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EXPONENTIAL FORMULAS FOR THE JACOBIANS

AND JACOBIAN MATRICES OF ANALYTIC MAPS

WENHUA ZHAO

Abstract. Let F = (F1, F2, · · ·Fn) be an n-tuple of formal power
series in n variables of the form F (z) = z + O(|z|2). It is known
that, there exists a unique formal differential operator A(z) =
∑n

i=1
ai(z) ∂

∂zi

such that F (z) = exp(A)z as formal series. In

this article, we show the Jacobian J(F ) and the Jacobian ma-
trix J(F ) of F can also be given by some exponential formulas.

Namely, J(F ) = exp(A+▽A) ·1, where ▽A(z) =
∑n

i=1

∂ai

∂zi

(z), and

J(F ) = exp(A + RJa) · In×n, where In×n is the identity matrix
and RJa is the multiplication operator by Ja for the right. As an
immediate consequence, we get an elementary proof for the known
result that J(F ) ≡ 1 if and only if ▽A = 0. Some consequences and
applications of the exponential formulas as well as their relations
with the well known Jacobian Conjecture are also discussed.

1. Introduction

This research work mainly motivated by the well known Jacobian
Conjecture and inspired by an exponential formula in Conformal Field
theory. First let us recall

Jacobian Conjecture: Let k be a field of characteristic 0 and

F : kn → kn be a polynomial map. If Jacobian j(F ) = Det
(

∂Fi

∂zj

)

= 1,

then F is an automorphisms whose inverse is also a polynomial map.

This conjecture was first proposed by O. H. Keller in 1939. For the
history of this conjecture, (See [BCW], [W1] and [M] and references
there). Since then it has been attracting enormous efforts from math-
ematicians. But unfortunately, this conjecture remains widely open at
the present time. Nevertheless, many important results have been ob-
tained in last six decades from the efforts of mathematicians trying to
solve Jacobian Conjecture. Some of these results are not only crucial to
the Jacobian Conjecture, they also play very important roles in other
mathematical research areas.

One of the effective approaches to the Jacobian Conjecture is to
develop nice formulas for the formal inverse G of the polynomial map
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F and to see if it is also a polynomial map. Several important formulas
have been found and well studied, among which the most well known
are Abhyankar’s inversion formula (See [Ab]) and the tree expansion
formula for the formal inverse G of F . (See [BCW] and [W2]).

Interestingly, an exponential formula for the formal power series or
holomorphic functions in one variable, which plays a crucial role in two
dimensional Conformal Field Theory, seems closely related with the
Jacobian Conjecture. To be more precise, let F (x) = x + O(x2) be
a formal power series in one variable x. Then there exists a unique
formal differential operator A(x) = a(x) ∂

∂x
with o(a) ≥ 2 such that

F (x) = eAx. (Note that the exponential formula we quote here is a
little different from the one used in [TUY]). The main reason that the
exponential formula above is so important in two dimensional Confor-
mal Field Theory is that it gives the Virasoro algebra structure, which
is the most fundamental algebraic structure to the whole theory. For
more detail, see [TUY], [H] and [Z1].

One of the advantages of the exponential formula F (x) = eAx for
the formal power series F (x) is that eA is an automorphism of the
algebra C[[x]] of formal power series in one variable. This is because
that A itself is a derivation of the algebra C[[x]] and it is well known in
Lie algebra theory that the exponential of any derivation of an algebra
is an automorphism of the algebra. As an immediate consequence of
this observation, the formal inverse G of F is given by the exponential
formula G(x) = e−Ax. Regarding the Jacobian Conjecture, it is cer-
tainly very interesting to see that the formal inverse G of F is given
in such a simple way. Actually, for the formal power series in several
variables, we also have similar exponential formulas (See [P] and also
Proposition 2.1). Namely, let F = (F1, F2, · · ·Fn) be an n-tuple of for-
mal power series in n variables of the form F (z) = z + O(|z|2). Let
G = (G1, G2, · · ·Gn) be the formal inverse of F , i.e. F (G) = G(F ) = z,
where z = (z1, z2, · · · , zn). Then there exists a unique formal dif-
ferential operator A =

∑n

i=1 ai(z) ∂
∂zi

with o(ai(z)) ≥ 2 such that

Fi(z) = exp(A)zi (i = 1, 2, · · · , n). By the similar reason, eA is an
automorphism of the algebra C[[z]] of formal power series in z and
Gi(z) = e−Azi for i = 1, 2, · · · , n.

