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A FAMILY OF INVARIANTS OF ROOTED FORESTS
WENHUA ZHAO

ABSTRACT. Let A be a commutative k-algebra over a field of k and
= a linear operator defined on A. We define a family of A-valued
invariants W for finite rooted forests by a recurrent algorithm using
the operator = and show that the invariant ¥ distinguishes rooted
forests if (and only if) it distinguishes rooted trees T', and if (and
only if) it is finer than the quantity «(T") = |Aut(T)| of rooted trees
T. We also consider the generating function U(q) = > o, Ung"
with Uy, = > per, ﬁllf(T), where T, is the set of rooted trees
with n vertices. We show that the generating function U(q) sat-
isfies the equation ZexpU(q) = ¢ *U(q). Consequently, we get
a recurrent formula for U, (n > 1), namely, U; = Z(1) and
U, =E28,-1(U1,Us,...,U,_1) for any n > 2, where S, (21,22, )
(n € N) are the elementary Schur polynomials. We also show that
the (strict) order polynomials and two well known quasi-symmetric
function invariants of rooted forests are in the family of invariants
U and derive some consequences about these well-known invariants
from our general results on U. Finally, we generalize the invariant
U to labeled planar forests and discuss its certain relations with
the Hopf algebra U'Cg r in [B] spanned by labeled planar forests.
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1. Introduction

By a rooted tree we mean a finite 1-connected graph with one vertex
designated as its root. Rooted trees not only form a family of important
objects in combinatorics, they are also closely related with many other
mathematical areas. For the connection with the inversion problem
and the Jacobian problem, see [I], [I3]. For the connection with D-log
and formal flow of analytic maps, see [I4]. For the connection with
renormalization of quantum field theory, see [6], [2].

In this paper, motivated by certain properties of the (strict) order
polynomials encountered in [I4], we define a family of A-valued in-
variants W for rooted forests by a recurrent algorithm (See Algorithm
Bl starting with an arbitrary commutative k-algebra A over a field
of k and a fixed linear operator = defined on A. We show in Propo-
sition and Theorem that the invariant ¥ distinguishes rooted
forests if (and only if) it distinguishes rooted trees T', and if (and only
if) it is finer than the quantity «(7) = |Aut(7T)| of rooted trees T
In Section B, we consider the generating function U(q) = > .-, U,q",
where U, = > e ﬁ\lf(T) with T,, the set of rooted trees with n

vertices and a(T') = |Aut(7T')|. We show that the generating function
U(q) satisfies the equation ZexpU(q) = ¢ 'U(q). Consequently, we
get the recurrent formula U; = Z(1) and U,, = 25,,_1(U1,Us, ..., Up_1)
for any n > 2, where S, (z1,xs,- -+ ) are the elementary Schur polyno-
mials. In Section B and [, we show that, with properly chosen A and
the linear operator =, the (strict) order polynomials of rooted trees and
two families of quasi-symmetric functions for rooted forests (See (1))
and ([L2) for the definitions) are in the family of invariants ¥ defined
by Algorithm Bl We also derive some consequences on these well-
known invariants from our general results on the invariant . Finally,
in Section B, We generalize our invariants to labeled planar forests and
discuss certain relations of our invariants with the Hopf algebra }Cg R
in [3] spanned by labeled planar forests.

The author would like to thank Professor John Shareshian, from
whom the author learned Lemma and quasi-symmetric functions
for finite posets, and Professor David Wight for many personal commu-
nications. The author is also very grateful to the referee for suggesting
to consider the generalization of our invariants to labeled planar forests
and its relations with the Hopf algebra J-Cg r spanned by labeled planar
forests. The last section of this paper is the outcome of the efforts to
these directions.
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2. Notation and An Operation for Rooted Forests

Notation: In a rooted tree there are natural ancestral relations
between vertices. We say a vertex w is a child of vertex v if the two
are connected by an edge and w lies further from the root than v. We
define the degree of a vertex v of T to be the number of its children.
A vertex is called a leaf if it has no children. By a rooted forest
we mean a disjoint union of finitely many rooted trees. When we
speak of isomorphisms between rooted forests, we will always mean
root-preserving isomorphisms, i.e. the image of a root of a connected
component which is always a rooted tree must be a root.

