component containing rtT , and by T ′

e the
other component. We give Te and T ′

e the structure of rooted trees by
setting rtTe = rtT and rtT ′

e
= v′e.

Given rooted trees T and T ′ and v ∈ V (T ), we denote by

T ′
⊸v T

the tree obtained by connecting rtT ′ and v by a newly created edge,
and setting rt(T ′

⊸vT ) = rtT . We will refer to the newly created edge as
the connection edge of T ′

⊸v T . Note that for and tree T and edge
e ∈ E(T ) we have an obvious isomorphism T ≃ (T ′

e ⊸ve Te) which is
the identity on Te and T ′

e.
Given e, f ∈ E(T ), we say “f lies below e”, and write e ≻ f , if

f ∈ E(Te). This merely says that f remains when we “strip away” e
and T ′

e. One can easily see that this relation is not transitive. However,
if we write

e1 ≻ · · · ≻ er ,

for e1, . . . , er ∈ E(T ), we will mean by this that ei ≻ ej if i < j.
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A sequence ~e = (e1, . . . , er) ∈ E(T )r with e1 ≻ · · · ≻ er determines
a sequence of subtrees T~e,1, . . . T~e,r+1 as follows: Setting T~e,1 = T ′

e1
and

let S2 = Te1, noting that e2, . . . , er ∈ E(S2). For i = 1, . . . , r, assume
T~e,1, . . . , T~e,i−1, Si are defined with ei, . . . , er ∈ E(Si). Set T~e,i = (Si)

′
ei

and Si+1 = (Si)ei
. Finally, set T~e,r+1 = Sr+1.

For any integer r ≥ 1 and T ∈ T, create an indeterminate Y
(r)
T .

Denote this set of variables (for all T and r) by Y . Extend the action
of the operators DT and DT to C[[z]][Y ] by making each indeterminate
of Y a constant.

Lemma 2.8. Let r,m ≥ 1 be integers and S ∈ T. Then
∑

(T1,...,Tr)∈Tr

v(T1)+···+v(Tr)+v(S)=m

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(r)
Tr

DTr

]
PS

=
∑

T∈Tm

∑

~e=(e1,...,er)∈E(T )r

e1≻···≻er
T~e,r+1≃S

Y
(1)
T~e,1
· · ·Y

(r)
T~e,r

PT(2.1)

Proof: Note that both sums are finite, so the expression makes sense
for any H ∈ C[[z]]n.

We first consider the case r = 1. For T ′ ∈ T we have

DT ′PS =
∑

v∈V (S)

P(T ′
⊸vS) .

Hence
∑

T ′∈T

v(T ′)+v(S)=m

Y
(1)
T ′ DT ′PS =

∑

T ′∈T

v(T ′)+v(S)=m

∑

v∈V (S)

Y
(1)
T ′ P(T ′

⊸vS)

=
∑

T∈Tm

∑

T ′∈T

∑

v∈V (S)
(T ′

⊸vS)≃T

Y
(1)
T ′ P(T ′

⊸vS) .

For a fixed T ∈ Tm we wish to count the occurrences of PT in the last
expression. Toward this end, for T ′ ∈ T let

IT,T ′,S = {v ∈ V (S) | (T ′
⊸v S) ≃ T}

JT,T ′,S = {ē ∈ E(T )/Aut (T ) | T ′
e ≃ T ′, Te ≃ S (for any e representing ē)}

We will define as function Φ : IT,T ′,S → JT,T ′,S as follows: Given

v ∈ IT,T ′,S, choose an isomorphism ϕ : (T ′
⊸v S)

≃
−→ T , and let e be

the image under ϕ of the connection edge in T ′
⊸v S. Letting ē be

the class of e in E(T )/Aut (T ), we clearly have ē ∈ JT,T ′,S. To see that

ē is independent of the choice of ϕ, suppose γ : (T ′
⊸v S)

≃
−→ T sends
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the connection edge to f ∈ E(T ). Then γϕ−1(e) = f , hence f̄ = ē in
E(T )/Aut (T ). Therefore we have a well-defined function Φ, which is
obviously surjective.

We claim that for v ∈ IT,T ′,S the orbit of v under Aut (S) is precisely
the fiber of v under Φ. It is clear that if w ∼ v by the action of Aut (S)
then (T ′

⊸w S) ≃ (T ′
⊸v S) ≃ T , with the first isomorphism taking

one connection edge to the other, which shows w ∈ IT,T ′,S. Choosing

appropriate isomorphisms (T ′
⊸w S)

ρ
−→ (T ′

⊸v S)
ϕ
−→ T , we see

that the image e of the connection edge of T ′
⊸v S under ϕ is also the

image of the connection edge of T ′
⊸w S under ϕρ, hence Φ(w) = Φ(v).

Moreover, if w ∈ IT,T ′,S is any element for which Φ(w) = Φ(v), then
we have isomorphisms

(T ′
⊸w S)

γ
−→ T

ϕ
←− (T ′

⊸v S)

such that the same e ∈ E(T ) is the image of both connection edges.
(This can be achieved after modifying by an automorphism of T .) It
follows that γ−1ϕ : (T ′

⊸v S) → (T ′
⊸w S) carries one connection

edge to the other, so it restricts to an automorphism of S sending v to
w. Hence w ∼ v. Therefore the above sum can be written as

∑

T∈Tm

∑

T ′∈T

∑

v∈IT,T ′ ,S

Y
(1)
T ′ PT

=
∑

T∈Tm

∑

T ′∈T

∑

ē∈JT,T ′,S

sTe(ve) Y
(1)
T ′ PT

=
∑

T∈Tm

∑

ē∈E(T )/Aut (T )
Te≃S

sTe(ve) Y
(1)
T ′

e
PT

where sTe(ve) is the orbit size of ve under the action of AutTe, for some
(any) e ∈ E(T ) representing ē. The number of edges representing ē is
αT/αT,e, hence the inner sum can be altered to run over all e ∈ E(T )
at the cost of dividing by αT/αT,e, yielding

∑

T∈Tm

1

αT

∑

e∈E(T )
Te≃S

αT,e sTe(ve) Y
(1)
T ′

e
PT .