Since the formal power series F as well as its formal inverse G are
completely determined by a unique formal differential operator A, nat-
urally one may ask: how does the formal differential operator A de-
termine the Jacobian J(F ) and Jacobian matrix J(F ) of F ? or in
other words, are there any formulas via which the differential opera-
tor A also completely determines J(F ) and J(F )? In this article, we
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show that the answer to the question above is “yes”. In Section 2,
we give two exponential formulas for the Jacobian J(F ) and Jacobian
matrix J(F ) of F , respectively. To be more precise, in Theorem 2.8,
we show that J(F ) = exp(A + ▽A) · 1, where ▽A(z) =

∑n

i=1
∂ai

∂zi
(z)

is the divergence of the operator A. In Theorem 2.9, We show that
J(F ) = exp(A+RJa) · In×n, where In×n is the identity matrix and RJa

is the multiplication operator by Ja for the right. As an immediate
consequence, we also give an elementary proof for the known result
that J(F ) ≡ 1 if and only if ▽A = 0. (See Corollary 2.12). Vari-
ous interesting properties of the differential operator A and the formal
deformation Ft(z) = etAz are also derived in this section.

In Section 3, we first give some explanations about the exponential
formulas derived in Theorem 2.8 and Theorem 2.9 by relating theom
with some well known formula in linear algebra. Then we study the
consequences of these exponential formulas to the Jacobian Conjecture,
especially, we give a new proof to a theorem of Bass, Connell and
Wright, in [BCW]. (See Theorem 3.5).

In Section 4, we discuss some open problems related with these ex-
ponential formulas and the Jacobian Conjecture.

Most of the results of this article comes form the third topic of the
author’s Ph.D Thesis [Z1] in the University of Chicago, except Theorem
2.9, Theorem 3.5 and the ”Explanation” part of Section 3 are added
later. Theorem 2.8 is also given in a more general form than the one in
[Z1]. The author is very grateful to his Ph.D advisor, Professor Spencer
Bloch for encouragement, discussions and pointing out an error in the
early version of this work. The author is very thankful to Professor Yi-
Zhi Huang for many personal communications and the suggestion to the
author the last open problem in Section 4. The author thanks Professor
Xiaojun Huang for many discussions on some analytic aspects of this
work. Great appreciation also goes to the Department of Mathematics,
the University of Chicago for financial supports during the author’s
graduate study.

2. Exponential Formulas

Notation:

(1) Let z1, z2, · · · zn be n commutative variables and z = (z1, · · · zn).
Let C[[z]] = C[z1, z2, · · · zn] be the algebra of polynomials in n variables,
C[[z]] be the algebra of formal power series. For any k ≥ 0, set Ck[[z]] =
Ck[[z1, z2, · · · zn]] be the subalgebra consisting of the elements of C[[z]]
whose lowest degree is greater or equal to k.
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(2) For any F = (F1, F2, · · · , Fn) ∈ C[[z]]n, set

JF (z) =

(
∂Fi

∂zj

)

1≤i,j≤n

(2.1)

JF (z) = Det

(
∂Fi

∂zj

)

1≤i,j≤n

(2.2)

We call JF the Jacobian matrix and JF (z) the Jacobian of F .
Let F1 be the set of the elements F = (F1, F2, · · · , Fn) ∈ C[[z]]n

such that Fi(z) = zi + high degree terms, for i = 1, 2, · · ·n. Note that
for any analytic map F : U → Cn with Jacobian J(F )(0) 6= 0 for
the some open neighborhood U of 0 ∈ Cn, composing with some line
isomorphism if necessary, the formal series of F will be in F1. Another
observation is that, any F ∈ F1 gives an automorphism of the algebra
C[[z]], which sends zi to Fi. The inverse of this automorphism is the
automorphism induced by the formal inverse of F .

One remark is that all the proofs and results in this paper work
equally well for any field of characteristic 0, not necessarily algebraic
closed. But for convenience, we will always take C to be the ground
field.

The following proposition is known. For example, see [P]. Here we
give an elementary proof.