Once for all, we fix the following notation for the rest of this paper.

(1) We let T be the set of isomorphism classes of all rooted trees
and F the set of isomorphism classes of all rooted forests. For
m > 1 an integer, we let T,, (resp F,,) the set of isomorphism
classes of all rooted trees (resp. forests) with m vertices.

(2) For any rooted tree T, we set the following notation:

e rt7 denotes the root vertex of T

e V(T) (resp. L(T)) denotes the set of vertices (resp. leaves)
of T.

e v(T) (resp. I(T)) denotes the number of the elements of
V(T) (resp. L(T)).

e For v € V(T) we define the height of v to be the number
of edges in the (unique) geodesic connecting v to rtr.

e h(T') denotes the height of T'.

e «(T) denotes the number of the elements of the automor-
phism group Aut(7).

e For vy,...,v, € V(T), we write T\{vy,...,v,} for the
graph obtained by deleting each of these vertices and all
edges adjacent to these vertices.

(3) A rooted subtree of a rooted tree T is defined as a connected
subgraph of T containing rty, with rty = rtp.

(4) We call the rooted tree with one vertex the singleton, denoted
by o.

We define the operation B, for rooted forests as follows. Let S be a
rooted forest which is disjoint union of rooted trees T; (i = 1,2, ...,d).
We define By (S) = By (T1,...,Ty) to be the rooted tree obtained by
connecting all roots of T; (i = 1,2, ...,d) to a single new vertex, which
is set to the root of the new rooted tree B, (11, ..., Ty). If a forest S is
the disjoint union of k; copies of rooted tree T}, ko copies of Ty, - -,
kq copies of Ty, we also use the notation B, (T}, ---T¥) for the new
rooted tree B, (S).
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Lemma 2.1. For any k; e N, T, € T (i = 1,2,--- ,d) with T; 2 T;
(1 # j), we have

(21) a(B(TF, - T)) = (kp)!- - (ko) (1) - - Ty

Proof: Set T = B, (T{*,---T*) and R the rooted subtree of T' con-
sisting of the root rty of 7" and all its children in 7. Let ¢ : Aut(T) —
Aut(R) be the restriction map which clearly is a homomorphism of
groups. Let H < Aut(R) be the image of ¢. Since T; 2 T for any
i # 7, It is easy to see that |H| = kilks!---k4!. Let K be the kernal
of ¢. Note that an element o € Aut(7') is in K if and only if it fixes
all the vertices of R. Hence the order |K]| is equals to Hle a(T;)*.
Therefore, we have

a(T) = |K|[H| = (ki) (ka)la(T)* - o Ty)™

3. A Family of Invariants ¥ for Rooted Forests

Let A be a commutative k-algebra over a field k and = an k-linear
map from A to A. Set a = Z(1). We first define an A-valued invariant
U for rooted forests by the following algorithm:

Algorithm 3.1.

(1) For any rooted tree T € T, we define V(T as follows.
(i) For each leafv of T, set N, = =Z(1) = a.
(ii) For any other vertex v of T, define N, inductively starting
from the highest level by setting N, = Z(Ny, Ny, -+ Ny, ),
where v; (j =1,2,...,k), are the distinct children of v.
(iii) Set U(T) = Ny,
(2) For any rooted forest S € F, we set

(3.1) U(S) = H U(T;)

where T; (1 =1,2,-+- ,m) are connected components of S.
From Algorithm B], the following two lemmas are obvious.

Lemma 3.2. a) B = {V(5)|S € F} is a multiplicative subset of A,
i.e. it is closed under the multiplication of the algebra A.
b) =(B) C B.

Lemma 3.3. Let I' be an A-valued invariant for rooted forests. ' can
be re-defined and calculated by Algorithm [Z1 for some k-linear map =
if and only iof
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(1) It satisfies Eq. (Zl) for any rooted forest S € F.
(2) For any rooted tree T € T,

(3.2) I(T) =

(1]

d
[Ir@)

i=1

where T; (i = 1,2, ...,d) are the connected components of T'\rtr.

In Section Bl and [, we will show that the strict order polynomials,
order polynomials as well as two family well known quasi-symmetric
functions of rooted forests (See (Ll) and ([C2) for the definitions) are
in this family of invariants W.