An automorphism of T fixing e ∈ E(T ) restricts to an automorphism
of T ′

e and an automorphism of Te fixing ve. Conversely, given the latter
pair we get a unique automorphism of of T preserving e. It follows that
αT,e = αT ′

e
αTe,ve . Also we have sTe,ve = αTe/αTe,ve . Incorporating these
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facts and putting together the above equalities, we get

∑

T ′∈T

v(T ′)+v(S)=m

Y
(1)
T ′ DT ′PS =

∑

T∈Tm

1

αT

∑

e∈E(T )
Te≃S

αT ′

e
αSY

(1)
T ′

e
PT

Dividing the equation by αS and substituting 1
αR
Y

(1)
R for Y

(1)
R for each

R ∈ T yields
∑

T ′∈T

v(T ′)+v(S)=m

Y
(1)
T ′ DT ′PS =

∑

T∈Tm

∑

e∈E(T )
Te≃S

Y
(1)
T ′

e
PT ,

which is precisely the assertion of the lemma for r = 1.
For r ≥ 2 we apply induction as follows:

∑

(T1,...,Tr)∈Tr

v(T1)+···+v(Tr)+v(S)=m

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(r)
Tr

DTr

]
PS

=
∑

T1∈T

Y
(1)
T1

DT1

∑

(T2,...,Tr)∈T
r−1

v(T2)+···+v(Tr)+v(S)=m−v(T1)

[
Y

(2)
T2

DT2

]
· · ·
[
Y

(r)
Tr

DTr

]
PS .

Applying induction and a substitution of variables Y
(i+1)
t for Y

(i)
t to

the inner sum, this equals
∑

T1∈T

Y
(1)
T1

DT1

∑

R∈Tm−v(T1)

∑

~e=(e1,...,er−1)∈E(R)r−1

e1≻···≻er−1
T~e,r≃S

Y
(2)
T~e,1
· · ·Y

(r)
T~e,r−1

PR

=
∑

T1,R∈T

v(T1)+v(R)=m

Y
(1)
T1

DT1

∑

~e=(e1,...,er−1)∈E(R)r−1

e1≻···≻er−1
T~e,r≃S

Y
(2)
T~e,1
· · ·Y

(r)
T~e,r−1

PR

=
∑

R∈T




∑

T1∈T

v(T1)+v(R)=m

Y
(1)
T1

DT1PR




∑

~e=(e1,...,er−1)∈E(R)r−1

e1≻···≻er−1
T~e,r≃S

Y
(2)
T~e,1
· · ·Y

(r)
T~e,r−1

.

Now we apply the case r = 1 to the bracketed expression to obtain

∑

R∈T



∑

T∈Tm

∑

e∈E(T )
Te≃R

Y
(1)
T ′

e
PT




∑

~e=(e1,...,er−1)∈E(R)r−1

e1≻···≻er−1
T~e,r≃S

Y
(2)
T~e,1
· · ·Y

(r)
T~e,r−1
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∑

T∈Tm

∑

R∈T

∑

e∈E(T )
Te≃R

∑

~e=(e1,...,er−1)∈E(R)r−1

e1≻···≻er−1
T~e,r≃S

Y
(1)
T ′

e
Y

(2)
T~e,1
· · ·Y

(r)
T~e,r−1

PT

=
∑

T∈Tm

∑

~e=(e1,...,er)∈E(T )r

e1≻···≻er
T~e,r+1≃S

Y
(1)
T~e,1
· · ·Y

(r)
T~e,r

PT

which completes the proof. ✷

Suppose the system of power series H = (H1, . . . , Hn) has the prop-
erty that each Hi involves only monomials of degree ≥ 2 in z1, . . . , zn.
Then one easily verifies that for T ∈ T, PT involves only monomials of
degree ≥ v(T ) + 1. It follows that for a monomial M in z of degree m,
DT ·M involves only monomials of degree ≥ m+ v(T ). Therefore infi-
nite sums such as

∑
T∈T

PT and
∑

T∈T
DT make sense in this situation.

The following two corollaries of Lemma 2.8 are based on this observa-
tion. The equations in both corollaries take place in the ring C[Y ][[z]],

where Y represents the infinite set of variables {Y
(i)
T | T ∈ T, i ∈ Z+}.

Corollary 2.9. Suppose the system of power series H involves only
monomials of degree ≥ 2. Let r ≥ 1 be an integer and S ∈ T. Then

∑

(T1,...,Tr)∈Tr

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(r)
Tr

DTr

]
PS

=
∑

T∈T

∑

~e=(e1,...,er)∈E(T )r

e1≻···≻er
T~e,r+1=S

Y
(1)
T~e,1
· · ·Y

(r)
T~e,r

PT(2.2)

Proof: We simply sum (2.1) over all m ≥ 1, noting the convergence
of the sums by the observations above. ✷

Corollary 2.10. Suppose the system of power series H involves only
monomials of degree ≥ 2. Let k ≥ 2 be an integer. Then

∑

(T1,...,Tk)∈Tk

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(k−1)
Tk−1

DTk−1

] [
Y

(k)
Tk

PTk

]

=
∑

T∈T

v(T )≥2

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

Y
(1)
T~e,1
· · ·Y

(k)
T~e,k

PT(2.3)

Proof: We apply Corollary 2.9, multiplying both sides of (2.2) by

Y
(r+1)
S , setting k = r + 1, summing over all S ∈ T. Note that the
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singleton tree contributes 0 in (2.2) for any r ≥ 1, and thus the qualifier
v(T ) ≥ 2 in (2.3). ✷

3. D-Log and Formal Flow

We will henceforth be restricting our attention to systems of power
series F = (F1, . . . , Fn) ∈ C[[z]]n of the form Fi = zi + Hi with Hi

involving only monomials of degree 2 and higher, for i = 1, . . . , n. We
refer to this condition by saying “F is of the form identity plus higher.”
Such a system determines a C-algebra automorphism of C[[z]], namely
the automorphism which sends zi to Fi for i = 1, . . . , n.