Proposition 2.1. For any F = (F1, F2, · · · , Fn) ∈ F1, there exists a

unique a = (a1, a2, · · · , an) ∈ C2[[z]]n such that

Fi(z) = exp(a(z)
d

dz
)zi = exp(A)zi(2.3)

where

A(z) = a(z)
d

dz
=

n∑

i=1

ai(z)
∂

∂zi

(2.4)

exp(A) = exp(a(z)
d

dz
) =

∞∑

k=0

(a(z) d
dz

)k

k!
(2.5)

Proof: This can be checked directly by solving the formal equation
(2.3) incursively as following.

For i = 1, 2, · · · , n, we write

Fi(z) = zi + b
(2)
i (z) + b

(3)
i (z) + · · ·+ b

(k)
i (z) + · · ·(2.6)

ai(z) = a
(2)
i (z) + a

(3)
i (z) + · · ·+ a

(k)
i (z) + · · ·(2.7)

where a
(k)
i (z) and b

(k)
i (z), for any k ∈ N, are homogeneous polyno-

mials of degree k. We also write F (k) = (F
(k)
1 , F

(k)
2 · · · , F

(k)
n ), a(k) =
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(a
(k)
1 , a

(k)
2 · · · , a

(k)
n ) and A(k) = a(k) ∂

∂z
=
∑n

i=1 a
(k)
i

∂
∂zi

. Notice that the

operator A(k) increase degree by k − 1.
From the equations (2.3), we get

zi +

∞∑

k=1

(a(z) d
dz

)k

k!
zi(2.8)

= zi + b
(2)
i (z) + b

(3)
i (z) + · · ·+ b

(k)
i (z) + · · ·

Comparing the homogeneous parts of both sides of (2.8), we get

a
(2)
i = b

(2)
i

a
(3)
i = b

(3)
i −

n∑

k=1

a
(2)
k

∂a
(2)
i

∂zk

· · ·

a
(m)
i = b

(m)
i −

∑

1≤r<m

∑

k1+k2+···kr=m+r−1
k1,k2,···kr≥2

A(k1)A(k2) · · ·A(kr)

k1!k2! · · · kr!
zi(2.9)

Hence a(z) is completely determined by the equations above. ✷

One easy corollary of the calculation above is the following

Corollary 2.2. F is odd if and only if a(z) is odd.

This can also be proved by the similar arguments for Proposition
3.3.

Definition 2.3. We call the formal differential operator A in Propo-

sition 2.1 the associated differential operator of F . We also define

(▽A) = (▽a)(z) =
n∑

i=1

∂ai

∂zi

(z)(2.10)

and call it the divergence of the differential operator A.

One of the advantages of the formula (2.3) is that the operator
exp(A) or exp(a(z) ∂

∂z
) is an automorphism of the C-algebra C[[z]] which

maps zi to Fi. This follows from the well known fact that the expo-
nential of any derivative of any algebra, when it is well defined, is an
automorphism of that algebra. It is because this remarkable property
that the formula (2.3) in the case of one variable plays a very impor-
tant role in conformal field theory. See [H] and [TUY]. (The formula
used in [TUY] is a little different from (2.3)). The following are some
immediate consequences of the property above.
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Lemma 2.4. a) Let F−1 = (F−1
1 , F−1

2 , · · · , F−1
n ) be the formal inverse

of F , i.e. the composition F ◦F−1 = F−1 ◦F is identity map of C[[z]].
Then

F−1(z) = exp(−A(z))z = exp(−a(z)
∂

∂z
)z(2.11)

b) For any element g(z) ∈ C[[z]], we have

g(F (z)) = exp(a(z)
∂

∂z
)g(z)(2.12)

In particular, for any k ≥ 0, we have

F [k](z) = exp(kA(z))z = exp(ka(z)
∂

∂z
)z(2.13)

where

F [k](z) = F ◦ F ◦ · · ·F
︸ ︷︷ ︸

k copies

(2.14)

is the kth-power of the automorphism of C[[z]] defined by F which sends

zi to Fi.

Another advantage of the formula (2.3) is that it allows us to deform
the formal power series F in a very natural way. Introduce another
variable t which commutes with zi and define

Ft(z) = F (z; t) = (F1(z; t), F2(z; t), · · · , Fn(z; t))

by setting

Fi(z; t) = exp(tA(z))zi = exp(ta(z)
∂

∂z
)zi(2.15)

Note that Fi(z; t) ∈ C[t][[z]], i.e. it is a formal power series in {zi} with
coefficients in C[t]. In particular, for any t0 ∈ C, F (z; t0) ∈ F1 and
when t = k ∈ N, F (z; k) is just the kth-power F [k] of the isomorphism
F . This deformation will play the key role in our later arguments.