4. When the Invariants ¥ Distinguish Rooted Forests

Definition 4.1. We say an invariant V distinguishes rooted forests
(resp. trees) if, for any Sy, 52 € F (resp. Si,Ss € T), W(S;) = ¥(Ss) if
and only if S1 ~ Sy . We say an invariant V s finer than the quantity
a(T) if, for any Ty, To € T, a(Ty) # a(T3) implies V(1) # V(T3).

In Combinatorics, it is very desirable to find an invariant which can
distinguish rooted trees or rooted forests. For the invariant W defined
by Algorithm Bl we have the following results.

Proposition 4.2. An A-valued invariant ¥ defined by Algorithm [Z1
distinguishes rooted forests if (and only if ) it distinguishes rooted trees.

Proof: Suppose ¥ distinguishes rooted trees. Let Si,S; € F with
U(S)) = W¥(S2). We need show that S; ~ S;. First, by Lemma
B3 we have W(B,(S;)) = Z¥(S;) for ¢ = 1,2. Hence, V(B (S1)) =
U(B.(S2)). Therefore, by our assumption, we have B, (S;) ~ B, (S2),
which clearly implies S} ~ S;. O

Theorem 4.3. An A-valued invariant ¥ defined by Algorithm [T dis-
tinguishes rooted trees if (and only if ) it is finer than o(T).

Proof: Suppose V¥ is finer than «(7T). Let Tj,T» € T such that
U(T)) = ¥(T). Hence a(T1) = a(T3). We need show that T} ~ Ts.

Suppose 17 and T, are not isomorphic to each other. Let T =
B, (T, Ty) and T" = B4 (11,T5). By Lemma B3, we have

w(T) = (V1))
W) = E(U(T)U(T))
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Since W(T1) = V(T3), we have W(T) = ¥(7"). On the other hand, by
Lemma [ZT] we have

a(T) = 2a(T1)?

aT) = a(Th)a(Tz) = o(Th)*

Therefore, a(T) # a(T"). So W is not finer than «(7"), which is a
contradiction. O

5. A Generating Function for the Invariant ¥ of Rooted
Trees

In this section, we fix an invariant ¥ defined by Algorithm and
consider the generating function

1 v
TeT
For any n > 1, set U, = Y jcq ﬁ\lf(T) Hence, we have U(q) =

> Ung™. We will derive an equation satisfied by the generating
function U(q), from which {U,|n € N} (n > 2) can be calculated
recursively by using the elementary Schur polynomials.

Theorem 5.1. The generating function U(q) satisfies the equation

(5.2) 2" = ¢7'U(g)
Proof: Consider
— Uk
—.U _— = =
ZeV W = Z()+E= o
k=1
_ = (T @D
20 (ZQ(T)( (T)q )>
k=1 TeT

While, for the general term of the right hand side of the equation above,
we have

(Z ﬁ‘l’(T)q”(Tj

< 1 = (T Y (T)™) s g
=D 2 2 (k)t-- (k)U TTicy T e

r=1 Ty, Tr€T ki+-+kr=Fk
T, #T;(i#5) k1, kr21

| (1]
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By Lemma BTl and B33l we have
k
_ Z Z Z \I](B+(T e 7Trk7“) q’l)(B+(T1kl7“.7T7{€T))_1
o(By (TF 1))

r=1 Ty, Tr€T ky++kr=k »Er
TﬁéTj(i?éj) iy skr 21

_ q_1z Z oy

r=1 TETT k+1

where T} ;41 is the set of equivalence classes of rooted trees with £ + 1
vertices and the degree of the root being exactly r. Therefore, we have

WYY Y e

k=1 r= 1T€Trk+1

=el@ —

[I]

L)+ ") %q”m
T

= ¢ 'Ulg) ( since Uy = V(o) = Z(1).)

|
[1]

O

Recall that the elementary Schur polynomials S, (z) (n € N) in z =
(21,29, -+ ,x) - - ) are defined by the generating function:

(5.3) eXim k! —ZS )q" —1+ZS

Note that, if we sign the weight of the variable xz; to be k for any
k € Nt and set

wt(zgl iy - - g %N

for any ig,ar € Nt (k = 1,2,--- ,d). Then, for any n € N, S,(x)
is a polynomial which is homogeneous with respect to weight with
wt S, (z) = n. In particular, S, (z) depends only on the variables x; (i =
1,2,--+,n). For more properties of the elementary Schur polynomials
Sp(z) and their relationship with Schur symmetric functions, see [B],

.