3.1. The D-Log. The following proposition appears as Proposition
2.1 in [Z].

Proposition 3.1. For any F = (F1, F2, · · · , Fn) ∈ C[[z]]n of the form
identity plus higher, there exists a unique system of power series

a = (a1, a2, · · · , an) ∈ C[[z]]n

involving only monomials of degree 2 and higher such that, letting A =
aD =

∑n
i=1 aiDi, we have

exp(A) · z = F(3.1)

where

exp(A) =
∞∑

k=0

Ak

k!

and z = (z1, . . . , zn).

The reader will easily verify that the infinite sum exp(A) ·Q makes
sense for any Q ∈ C[[z]]n due to the fact that, for any integer d ≥ 0,

only finitely many terms Ak

k!
·Q contribute to the degree d homogeneous

summand. This is due to the fact that a involves only terms of degree
2 and higher.

Remark 3.2. It is well known that the exponential of a derivation
on any Q-algebra, when it makes sense, is an automorphism of that
algebra. Any subring lying in the kernel of the derivation will be fixed by
this automorphism. It follows from this fact, the comment above, and
Proposition 3.1 that exp(A) is the C-algebra automorphism of C[[z]]
which sends zi to Fi, for i = 1, . . . , n.

Definition 3.3. We call the unique system of power series a = (a1, . . . , an)
obtained above the Differential Log or D-Log of the formal system F .
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3.2. Coefficients φT of the D-Log.

Theorem 3.4. There exists a unique set of rational numbers {φT}
indexed by the set of rooted trees T ∈ T, such that

a =
∑

T∈T

φT PT .(3.2)

These numbers satisfy, and are uniquely determined by, the following
properties:

φT = 1 when v(T ) = 1 (i.e., T = ◦, the singleton tree)

φT = −

v(T )∑

k=2

1

k!

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
φT~e,2

· · ·φT~e,k
when v(T ) ≥ 2 .

(3.3)

The latter formula can be restated as:

v(T )∑

k=1

1

k!

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
φT~e,2

· · ·φT~e,k
= 0 .(3.4)

(Here we must interpret the k = 1 summand as φT .)

Proof: Let us define φT by (3.3) and set a′ =
∑

T∈T
φTPT , A′ = a′D.

Then A′ =
∑

T∈T
φT DT . We have

exp(A′) · z =

∞∑

k=0

A′k

k!
· z

=

∞∑

k=0

1

k!

(
∑

T∈T

φT DT

)k

· z

= z +

∞∑

k=1

1

k!

∑

(T1,...,Tk)∈Tk

[φT1DT1 ] · · · [φTk
DTk

] · z

= z +
∑

T∈T

φT DT · z +
∞∑

k=2

1

k!

∑

(T1,...,Tk)∈Tk

[φT1DT1 ] · · · [φTk
DTk

] · z

Using the fact that DT · z = PT :

= z+
∑

T∈T

φT P +
∞∑

k=2

1

k!

∑

(T1,...,Tk)∈Tk

[φT1DT1 ] · · ·
[
φTk−1

DTk−1

]
[φTk

PTk
]
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Applying Corollary 2.10, substituting Y
(i)
Ti

= φTi
:

= z+
∑

T∈T

φT PT +
∞∑

k=2

1

k!

∑

T∈T

v(T )≥2

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
· · ·φT~e,k

PT

Letting S be the singleton tree:

= z+φSPS +
∑

T∈T

v(T )≥2




v(T )∑

k=1

1

k!

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
· · ·φT~e,k


PT

Since PS = H , and, by definition, φS = 1 and the sum in parentheses
is 0:

= z +H = F

By the uniqueness property of a we must have a′ = a. The uniqueness
of the expression (3.2) for a follows from Theorem 2.4 ✷

Chains and Shrubs. Two special types of trees are the “chains”
and the “shrubs”, mentioned in §2. Given and integer n ≥ 1 we let
Cn ∈ Tn be the chain with n vertices, which is the unique rooted tree
in Tn of height n − 1. For n ≥ 0 we let Sn ∈ Tn+1 be the shrub with
n + 1 vertices, which is the unique rooted tree in Tn+1 of height ≤ 1
(Equality holds unless n = 0.). Note that C1 = S0 = ◦ , the singleton
tree.

By using the recurrence formula (3.3), we can calculate φT for chains
and shrubs as follows. Consider the generating functions

c(x) =
∞∑

n=1

φCnx
n

s(x) =
∞∑

n=0

φSn

xn

n!

Then we have:

Corollary 3.5. The generating functions c(x) and s(x) are given by:

(a) c(x) = ln(1 + x)(3.5)

(b) s(x) =
x

ex − 1
(3.6)
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In particular, we have φCn = (−1)n−1 1
n

for all n ≥ 1 and φSn =
bn, where b0, b1, b2, . . . are the Bernoulli numbers 3 defined by x

ex−1
=∑∞

n=0 bn
xn

n!
.

Proof: (a) According to (3.3) we have

c(x) = x−
∞∑

n=2




v(Cn)∑

k=2

1

k!

∑

~e=(e1,...,ek−1)∈E(Cn)k−1

e1≻···≻ek−1

φT~e,1
φT~e,2

· · ·φT~e,k


 xn

Noting that v(Cn) = n and each T~e,j is also a path:

= x−
∞∑

n=2

n∑

k=2

1

k!