Lemma 2.5. For any g(z; t) ∈ C[t][[z]],

∂

∂t
g(z; t) = Ag(z; t)(2.16)

if and only if g(z; t) = u(F (z; t)) = exp(tA)u(z) for some u ∈ C[[z]].

Proof: First let g(z; t) = exp(tA)u(z), then

∂

∂t
g(z; t) =

∂

∂t
exp(tA)u(z)

= Aexp(tA)u(z)

= Ag(z; t)
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Conversely, suppose that g(z; t) satisfies (2.16). then, by chain rule,
we have

∂

∂t
exp(−tA)g(z; t) = −Aexp(−tA)g(z; t) + exp(−tA)

∂

∂t
g(z; t)

= −Aexp(−tA)g(z; t) + Aexp(−tA)g(z; t)

= 0

So exp(−tA)g(z; t) does not depend on t and is in C[[z]]. Set u(z) =
exp(−tA)g(z; t), we have g(z; t) = exp(tA)u(z). ✷

The following property is a little bit strange.

Proposition 2.6.

J(F )(z; t)







a1(z)
a2(z)

...

an(z)







=







a1(F (z; t))
a2(F (z; t))

...

an(F (z; t))







(2.17)

or in short notations

AF (z; t) = J(F )(z; t)a(z) = a(F (z; t))(2.18)

Proof: This follows from the following straightforward calculations.
Consider

∂

∂t
Fi(z; t) =

∂

∂t
exp(ta(z)

∂

∂z
)zi

=
n∑

k=1

ak(z)
∂

∂zk

exp(ta(z)
∂

∂z
)zi

=
n∑

k=1

ak(z)
∂

∂zk

Fi(z; t)

=
n∑

k=1

∂Fi(z; t)

∂zk

ak(z)(2.19)
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On the other hand, note that the operators a(z) ∂
∂z

and exp(a(z) ∂
∂z

)
commute with each other, so we also have

∂

∂t
Fi(z; t) = exp(ta(z)

∂

∂z
)(

n∑

k=1

ak(z)
∂

∂zk

)zi

= exp(ta(z)
∂

∂z
)ai(z)

= ai(exp(ta(z)
∂

∂z
)z)

= ai(F (z; t))(2.20)

Comparing (2.19) and (2.20), we get (2.17). ✷

Unfortunately, the equation (2.17) does not completely determine
the operator A(z) = a(z) ∂

∂z
. Instead we have the following explicit

formulas for a(z) and the inverse G = (G1, G2, · · · , Gn) of F .

Proposition 2.7. a)

a(z) = −

∞∑

k=1

1

k
(1 − eA)kz = −

∞∑

k=1

1

k

(
k∑

j=0

(−1)j

(
k

j

)

F [j](z)

)

(2.21)

b)

G(z) = z +

∞∑

k=1

(1 − eA)kz = z +

∞∑

k=1

(
k∑

j=0

(−1)j

(
k

j

)

F [j](z)

)

(2.22)

Notice that the operator 1 − eA strictly increases the degree, so the
infinite sums that appear in the lemma above all make sense.

Proof: a) follows from the following formal identity

A = log eA = log(1 − (1 − eA)) = −
∞∑

k=1

1

k
(1 − eA)k(2.23)

b) Since the formal inverse of F exists and is unique, it is enough to
check that the formal series G given by (2.22) is the inverse of F .
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Consider

(G ◦ F )(z) = eAG(z)

= eAz +

∞∑

k=1

(1 − eA)keAz

= eAz +

∞∑

k=1

(1 − eA)kz −

∞∑

k=1

(1 − eA)k+1z

= eAz + (1 − eA)z

= z

✷

Now we begin to prove our exponential formula for the Jacobian
J(Ft).

Theorem 2.8. (a) In the notations above, we have

J(Ft)(z) = exp(ta(z)
d

dz
+ t▽a(z)) · 1(2.24)

where Ft(z) = F (z; t) = (F1(z; t), F2(z; t), · · · , Fn(z; t)) as before.

(b) For any u ∈ C[[z]], we have

exp(tA + t▽a(z))u = u(F (t, z))JF (t, z)(2.25)

It is easy to see that (a) is an immediate consequence of (b), but here
we need prove (a) first.