Proposition 5.2. For any n > 1, we have

(5.4) U, = Z(1)=a

(5.5) Uy = ESu1(U1,Us, -+ ,Un1)

[1]
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Proof: Set U = (Uy,Us, -+ ,Ug,---). From (2) and (B3)), we have

Y ESU) g =g Unt)g"™
n=1 n=2

By comparing the coefficient of ¢"~ (n > 2), we have
Un(t) == n—l(Ul, U2> Ty Un—l)
Hence, we get (BEH). O

Remark 5.3. One interesting aspect of the invariant ¥ and its gen-
erating function U(q) is as follows. From Proposition[3, we see that
U(q) is the unique solution of Eq. ([Z2) in the power series algebra
Allq]]. Therefore, any equation of the form ([&Z2) can be solved by look-
ing at the invariant ¥ defined by Algorithm [Z1 for rooted trees and its
generating function U(q) defined by ([Z1).

6. (Strict) Order Polynomials

Let T € T be a rooted tree. Note that T with the natural partial
order induced from rooted tree structure forms a finite poset (partially
ordered set), in which the root of T serves the unique minimum element.
Similarly, any rooted forest also forms a finite poset. In the rest of this
paper, we will always view rooted forests as finite posets in this way.
Recall the strict order polynomial Q(P) for a finite poset P is defined
to be the unique polynomial Q(P) such that Q(P)(n) equals to the
number of strict order preserving maps ¢ from P to the totally ordered
set [n] ={1,2,---,n} for any n > 1. Here a map ¢ : P — [n] is said to
be strict order preserving if, for any elements z,y € P with x > y in P,
then ¢(z) > ¢(y) in [n]. Also recall that the order polynomial Q(P) for
a finite poset P is defined to be the unique polynomial Q(P) such that
Q(P)(n) equals to the number of order preserving maps ¢ : P — [n]
for any n > 1. Here a map ¢ : P — [n] is said to be order preserving
if, for any elements z,y € P with x > y in P, then ¢(z) > ¢(y) in [n].
For general studies of these two invariants, see [10].

In this section, we show that the strict order polynomials Q(7") and
order polynomials Q(7) are both in the family of the invariants W
defined by Algorithm Bl We also derive some consequences from our
general results on the invariants W.

Consider the polynomial ring C[t] in one variable ¢ over C and the
difference operator A, which is defined by

(6.1) A:ClH] — C[f
(6.2) f&) — fE+1) = f(t)
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We define the operator A~ : C[t] — tC[t] by setting A~'(g) to be
the unique polynomial f € tC[t] such that A(f) = g for any g € C[t].
Note that A™! : C[t] — tCJt] is well-defined because that, for any
polynomial f € C[t], A(f) =0 if and only if f is a constant.

We also define the operator V by

v.Cl] — Clf
[ — f@)—fiE-1

and V™! by setting V~!(g) to be the unique polynomial f € tC[t] such
that V(f) = g for any g € C[t].

Proposition 6.1. Let A = C[t], then the strict order polynomials )
(resp. order polynomials Q) of rooted forests can be re-defined and cal-
culated by Algorithm [0 with E = A" (resp. 2= V1.

The proof of the proposition above immediately follows from Lemma
B3 the fact that 2 and  also satisfy Eq. (B]) and the following lemma
due to John Shareshian.

Lemma 6.2. [J. Shareshian]
For any rooted trees T; (i = 1,2,--- ,r), we have

(6.3)  AQBLT, Ty, T,) = UL)QUT)---QAT;)
(6.4) VOB (T, T3, -+, 1)) = QUT)AT) - QT)

For the proof of Eq. (63), see the proof of Theorem 4.5 in [T4]. Eq.
[E4) can be proved similarly. Actually, Proposion has been proved
in [T4] for the strict order polynomials Q.