∑

(i1,...,ik)∈Nk

i1+···+ik=n

k∏

j=1

φCij
xij

= x−
∞∑

n=2

(
n∑

k=2

1

k!
(coefficient of xn in c(x)k)

)
xn

= x−
∞∑

n=2

(
coefficient of xn in

n∑

k=2

1

k!
c(x)k

)
xn

= x−
∞∑

n=2

(
coefficient of xn in

∞∑

k=2

1

k!
c(x)k

)
xn

= x−
∞∑

n=2

1

n!
c(x)n

= x− (ec(x) − c(x)− 1)

Solving for c(x) in the equation c(x) = x−(ec(x)−c(x)−1) gives (3.5).

(b) Again by (3.3) we have

s(x) = 1−
∞∑

n=1




v(Sn)∑

k=2

1

k

∑

~e=(e1,...,ek−1)∈E(Sn)k−1

e1≻···≻ek−1

φT~e,1
φT~e,2

· · ·φT~e,k



xn

n!

3This indexing and signage differs from an alternate definition of the Bernoulli
numbers as the sequence B1, B2, . . . defined by

x

ex − 1
= 1−

1

2
x +

∞∑

n=1

(−1)n−1 Bn

(2n)!
x2n .

Thus the relationship is Bn = (−1)n−1b2n for n ≥ 1.
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Noting that v(Sn) = n + 1 and precisely one T~e,j is a shrub with all
others being singletons:

= 1−
∞∑

n=1

(
n+1∑

k=2

1

k!
(k − 1)!

(
n

k − 1

)
φSn−k+1

)
xn

n!

= 1− x−1

∞∑

n=1

n+1∑

k=2

φSn−k+1

xn−k+1

(n− k + 1)!

xk

k!
(3.7)

= 1− x−1

(
∞∑

r=0

φSr

xr

r!

)(
∞∑

s=2

xs

s!

)

= 1− x−1s(x)(ex − x− 1)(3.8)

Solving for s(x) in the equation s(x) = 1− x−1s(x)(ex − x− 1) gives
(3.6). ✷

3.3. Polynomial Coefficients ψT (t) of Formal Flow. Let us first
recall the formal flow Ft = exp(tA) · z and some of its properties. See
[Z] for more details.

Definition 3.6. Given an indeterminate t, define the system Ft ∈
C[t][[z]]n by

Ft = exp(tA) · z .(3.9)

It is called the formal flow generated by F .

It is easy to verify that Ft ∈ C[t][[z]]n. Therefore a specialization
t = α, for any α ∈ C (or α in any C-algebra), makes sense. According
to Proposition (3.1), setting t = 1 in Ft recovers F .

The following proposition shows that t behaves like an exponent for
F .

Proposition 3.7. Let t and s be indeterminates. Then

Fs+t = Ft ◦ Fs

Hence setting t = n in Ft, for n ∈ N, gives the n-fold composition
F◦· · ·◦F , and setting t = −n gives the n-fold composition F−1◦· · ·◦F−1

of the formal inverse. In particular,

Ft|t=−1 = F−1 .

Proof: We have

Fs+t = exp((s+ t)A) · z = exp(sA+ tA) · z

= exp(sA) · exp(tA) · z = exp(sA) · Ft
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We use that fact that exp(sA) is a C-algebra automorphism of C[s, t][[z]]
(see Remark 3.2):

= Ft(exp(sA · z)) = Ft(Fs)

= Ft ◦ Fs

✷

Thus Ft can be viewed as the “formal tth power of F”.
The system Ft can be expressed in terms of the tree expressions PT

as follows:

Theorem 3.8. There exists a unique set of polynomials {ψT (t) ∈ Q[t]}
indexed by the set of rooted trees T ∈ T such that

Ft = z +
∑

T∈T

ψT (t)PT .(3.10)

These polynomials are given by the formula

ψT (t) =

v(T )∑

k=1

tk

k!

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
φT~e,2

· · ·φT~e,k
(3.11)

(Again we must interpret the k = 1 summand as φT .)

Proof: According to Theorem 3.4 the D-Log of F is given by a =∑
T∈T

φtPT , hence we have A = aD =
∑

T∈T
φtPTD =

∑
T∈T

φT DT

(see Definition 2.7). Therefore

Ft = exp(tA) · z =
∞∑

k=0

tk

k!
Ak · z

= z +
∞∑

k=1

tk

k!

(
∑

T∈T

φTDT

)k

· z

= z +

∞∑

k=1

tk

k!

∑

(T1,...,Tk)∈T

[φT1DT1] · · · [φTk
DTk

] · z

= z +
∞∑

k=1

tk

k!

∑

(T1,...,Tk)∈T

[φT1DT1] · · · [φTk−1
DTk−1

][φTk
PTk

]

Now we apply Corollary 2.10 to the k ≥ 2 summands:

= z +

∞∑

k=1

tk

k!

∑

T∈T

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
· · ·φT~e,k

PT
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= z +
∑

T∈T




v(T )∑

k=1

tk

k!

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

φT~e,1
· · ·φT~e,k


PT

This gives the desired result. The uniqueness of ψT follows from ap-
plying stable linear independence (Corollary 2.6) to each power of t in
(3.10). ✷

Lemma 3.9. For any T ∈ T, we have

(1) If T is the singleton, we have ψT (t) = t.
(2) ψT (0) = 0.

(3) ψT (1) =

{
1 if v(T ) = 1

0 if v(T ) ≥ 2

(4) ψ′
T (0) = φT .

Proof: All statements above follow immediately from (3.11), except
the assertion ψT (1) = 0 when v(T ) ≥ 2, which is exactly (3.4). ✷

Forests. The formula (3.11) defines a unique polynomial ψT (t) for
each rooted tree T . A forest is the disjoint union of finitely many
rooted trees. We extend the definitions of φP and ψP (t) to any forest
P as follows:

Definition 3.10. For any forest P which is the disjoint union of rooted
trees T1, . . . , Tk, we define φP to be φT1 if k = 1 and 0 otherwise. Define

ψP (t) =
∏k

i=1 ψTi
(t).