Proof: (a) To keep notations simple, here we only give the proof for
the case of two variables. For the general cases, the ideas are completely
same.

Let K(t) = exp(ta(z) d
dz

+ t▽a(z)) · 1 and H(t) = J(Ft), i.e. the
Jacobian of Ft(z) with respect to the variables z1, z2. It is easy to see
that

K(0) = 1(2.26)

∂

∂t
K(t) = (A(z) + ▽A(z))K(t)(2.27)

To show that K(t) = H(t), it is enough to show that H(t) also
satisfies the equations (2.26) and (2.27) above. First when t = 0,
Ft(z) = (z1, z2) and H(0) = J(F )(z; 0) = 1. So it only remains to
check (2.27) for H(t).
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∂

∂t
H(t) =

∂

∂t

∣
∣
∣
∣
∣

∂F1(z;t)
∂z1

,
∂F1(z;t)

∂z2
∂F2(z;t)

∂z1
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∂2F1(z;t)
∂z1∂t

,
∂F1(z;t)

∂z2
∂2F2(z;t)

∂z1∂t
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∂F1(z;t)
∂z1

,
∂2F1(z;t)

∂z2∂t
∂F2(z;t)

∂z1
,

∂2F2(z;t)
∂z2∂t

∣
∣
∣
∣
∣

(2.28)

By Lemma 2.5, we calculate the first term of (2.28) as follows.

∣
∣
∣
∣
∣

∂2F1(z;t)
∂z1∂t

,
∂F1(z;t)

∂z2
∂2F2(z;t)

∂z1∂t
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∂
∂z1

(a1(z) ∂
∂z1

+ a2(z) ∂
∂z2

)F1(z; t), ∂F1(z;t)
∂z2

∂
∂z1

(a1(z) ∂
∂z1

+ a2(z) ∂
∂z2

)F2(z; t), ∂F2(z;t)
∂z2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

A
∂F1(z;t)

∂z1
,

∂F1(z;t)
∂z2

A
∂F2(z;t)

∂z1
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∂a1

∂z1

∂F2(z;t)
∂z1

+ ∂a2

∂z1

∂F2(z;t)
∂z2

,
∂F2(z;t)

∂z2
∂a1

∂z1

∂F2(z;t)
∂z1

+ ∂a2

∂z1

∂F2(z;t)
∂z2

,
∂F2(z;t)

∂z2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

A
∂F1(z;t)

∂z1
,

∂F1(z;t)
∂z2

A
∂F2(z;t)

∂z1
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣
+

(
∂a1

∂z1

)

J(Ft)(2.29)

Similarly, for the second term of (2.28), we have
∣
∣
∣
∣
∣

∂F1(z;t)
∂z1

,
∂2F1(z;t)

∂z2∂t
∂F2(z;t)

∂z1
,

∂2F2(z;t)
∂z2∂t

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂F1(z;t)
∂z1

, A
∂F1(z;t)

∂z2
∂F2(z;t)

∂z1
, A

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣
+

(
∂a2

∂z2

)

J(Ft)(2.30)

Combining (2.29) and (2.30), we get

∂

∂t
H(t) = A

∣
∣
∣
∣
∣

∂F1(z;t)
∂z1

,
∂F1(z;t)

∂z2
∂F2(z;t)

∂z1
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣
+ (

∂a1

∂z1

+
∂a2

∂z2

)

∣
∣
∣
∣
∣

∂F1(z;t)
∂z1

,
∂F1(z;t)

∂z2
∂F2(z;t)

∂z1
,

∂F2(z;t)
∂z2

∣
∣
∣
∣
∣

= (A + ▽A)J(Ft)(2.31)

(b) By formula 2.24 and Lemma 2.5, it is easy to check that both
sides of (2.25) satisfy equations (2.26) and (2.27). ✷

By the similar idea, we also can get an exponential formulas for the
Jacobian matrix JF (t, z) of F (t, z). First we fix the following notations:
Let Ja(z) be the Jacobian matrix of the n-tuple (a1(z), · · · , an(z)).
Let RJa be the operator over the algebra Mn×n(C[[z]]), i.e. the n × n

matrices with entries lying in C[[z]], defined by multiplifying the matrix
Ja(z) from the right-hand side. In the following theorem, we also view
the differential operator A(z) = a(z) ∂