Now we consider the corresponding generating functions U(t,q) =

>_rer %qv(T) and U(t,q) = > rer %q”m. By Theorem BTl we

have

Proposition 6.3. The generating functions satisfy the equations

(6.5) "t = ¢T'AU(t,q)
(6.6) "0 = ¢7'VU(t,q)
2 QT QT
For any n > 1, we set Uy (t) = > rer, % and Up(t) = > per, %

By Proposition B2 we have

Proposition 6.4. a) For any n > 2, we have

(68) Un - A_15(71—1(le7 UQ, ) Un—l)



10 WENHUA ZHAO

b) For any n > 2, we have
(6.9) U, = Vi) =t
(6.10) Uo = V1S, (U, Uy, Uyy)

Set u(q) = U(t,1) and write u(q) = > .-, u,g™. Since Q(T)(1) =
and Q(T)(0) = 0 for any rooted tree T, we see that u, = Y op —=
and U(0,q) = 0. Therefore,

(VU(t,q))(1) = U(L,q) = U(0,9) = u(q)
Combining with Eq. (&0), we see that the generating function u(q)
satisfies the equation

(6.11) e“@ = g7 u(q)

But, on the other hand, it is well known that there is another generating
function related with rooted trees satisfying Eq. (GI1]) which is defined
as follows. Let r(n) be the number of rooted trees on the labeled set
n] = {1,2,---,n}. Let R(q) = > -, Tg!‘)q". Then, by Proposition
5.3.1 in [TT], R(q) also satisfies Eq. (GI1]) and by Proposition 5.3.2 in
[T1], we know that r(n) = n"~!. Therefore, we have

Corollary 6.5. u(q) = R(q). In particular, for any n > 1, we have
the identities

(6.12) "!Zﬁ ~ ()
1 n—1

(6.13) ZW - "n!

TeT,

For the corollary above, we see that Eq. (G.0) can be viewed as a
natural generalization of Eq. (GI1).

7. Two Quasi-Symmetric Function Invariants for Rooted
Forests

Let us first recall the following well known quasi-symmetric functions
K(P) and K(P) defined in [IT] for finite posets P. For more general
studies on quasi-symmetric functions, see [, [12], [§] and [I1].

Let © = (x1, 29, -+ ,) be a sequence of commutative variables and
C[[z]] the formal power series algebra in z; (kK > 1) over C. For
any finite poset P and any map o : P — N7 of sets, we set 27 :=

T2 217 Ol and define

=11

(7.1) K(P)(x) =) a°
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where the sum runs over the set of all strict order preserving maps
o : P — N*. Similarly, we define

(7.2) K(P)(z) =) a°

where the sum runs over the set of all order preserving maps o : P —
N*. Note that K(P)(x) and K(P)(x) are always in C[[z]] and satisfy
Eq. BI) for rooted forests.

Recall that an element f € C[[z]] is said to be quasi-symmetric if the

degree of f is bounded, and for any a;,as, - ,a; € NT, iy <ip <--- <
i and j; < Jo < - -+ < Ji, the coefficient of the monomlal gl gl :L’Zf
is always same as the coefficient of the monomial z¢ - x$®. From

.71 ]2 Jk

the definitions (ZTl) and ([Z2), it is easy to check that, for any finite
poset P, K(P) and K(P) are quasi-symmetric. B
In this section, we will show that the quasi-symmetric functions K

and K for rooted forests are also in the family of the invariants W

defined by Algorithm Bl
We define the shift operator S : C[[z]] — C[[z]] by first setting

S(1) =1
S(l’m) = Tm+1

and then extending it to C[[z]] to be the unique C-algebra homomor-
phism from C[[z]] to C[[z]]. For any m € NT, we denote by the abusing
notation z,, the C-linear map from C[[z]] to C[[z]] induced by the mul-
tiplication by x,,.

The following lemma follows immediately from the definition of the
linear operator S.

Lemma 7.1. As the linear maps from C[[x]] to C[[z]], 2., S* = S*x,, 4
for any k,m € NT with k < m.

We define the linear maps A and A from C[[z]] to C[[z]] by setting

(7.3) A = Zkak Zsk ) 219

(7.4) A = Zkak = ZS’“
where the last equalities of the equations above follow from Lemma

[T It is easy to see that A and A are well defined.