Lemma 3.11. Let T be a rooted tree with v(T ) ≥ 2. For any proper
rooted subtree T ′ of T we have

ψT\T ′(t) =

v(T )−1∑

k=1

tk

k!

∑

~e=(e1,...,ek)∈E(T )k

e1≻···≻ek

T~e,k+1=T ′

φT~e,1
φT~e,2

· · ·φT~e,k
(3.12)

Proof: Let T [j] (j = 1, 2, . . . , d) be the connected components of
T\T ′, and let e0j be the edge of T which connects T [j] with T ′. Note

that from fixed sequences ej,1 ≻ ej,2 ≻ · · · ,≻ ej,kj
∈ E(T [j]) with

k1 + k2 + · · · + kd = k − d, appended by the edges e0j , we can get(
k

(k1+1),(k2+1),··· ,(kd+1)

)
= k!

(k1+1)!(k2+1)!···(kd+1)!
different sequences e1 ≻
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e2 ≻ · · · ≻ ek ∈ E(T ) such that Tk+1 = T ′. Therefore,

v(T )−1∑

k=1

tk

k!

∑

~e=(e1,...,ek)∈E(T )k

e1≻···≻ek

T~e,k+1=T ′

φT~e,1
φT~e,2

· · ·φT~e,k

=

v(T )−1∑

k=1

tk

k!

∑

(k1,...,kd)∈N
d

k1+k2+···+kd=k−d

k!

(k1 + 1)!(k2 + 1)! · · · (kd + 1)!

d∏

j=1

∑

~ej=(ej,1,...,ej,kj
)∈E(T [j])kj

ej,1≻··· ,≻ej,kj

φTej ,1φTej,2 · · ·φTej,kj+1

=
d∏

j=1

v(T [j])−1∑

kj=0

tkj+1

(kj + 1)!

∑

~ej=(ej,1,...,ej,kj
)∈E(T [j])kj

ej,1≻···≻ej,kj

φTj,1
φTj,2
· · ·φTj,kj+1

= ψT [1](t)ψT [2](t) · · ·ψT [d](t) .

The last equality follows from (3.11). ✷

The lemma above allows us to prove the following theorem. If we let
∅ be the empty tree and define P∅ = z, then Theorem 3.8 can be seen
as the special case S = ∅ of the theorem below.

Theorem 3.12. For any rooted tree S, we have

exp (tA) · PS = PS +
∑

T∈T



∑

T ′<T
T ′≃S

ψT\T ′(t)


PT(3.13)

Proof:

exp(tA) · PS =
∞∑

k=0

tk

k!
Ak · PS

=
∞∑

k=0

tk

k!

(
∑

T∈T

φT D

)k

· PS

= PS +
∞∑

k=1

tk

k!

∑

(T1,...,Tk)∈Tk

[φT1DT1 ] · · · [φTk
DTk

] · PS
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Apply Corollary 2.9, substituting Y
(i)
Ti

= φTi
:

= PS +
∞∑

k=1

tk

k!

∑

T∈T

v(T )≥1

∑

~e=(e1,...,ek−1)∈E(T )k

e1≻···≻ek
T~e,k+1≃S

φT~e,1
· · ·φT~e,k

PT

= PS +
∑

T∈T

v(T )≥1




v(T )−1∑

k=1

tk

k!

∑

~e=(e1,...,ek)∈E(T )k

e1≻···≻ek
T~e,k+1≃S

φT~e,1
· · ·φT~e,k




PT

=
∑

T∈T



∑

T ′≤T
T ′≃S

ψT\T ′(t)


PT

The last equality follows from Lemma 3.11. ✷

Proposition 3.13. For any rooted tree T , we have

(a)

ψ′
T (t) = φT +

∑

e∈E(T )

φTe,1ψTe,2(t)(3.14)

(b)

ψ′
T (t) = φT +

∑

S<T

φS ψT\S(t)(3.15)

or in other words,

ψ′
T (t) = ψ′

T (0) +
∑

e∈E(T )

ψ′
Te,1

(0)ψTe,2(t)

= ψ′
T (0) +

∑

S<T

ψ′
S(0)ψT\S(t)(3.16)

Proof: (a) Applying the chain rule and Theorem 3.8, we have

∂

∂t
Ft =

∂

∂t
(exp (tA) · z)

= A · exp (tA) · z

=

(
∑

T∈T

φT DT

)
·

(
z +

∑

T∈T

ψT (t)PT

)
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=
∑

T∈T

φT PT +
∑

(T1,T2)∈T2

φT1ψT2(t)DT1PT2

Applying Corollary 2.10 with k = 2, setting Y
(1)
T = φT , Y

(2)
T = ψT (t)

for all T ∈ T:

=
∑

T∈T

φT PT +
∑

T∈T

∑

e∈E(T )

φTe,1ψTe,2(t)PT

=
∑

T∈T


φT +

∑

e∈E(T )

φTe,1ψTe,2(t)


PT

But we also have, by Theorem 3.8,

∂

∂t
Ft =

∑

T∈T

ψ′
T (t)PT(3.17)

Comparing the coefficient of PT , and appealing to stable linear inde-
pendence - specifically, Corollary 2.6 - we get (3.14). (We use the fact
that polynomial functions which agree at all α ∈ C must be equal.)

(b)

∂

∂t
Ft =

∂

∂t
exp (tA) · z

= A · exp(tA) · z

= exp(tA) · A · z

= exp(tA) · a

Applying Theorem 3.4:

= exp(tA) ·
∑

S∈T

φSPS

=
∑

S∈T

φS exp(tA) · PS

Applying Theorem 3.12:

=
∑

S∈T

φSPS +
∑

S∈T

φS

∑

T∈T



∑

T ′<T
T ′≃S

ψT\T ′(t)


PT

=
∑

T∈T

φT PT +
∑

T∈T

(
∑

S<T

φSψT\T ′(t)

)
PT
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=
∑

T∈T

(
φT +

∑

S<T

φSψT\T ′(t)

)
PT

Comparing this with (3.17), and again employing Corollary 2.6, we get
(3.15). ✷

An interesting consequence of the proposition above is the following
recurrence formula for φT in terms of the number of the leaves of T .