∂z
as a differential operator of the

algebra Mn×n(C[[z]]), which acts on the matrices entry-wisely.
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Theorem 2.9. For any U(z) ∈ Mn×n(C[[z]]), we have

exp(tA + tRJa)U = U(Ft(z))JFt(z)(2.32)

In particular, when U is chosen to the identity matrix Id, we get

JFt(z) = exp(tA + tRJa) · Id(2.33)

Proof: For any 1 ≤ i, j ≤ n, consider

∂

∂t

∂Fi(t, z)

∂zj

=
∂

∂zj

∂Fi(t, z)

∂t

=
∂

∂zj

n∑

k=1

ak(z)
∂Fi(t, z)

∂zk

=
n∑

k=1

∂ak

∂zj

∂Fi(t, z)

∂zk

+ (
n∑

k=1

ak

∂

∂zk

)
∂Fi(t, z)

∂zj

=

n∑

k=1

∂Fi(t, z)

∂zk

∂ak

∂zj

+ A
∂Fi

∂zj

Hence we have
∂

∂t
JFt(z) = (A + RJa)JFt(z)(2.34)

By Lemma 2.5, we also have ∂
∂t

U(Ft(z)) = AU(Ft(z)). So it is easy to
see that the right hand side of (2.32) satisfies the equations

∂

∂t
(U(Ft(z))JFt(z)) = (A + RJa)(U(Ft(z))JFt(z))(2.35)

U(F0(z))JF0(z) = Id(2.36)

Hence (2.32) holds. ✷

Remark 2.10. (a) Note that the proofs of Theorem 2.8 and Theorem

2.9 only need the condition o(a(z)) ≥ 1 instead of o(a(z)) ≥ 2. So for

any A(z) = a(z) ∂
∂z

with o(a(z)) ≥ 1, set F (t; z) = etA(z)z, then the

formulas in Theorem 2.8 and Theorem 2.9 still hold.

(b) In particular, over the complex field C, it is straightforward to

check that F (z) = eA(z)z is a well defined formal power series and we

can replace t by 1 in all the formulas in Theorem 2.8 and Theorem 2.9.

Next we will derive a little bit more information about JFt.

Proposition 2.11.

∂

∂t
J(Ft) = (A + (▽a)(z))J(Ft) = (▽a)(Ft)J(Ft)(2.37)
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In particular,

AJ(Ft) = ((▽a)(Ft) − (▽a)(z))J(Ft)(2.38)

Proof: From (2.31), we see that ∂
∂t

J(Ft) = (A + (▽a)(z))J(Ft). Let
L(z; t) = (A + (▽a)(z))J(Ft) and R(z; t) = (▽a)(Ft)J(Ft). Then by
(2.24) and Lemma 2.5, it is easy to see that

∂L(z; t)

∂t
= (A + (▽a)(z))L(z; t)(2.39)

∂R(z; t)

∂t
= (A + (▽a)(z))R(z; t)(2.40)

While L(z; 0) = (▽a)(z) = R(z; 0), Hence we must have L(z; t) =
R(z; t). ✷

As an application of Theorem 2.8, we give a new proof to the follow-
ing result, which was first proved by M. Pittaluga in [P] by using the
theory of formal Lie groups and Lie algebras.

Corollary 2.12. J(F ) ≡ 1 if and only if ▽A ≡ 0.

Proof: First from (2.24), it is easy to see that if ▽A ≡ 0, then
J(F ) ≡ 1. Conversely, suppose that J(F ) ≡ 1. Observe that a(z) ∈
C2[[z]], or in other words, the least degree of ai are at least 2, therefore
the operators A = a(z) ∂

∂z
and A + ▽A increase the degree at least

by one. If ▽a(z) 6= 0, say its lowest degree is m. Let M be it the
homogeneous part of degree m. From (2.24) for t = 1, we have

1 ≡ J(F ) = e(a(z) ∂
∂z

+▽a(z)) · 1

= 1 + (a(z)
∂

∂z
+ ▽a(z)) · 1 +

∑

i≥2

1

k!
(a(z)

∂

∂z
+ ▽a(z))k−1

▽a(z)

= 1 + M + high degree terms(2.41)