Lemma 7.2. a) The linear maps A and A from C[[z]] to C[[z]] are
mjective.
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b)
(7.5) A1) =A(1) =D

Proof: b) follows immediately from Eq. (Z3) and (Z4).

To prove a), let f € C[[x]] such that Af = 0. By Eq. ([3J), we have
(1 —S)A = 2,S. Hence, 2:5f = 0 and Sf = 0. Therefore, we must
have f = 0. The injectivity of A can be proved similarly. O

Lemma 7.3. For any rooted tree T', we have
d

(7.6) K(T) = AJ[K(T)
i=1
d

(7.7) K(T) = AJ[K(T)
i=1

where T; (1 =1,2,--- Ty) are the connected components of T\rtr.

Proof: Here we only prove Eq. (). For Eq. ([Z1), the ideas of the
proof are similar.

Let W be the set of all strict order preserving maps o : P — NT and
Wy (k > 1) the set of 0 € W such that o(rtr) = k. Clearly, W equals
to the disjoint union of W}, (k > 1). By the definition of K, see (I,
we see that 3y 27 € Cl[xg, Tpya,- -+, ]]. Since K satisfies Eq. (@)
for rooted forests, we have

d
(7.8) D 2% = SR (T\rty) = o S* [ [ K(T))
ceWy, i=1
Therefore,
K(T)=)_ ) a°
k=1 ceWy,
00 d
=> S K@)
k=1 i=1
d

O

From the lemma above and Lemma and the fact that K and K
satisfy Eq. (B for rooted forests, we immediately have
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Proposition 7.4. The quasi-symmetric functions K (resp. K) for
rooted forests can be re-defined and calculated by Algorithm [Z1 with
A =Cl[z]] and Z = A (resp. £ = A).

Now we consider the generating functions

C?($7Q) = j{:'__ﬁz_J§__q EE:(Qn
)(x

TeT
(Q($7Q) = 2{: _7;%%7__ o) jzjcgn
TeT,

where Qn(z) = Y rer % and Qn(z) = > e, aI(DT for any
n > 1. By Theorem B, Lemma and Proposition [[4], we have

Proposition 7.5. a) The generating functions Q(x,q) and Q(x,q) sat-
1sfy the equations

(7.9) AeRED = ¢71Q(x,1)
(7.10) A9 = 7 Q(x,t)

b) Consequently, we have the recurrent formula for Q,(x) and Q,(x)
(n € NT)

(711)  Qilz) = Y m
(7.12)  Qu(z) = A(Su1(Qi(2), Q2(2), +, Qu-r(2)))

and

(7.13) Qi(zr) = > xy

(T14)  Ouet) — A(Sur(Qu(e), Oa(a), -, Qus(e))

respectively.

One natural question one may ask is whether or not the invariants
QT), Q(T), K(T) and K(T) distinguish rooted forests. The answers
for the strict order polynomials {) and order polynomial ) are well
known to be negative. (See, for example, Exercise 3.60 in [10]). For
the quasi-symmetric polynomial invariants K and K, the answers seem
to be positive, but we do not know any proof in literature.

One remark is that the invariant W defined by Algorithm Bl can
also be extended to the set of finite posets by a more general recurrent
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procedure. This will be done in the appearing paper [9]. But for the
corresponding generating function

(7.15) Vig=Y" %qvm

where the sum runs over the set of all finite posets P, it is not clear
what the generalization of Eq. (B2) satisfied by V' (¢) should be. This
is unknown even for the case of (strict) order polynomials.

8. Generalization to Labeled Planar Forests

In this section, we first generalize the construction of the invariant
U defined by Algorithm Bl for rooted forests to labeled planar forests
and then consider its certain relationships with the Hopf algebra J—Clg R
in [3] spanned by labeled planar forests.