Proposition 3.14. For any rooted tree T , suppose that the root rtT
has d children, i.e., d =

∣∣rt+T
∣∣. Then

l(T )∑

r=0

∑

{v1,v2,··· ,vr}⊆L(T )
v1,v2,··· ,vr distinct

φT\{v1,v2,··· ,vr} = δd,1φT\{rtT }(3.18)

Proof: From (3.14), setting t = 1, we get

ψ′
T (1) =

{
φT + φT\{rtT } if d = 1

φT if d ≥ 2
(3.19)

since, by Lemma 3.9, ψT2(1) = 0 except T2 is the singleton. From
(3.15), setting t = 1, we get

ψ′
T (1) = φT +

l(T )∑

r=1

∑

{v1,v2,··· ,vr}⊆L(T )
v1,v2,··· ,vr distinct

φT\{v1,v2,··· ,vr}(3.20)

since ψT\S(1) = 0 except when T\S is the disjoint union of finitely
many singletons. Comparing (3.19) and (3.20) gives (3.18). ✷

Before leaving this subsection, we will do some calculations on the
polynomials ψT (t) for the chains Cn and shrubs Sn.

Consider the generating functions: C(t, x) =
∑∞

n=0 ψCn(t)xn (set
ψC0(t) = 1) and S(t, x) =

∑∞
n=0 ψSn(t)xn

n!
.

Corollary 3.15. The generating functions C(t, x) and S(t, x) are given
by:

(a)

C(t, x) = exp (t ln(1 + x)) = (1 + x)t(3.21)

or in other words,

ψCn(t) =

(
t

n

)
=
t(t− 1) · · · (t− n + 1)

n!
(3.22)
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(b)

S(t, x) =
ext − 1

ex − 1
(3.23)

Proof: (a) By Theorem 3.8 and Corollary 3.5. we have

C(t, x) = 1 +

∞∑

n=1

v(Cn)∑

k=1

tk

k!

∑

ē=(e1,...,ek−1)∈E(Cn)k−1

e1≻···≻ek−1

φTe,1φTe,2 · · ·φTe,k
xn

= 1 +
∞∑

n=1

n∑

k=1

tk

k!

∑

(m1,m2,··· ,mk)∈(Z+)
k

m1+m2···+mk=n

(−1)m1

m1

(−1)m2

m2

· · ·
(−1)mk

mk

xn

= et(−x+ x2

2
−···+

(−x)m

m
+··· )

= exp (t ln(1 + x))

(b) Similarly, we have

S(t, x) =
∞∑

n=0

v(Sn)∑

k=1

tk

k!

∑

ē=(e1,...,ek−1)∈E(Sn)k−1

e1≻···≻ek−1

φTe,1φTe,2 · · ·φTe,k

xn

n!

Noting that all but one of φTe,2 · · ·φTe,k
are singletons, the remaining

one being Sn−k+1:

=

∞∑

n=0

n+1∑

k=1

tk

k!
(k − 1)!

(
m

k − 1

)
bn−k+1

xn

n!

= x−1

∞∑

n=0

n+1∑

k=1

(xt)k

k!
bn−k+1

xn−k+1

(n− k + 1)!

Replacing n by n− 1:

= x−1
∞∑

n=1

n∑

k=1

(xt)k

k!
bn−k

xn−k

(n− k)!

= x−1(ext − 1)
x

ex − 1

=
ext − 1

ex − 1
(3.24)

✷
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Remark 3.16. The formulas of Corollary 3.15 can also be easily de-
rived from Theorem 4.2 in the next section. But we think the calcula-
tions above are more intriguing.

4. The Main Theorem

4.1. Main Theorem on ψT (t). In the last section, we defined the
polynomial ψT (t), for each rooted tree T (see Theorem 3.8). For each
rooted forest P , i.e. the disjoint union of finitely many rooted trees Ti

(i = 1, 2, · · · , k), we also defined ψP (see Definition 3.10). Recalling
from §2.1 the definition of a rooted subtree, we are now ready to prove
the following main theorem.

Theorem 4.1. Let t and s be indeterminates. For T ∈ T we have

ψT (t+ s) = ψT (t) + ψT (s) +
∑

T ′<T

ψT\T ′(t)ψT ′(s)(4.1)

where the last sum runs over all proper rooted subtrees T ′ of T .

Proof: Clearly exp((t+ s)A) · z = exp (tA) · exp (sA) · z, so we have

z +
∑

T∈T

ψT (t+ s)PT = exp((t+ s)A) · z = exp (tA) · exp (sA) · z

= exp (tA) ·

(
z +

∑

T∈T

ψT (s)PT

)

= exp(tA) · z + exp(tA) ·

(
∑

T∈T

ψT (s)PT

)

= z +
∑

T∈T

ψT (t)PT +
∑

T∈T

ψT (s) (exp(tA) · PT )

Applying Theorem 3.12 to exp(tA) · PT :

= z +
∑

T∈T

ψT (t)PT +
∑

T∈T

ψT (s)


PT +

∑

S∈T



∑

S′<S
S′≃T

ψS\S′(t)


PS




= z +
∑

T∈T

ψT (t)PT +
∑

T∈T

ψT (s)PT +
∑

S∈T



∑

T∈T

∑

S′<S
S′≃T

ψS\S′(t)ψT (s)


PS

= z +
∑

T∈T

ψT (t)PT +
∑

T∈T

ψT (s)PT +
∑

S∈T

∑

S′<S

ψS\S′(t)ψS′(s)PS
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Replacing S by T in the last summation:

= z +
∑

T∈T

ψT (t)PT +
∑

T∈T

ψT (s)PT +
∑

T∈T

∑

T ′<T

ψT\T ′(t)ψT ′(s)PT

According to Corollary 2.6 and an easy specialization argument, the
theorem follows by comparing the coefficients of PT in the above equa-
tion. ✷

The difference polynomial of g(t) ∈ C[T ] is defined to be the polyno-
mial ∆g(t) = g(t+1)− g(t). The following special case of the theorem
above, which gives a formula for the difference polynomial of ψT (t), is
most useful to us.