Clearly M = 0, contradiction.
Another way to prove the result above is the following: Consider

the “deformation” Ft(z) of F as before. Notice the Jacobian J(Ft) ∈
C[t][[z]] and J(Ft) = J(F [k]) when t = k, for any k ∈ N. Now since
J(F )(z, 1) ≡ 1, then, by the chain rule, J(F [k])(z) ≡ 1. This implies
that J(Ft) ≡ 1, when t = k for any k ∈ N. Hence J(Ft) itself must be
identically 1, for as a polynomial of t, the coefficient of any monomial
of positive degree of F can not have infinitely roots unless it is zero.
In particular, J(Ft) does not depends on t. So we have
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0 =
∂

∂t

∣
∣
t=0

JF (z; t) = (a(z) ∂

∂z
+ ▽a(z))JF (z; 0) = ▽a(z)(2.42)

✷

From the arguments in the proof for the Corollary above, or by the
Corollary itself, we have

Corollary 2.13. For any F ∈ F1, if J(F ) ≡ 1. Then J(Ft) ≡ 1.

3. Some Explanations and Applications

At the first glance, the formulas we proved in Theorem 2.8 and Theo-
rem 2.9 are a little mysterious. Here we try to give a little explainations
to these two formulas.

First the exponenitial formula (2.24) reminds us the following so
called Liouville’s formula in linear algebra. Namely, for any n × n

matrix M ∈ Mn×n(C), then

Det eM = eTrM(3.1)

Actually we will see that the formula (2.24) can be viewed as a
generalization of the Liouville’s formula above.

First we define the embedding

Φ : Mn×n(C) → D(z)(3.2)

M = (mij) →

n∑

i,j=1

mijzi

∂

∂zj

(3.3)

where D(z) is the Lie algebra of the derivations of C[[z]]. It is very
easy to check that the linear map Φ : Mn×n → D(z) is an injective
homomorphism of Lie algebras.

Lemma 3.1. Let F (z) = exp(Φ(M))z. Then

(a) J(F ) = eM .

(b) F (z) = eMz.

(c) J(F ) = eTrM .

Proof: Note that JΦ(M) = M and ▽Φ(M) = TrM . By Remark
2.10, we can apply formula (2.33) to the map F , we get

J(F ) = eΦ(M)+RJΦ(M)In×n

= eRM eΦ(M)In×n

= eRM In×n

= eM
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where the second equality above follows from the fact that the operators
Φ(M) and RJΦ(M) commutes with each other. So we have proved (a).
(b) follows immediately from (a).

To prove (c), we apply formula (2.24) to F , we get

J(F ) = eΦ(M)+▽Φ(M) · 1

= e▽Φ(M)eΦ(M) · 1

= eTr(M)

✷

Combine (a) and (c) in the lemma above, we recover formula (3.1).
Therefore formula (2.24) and (2.33) can be viewed as some generaliza-
tions of the Liouville’s formula (3.1).

One of the motivations for the present work is that we believe the
exponential formulas (2.3), (2.24) and Corollary 2.12 are closely related
with the well known Jacobian Conjecture. In the rest of section, we
will consider some applications to the Jacobian Conjecture.

From Proposition 2.1, Lemma 2.4 and Corollary 2.12, we see that
the Jacobian Conjecture is equivalent to the following pure algebraic
problem.

Conjecture 3.2. Let a(z) ∈ C2[[z1, z2, · · · , zn]] and ▽a(z) = 0. Then

F (z) = exp(a(z) ∂
∂z

)z ∈ (C[z])n if and only if G(z) = exp(−a(z) ∂
∂z

)z ∈
(C[z])n.

In the case when a(z) is even, we have a very simple answer to the
conjecture above.

Proposition 3.3. a) For any F ∈ F1, let G be its formal inverse.

Then G(z) = −F (−z) if and only if a(z) is even.

b) If F satisfies the conditions in the Jacobian Conjecture and a(z)
is even, then G is also a polynomial map.

Proof: Clearly b) is an immediate consequence of a). For a), Sup-
pose a(z) is even, then, replacing z by −z in (2.3), we get

F (−z) = exp(a(−z)
∂

∂(−z)
)(−z)

= −exp(−a(z)
∂

∂z
)z

= −G(z)(3.4)

Conversely, suppose the formal inverse G(z) = −F (−z). Let B =
b(z) ∂

∂z
be the associated formal differential operator of G, i.e.

G(z) = exp(B(z))z(3.5)
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By the uniqueness of B, we have B(z) = −A(z). On the other hand,
from (3.4), we get

− F (−z) = exp(A(−z))z(3.6)

Comparing (3.5) and (3.6), we have A(−z) = B(z) = −A(z). Therefore
a(z) must be even. ✷

As an immediate consequence, we have the following:

Corollary 3.4. With the same notation above, if a(z) is even and

F = eAz are polynomials, then ▽a(z) = 0.

Note that this is not true for arbitrary formal power series a(z).
Finally, we give a new proof for a theorem of Bass, Connell and

Wright in [BCW].

Theorem 3.5. [BCW] Let F (z) = z +H(z) be a polynomial map with

H(z) being homogeneous of degree d ≥ 2. If J(H)2 = 0, then the formal

inverse map G = z − H(z).

Note that J(H)2 = 0 implies that J(F ) = 1. Thus the Jacobian
Conjecture is true in this case.

Proof: First note that J(H)z = dH(z), since H(z) is homogeneous
of degree d. From J(H)2 = 0, we have 0 = J(H)2z = dJ(H)H , hence
J(H)H = 0.

Now let A(z) = a(z) ∂
∂z

be the calculate the associated formal dif-

ferential operator. Write a(z) =
∑∞

k=2 a(k)(z), where a(k)(z) is homo-
geneous of degree k. By incursive formula (2.9), it is easy to see that
a(k)(z) = 0 if k 6= m(d − 1) + 1 for some m > 0. For k = m(d − 1) + 1
with m > 0, we have a(d)(z) = H(z) and

a(d)(z) = H(z)

a(2d−1)(z) = −
1

2
(H(z)

∂

∂z
)2z

= −
1

2
(H(z)

∂

∂z
)H(z)

= −
1

2
JH(z) · H(z)

= 0

By Mathematical Induction and incursive formula (2.9), it is easy to
show that a(m(d−1)+1) = − 1

m!
(H(z) ∂

∂z
)mz = 0 for any m ≥ 2. Therefore,

we have a(z) = H(z) and A(z) = H(z) ∂
∂z

. Note that A2(z) = 0, so the
formal inverse G(z) of F (z) is given by G(z) = e−Az = z −H(z). ✷
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4. Some Open Problems

For the case of two variables, by using the residue and intersection
theory in complex algebraic geometry, the author in [Z2] shows that,
to prove the Jacobian Conjecture, it will be enough to consider the
following special polynomial maps F ∈ F1.

Let r(x) be a monic polynomial of degree N + 1 > 1 with distinct
roots and λ(x) and µ(x) are unique polynomials satisfying

a)

r(x)µ(x) + r′(x)λ(x) = 1(4.1)

b) deg µ(x) ≤ N − 1 and deg λ(x) ≤ N .
Consider F = (F1, F2), where

F1(z1, z2) = r(z1)H1(z1, z2) − z2λ(z1)K2(z1, z2)(4.2)

F2(z1, z2) = r(z1)H2(z1, z2) + z2λ(z1)K1(z1, z2)(4.3)

where Hi and Ki are polynomials in z = (z1, z2) and satisfy H1K1 +
H2K2 = 1. Furthermore, without losing any generality, we also can
assume that F ∈ F1. Then the Jacobian Conjecture is equivalent to
the following

Conjecture 4.1. Let F = (F1, F2) as above, A = a(z) ∂
∂z

be the asso-

ciated formal differential operator of F , then ▽A 6= 0.

Finally we ask the following very important and interesting question.
(This question for the case of one variable was first suggested to the
author by Y-Z. Huang), namely, if the analytic map F is well defined
in an open neighborhood of 0 ∈ Cn, is a(z) convergent near 0 ∈ Cn ?

This is unknown both in the case of one variable and in the case F is
a polynomial map with J(F ) ≡ 1. We believe the following conjecture
is true, but we do not have much evidence.

Conjecture 4.2. If F is convergent near 0 ∈ C
n, then so is a(z).

The converse of the conjecture above is very easy to prove.

Proposition 4.3. Suppose a(z) ∈ C2[[z]] is convergent near point 0 ∈

Cn, then so is the formal power series F (z) = ea(z) ∂
∂z z.

Proof: Consider the deformation F (z; t) = eta(z) ∂
∂z z, which satisfies

the following differential equations

∂

∂t
F (z; t) = a(z)

∂

∂z
F (z; t)(4.4)

F (z; 0) = z(4.5)
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It is well known in PDE that the differential equation (4.4) with
condition (4.5) has a unique analytic solution. Then as a formal power
series solution of (4.4), F is convergent near 0 ∈ C

n. ✷
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