Theorem 4.2. For any tree T with v(T ) ≥ 2, we have

∆ψT (t) = ψT1(t)ψT2(t) · · ·ψTd
(t)

= ψT\{rtT }(t)

where Ti, i = 1, 2, · · · , d are the connected components of T\{rtT}.

Proof: This follows form Theorem 4.1 by setting s = 1 in (4.1)
and appealing to Lemma 3.9, which says ψT (1) = 0 unless T is the
singleton, in which case ψT (1) = 1. ✷

Theorem 4.3. For any tree T with v(T ) ≥ 2, we have

(a)

∆ψT (t) =

l(T )∑

r=1

∑

{v1,v2,··· ,vr}⊆L(T )
v1,v2,··· ,vr distinct

ψT\{v1,v2,··· ,vr}(t)(4.2)

(b)

ψT\{rtT }(t) =

l(T )∑

r=1

∑

{v1,v2,··· ,vr}⊆L(T )
v1,v2,··· ,vr distinct

ψT\{v1,v2,··· ,vr}(t)(4.3)

where Ti, i = 1, 2, · · · , d are the connected components of T\{rtT}.

Proof: Clearly, (b) follows from (a) and Theorem 4.2. For (a),
switch t and s and set s = 1 in 4.1 to get

ψT (t+ 1) = ψT (t) + ψT (1) +
∑

T ′<T

ψT\T ′(1)ψT ′(t)
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By Lemma 3.9, we have ψT (1) = 0 and ψT\T ′(1) = 0, unless T\T ′ is a
disjoint union of singletons, in which case ψT\T ′(1) = 1. Therefore

ψT (t+ 1)− ψT (t) =

l(T )∑

r=1

∑

{v1,v2,··· ,vr}⊆L(T )
v1,v2,··· ,vr distinct

ψT\{v1,v2,··· ,vr}(t)

as desired. ✷

4.2. Algorithm for ψT (t). ¿From Theorem 4.2 we get the following
algorithm for computing ψT (t). Here, for h(t) ∈ C[t], ∆−1h(t) is defined
to be the unique polynomial g(t) ∈ C[t] such that ∆g(t) = h(t) and
g(0) = 0.

Algorithm. For any fixed rooted tree T , we sign a polynomial Nv(t)
to each vertex v of T as follows:

(1) For each leaf v of T , then set Nv(t) = t.
(2) For any other vertex v of T , define Nv(t) inductively starting

from the highest level by Nv(t) = ∆−1(Nv1(t)Nv2(t) · · ·Nvk
(t)),

where vj , j = 1, 2, . . . , k, are the distinct children of v.

Then for each vertex v of T , Nv(t) = ψT+
v

(t), where T+
v is the subtree

of T rooted at the vertex v. In particular, we have ψT (t) = NrtT
(t).

✷

The following example applies this algorithm to the shrubs Sn to
show that the polynomials ψSn(t) are closely related to the Bernoulli

polynomials Bn(t) defined by xetx

ex−1
=
∑∞

n=0Bn(t) tn

n!
. (Compare this

with (b) of Corollary 3.15.)

Example 4.4. Let v1, . . . , vn be the leaves of the shrub Sn. Following
the algorithm, we first assign the polynomial t to each leaf vi. The next
step in the algorithm gives

ψSn(t) = ∆−1(tn)(4.4)

One of the fundamental properties of the Bernoulli polynomials Bn(t)
is

∆Bn(t) = Bn(t+ 1)− Bn(t) = ntn−1 ,(4.5)

and from this and the fact that ∆ commutes with d
dt

one easily derives

d

dt
Bn+1(t) = (n + 1)Bn(t) .(4.6)
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¿From (4.5) and (4.6) we get

∆−1(tn) =

∫ t

0

Bn(u)du =
Bn+1(t)

n+ 1
−
Bn+1(0)

n+ 1
.(4.7)

Putting together equations (4.4) and (4.7), we obtain this relationship
between ψSn(t) and Bn+1(t).

ψSn(t) =

∫ t

0

Bn(u)du =
Bn+1(t)

n + 1
−
Bn+1(0)

n+ 1

4.3. Combinatorial Property of ψT (t). After the main part of this
work was done, Professor John Shareshian pointed out to us that the
polynomial ψT (t) for rooted trees coincides with the strict order poly-
nomial Ω̄(P, t) for finite posets (partial ordered sets) P in combinatorics
(see Chapters 3 and 4 in [St1]). We first recall the polynomial Ω̄(P, t)
associated with a finite poset, then we show that, when P is the poset
of the set V (T ) of vertices of a rooted tree T with the natural partial
order induced by ancestry (the root being the unique smallest element),
we have ψT (t) = Ω̄(P, t).

Any rooted tree corresponds in this way to a unique finite poset, and
a finite poset P corresponds to a rooted tree precisely when it satisfies
these two criteria: (1) P has a unique smallest element, and (2) any
interval in P is totally ordered.

For any n ∈ N, the chain Cn gives the totally ordered poset with n
elements. (We can view it as the set {1, 2, · · · , n} with the natural order
of the positive integers). For any poset P , we say a map f : P → Cn

is strict order-preserving if f(a) < f(b) in Cn whenever a < b in P . It
is well-known that there exists a unique polynomial Ω̄(P, t) such that
Ω̄(P, n) equals the number of strict order-preserving maps f from P
to Cn for all n ∈ N. This, then, is the theorem shown to us by John
Shareshian.

Theorem 4.5. For any rooted tree T , we have

ψT (t) = Ω̄(T, t)(4.8)

(where, on the right, T is viewed as a finite poset as described above).

Proof: It is obvious that when T is the singleton, Ω̄(T, t) = t, hence
it is enough to show that the Ω̄(T, t) also satisfies the recursion formula
of Theorem 4.2. More precisely, we will show that, in the notation of
Theorem 4.2, we have

∆Ω̄(T, n) = Ω̄(T, n + 1)− Ω̄(T, n) = Ω̄(T1, n)Ω̄(T2, n) · · · Ω̄(Td, n)

for any n ∈ N.
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Note that ∆Ω̄(T, n) equals the number of strict order-preserving
maps f from T to Cn+1 = {1, 2, . . . , n + 1} such that f(rtT ) = 1.
But this number is also same as the number of strict order-preserving
maps g from T\{rtT} to Cn, which is Ω̄(T1, n)Ω̄(T2, n) · · · Ω̄(Td, n). ✷

Remark 4.6. It is interesting that the strict order polynomial Ω̄(T, t)
for the finite posets induced by rooted trees T can be defined by a totally
different way, namely, according to the formula (3.11) of Theorem 3.8.
In fact, this realization of the strict order polynomial can be generalized
to an arbitrary finite poset P . This generalization and its consequences
will be discussed in the upcoming paper [SWZ].

5. Some Applications

For a formal automorphism F = (F1, F2, . . . , Fn) = z+H of the form
identity plus higher, we give a restatement and new proof of the tree
formula for for the formal inverse first proved in [BCW] and [W2].

Theorem 5.1. For any rooted tree T , we have ψT (−1) = (−1)v(T ).
Hence the formal inverse F−1 of F is given by4

F−1 = z +
∑

T∈T

(−1)v(T )
PT(5.1)

Proof: The formula (5.1) follows from ψT (−1) = (−1)v(T ) by Propo-
sition 3.7 and Theorem 3.8.

It is well known in combinatorics (see [St1]) that the strict order
polynomials satisfy Ω̄(T,−1) = (−1)v(T ), from which the result follows,
in light of Theorem 4.5. For completeness, we give a direct proof here.

We use the mathematical induction on v(T ). The case for v(T ) = 1
is trivial. (ψT (t) = t in this case.) Suppose v(T ) ≥ 2. By Theorem
4.2, setting t = −1, we have

ψT (0)− ψT (−1) = ψT1(−1)ψT2(−1) · · ·ψTd
(−1)

where Ti, i = 1, 2, · · · , d are the connected components of T\{rtT}. We
have ψT (0) = 0, and by induction we may assume the theorem holds
for T1, . . . , Td. Hence

ψT (−1) = −(−1)vT1
+vT2

···+vTd = (−1)v(T )

✷

4The formula as given in [BCW] and [W2] did not include the factor (−1)v(T ).
It appears here because of our choice in writing F = z + H

instead of F = z −H .
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It is known that the Jacobian conjecture (See [BCW] for a statement
of this famous problem.) is equivalent to the assertion that

∑

T∈TN

PT = 0(5.2)

for N >> 0 whenever H is a homogeneous polynomial system (of
degree ≥ 2) and the jacobian determinant |(DjFi)| is (everywhere)
non-zero. In fact, this follows from Theorem 5.1, since when
H is homogeneous the polynomials

∑
T∈TN

PT , for fixed N , are the

homogeneous summands of F−1 (see Remark 2.2). When H is homo-
geneous, the condition |(DjFi)| = 1 is known to be equivalent to the
nilpotence of the jacobian matrix JH = (DjHi) (see [BCW]). Thus
the following result presents an intriguing statement for comparison.

Proposition 5.2. Assume H is homogeneous of degree ≥ 2. For any
rooted tree, let hT,k be the number of vertices of height k. Suppose that
(JH)k = 0. Then

∑

T∈TN

hT,mPT = 0(5.3)

for any N ∈ N and m ≥ k.

Proof: Suppose that degH = d ≥ 2. It follows from Euler’s formula
that JH · (zt) = (dH)t, from which we get 1

d
(JH)k · (zt) = (JH)k−1 ·

Ht = 0. (Here the superscript t denotes transpose, converting a row
to a column so that the matrix multiplications make sense.) For any
integer m ≥ 1, a straightforward calculation shows that the chain Cm

has the property PCm = JHm−1 · Ht. Therefore PCm = 0 for m ≥ k,
and we have

0 = exp (−A) · PCm

By Theorem 3.12, setting S = Cm and t = −1 in (3.13):

=
∑

T∈T



∑

T ′≤T
T ′≃Cm

ψT\T ′(−1)


 PT

By Theorem 5.1:

=
∑

T∈T



∑

T ′≤T
T ′≃Cm

(−1)v(T\T ′)


PT
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=
∑

T∈T

(−1)v(T )−mhT,mPT

In particular, for any N ∈ N, we have
∑

T∈TN

(−1)N−mhT,mPT = (−1)N−m
∑

T∈TN

hT,mPT = 0

which gives (5.3). ✷

The proposition above shows that, for a fixed homogeneous polyno-
mial system H , the polynomials PT are in some sense quite linearly
dependent to each other.

Finally, let us point out that the formal flow Ft gives a formal flow
between F and the identity map id , i.e. Ft|t=1 = F and Ft|t=0 = id ,
having the additional properties Ft(0) = 0 and JFt(0) = In. It is an
open question in complex analysis whether, for any local analytic map
F , such an analytic flow exists. The usual approach to this question
is to show that F is linearizable, i.e. it is conjugate to a linear map.
But when F is linearizable the question is still open, even for the one
variable case. (There are many partial results on this problem.) So it
is of interest that the formal solution to this question is given by the
very clean formula (3.10) of Theorem 3.8. But the question of when Ft

is locally convergent is still open.
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