Once for all, we fix a non-empty finite or countable set D. By a
labeled planar rooted tree T', we always mean in this section a rooted
tree T such that each vartex of T is assigned a unique element of D
and set of all children of any single vertex of 7" is an ordered set.
A labeled planar rooted forest F' is an ordered set of finitely many
labeled planar rooted trees. We let TP denote the set of all labeled
planar rooted trees and F3 ; the set of all labeled planar rooted forests.
For any labeled planar rooted forest F' = TiT5---Ty, with T; € ’]1"1[37 R
(1 <i<d)and a € D, we define BY(F) = BY(T1T>---Ty) to be the
labeled planar rooted tree obtained by connecting the root of each T;
to a a-labeled vertex v by an edge and set the new vertex v to be the
root of this new labeled planar rooted tree.

We also fix an associative (not necessarily commutative) algebra A
over a field k and {Z,|a € D} a sequence of linear operators of A. Now
we define an A-valued invariant W(F') for labeled planar forests F' by
the following algorithm.

Algorithm 8.1. (1) For any labeled planar rooted tree T € T, we
define W(T') as follows.

(i) For each a-labeled leaf v of T, set N, = Z,(1).

(ii) For any other vertex v of T, define N, inductively starting
from the highest level by setting N, = Zo(Ny, Ny, -+ Ny, ),
where « is the label of v and (vy, vy, ..., v;) are the ordered
children of v.

(iii) Set ¥(T) = N,

tr -
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(2) For any labeled planar rooted forest F =TTy ---T,,, where T;
(1=1,2,---,m) are connected components of ', we set

(8.1) U(F) = U(T)U(Ty) - U(T,,)

Note that the order in the product in Eq. (&J]) must be same as the
one in the expression F' =TTy ---T,,.
From Algorithm Bl the following lemma is obvious.

Lemma 8.2. Let I' be an A-valued invariant for labeled planar rooted
forests FE. Then T’ can be re-defined and calculated by Algorithm [E]
for some k-linear map = if and only if

(1) It satisfies Eq. (81 for any F € Fpp.
(2) Forany T € TgR with T = BS(ThT5 - - - Ty), we have

(8.2) I(T) = Ea(I'(T1)1(T3) - - - I'(Ta))

Remark 8.3. Let f}{]lg,R be the vector spaces spanned by labeled pla-
nar forests. In [3], a Hopf algebra structure in 9{33 s given, which
is a labeled planar version of Kreimer’s Hopf algebra (See [6] and [2])
spanned by rooted forests. The product of the Hopf algebra ngR is
gien by the ordered disjoint union operation. We extend the map I’
defined by Algorithm[81 to IHIQR linearly and still denote it by I'. Then
it is easy to see that condition (1) in the lemma above is equivalent to
saying that the map I" is a homomorphism of algebras from to IHIQR to
A, while condition (2) is equivalent to the following equation.

(8.3) NoBY=Z,0T

Now let us consider the corresponding generating functions U(q) for
the invariants of ¥ defined by Algorithm BTl
First, for each a € D, we set

(84) Uslg) = Y U(T)g"™®

D
T€Tp R .o

where TP, , is the set of all labeled planar rooted trees with a-labeled
roots. We also set

(8.5) Ulq) = _ Ualg)

aeD

(8.6) ==) E,

aeD
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Theorem 8.4. The generating functions U,(q) (o € D) and U(q)
satisfy the following equations.

(8.7) = %U(q) = q ' Ua(q)
(8.8) = %U(q) =q'U(q)

First, note that the second equation follows from the first one by
taking sum over the set D. The proof of the first equation is parallel
to the proof of Eq. (&2) in Theorem Bl but a little easier, since
automorphism groups of planar labeled rooted trees are trivial. So we
omit the proof here.

Remark 8.5. (1) Note that, when |D| = 1, Fpp is same as the set
Fpr of unlabeled planar rooted forests. Hence Algorithm [ gives an
invariant for planar rooted forests in this case. Since the solution of
Eq. (83) in Allq]] is unique, any equation of the form Eq. ([88) can be
solved by looking at the invariant ¥ defined by Algorithm[81 for planar
rooted trees and its generating function U(q) defined by Eq. (B1).

(2) When |D| =1 and the algebra A is commutative, for any planar
rooted forest F', the invariant V(F') defined by Algorithm 81l coincides
with the one defined by Algorithm [ for the underlying rooted forest
of ', which is obtained by simply ignoring the planar structure of F.

Next we discuss certain relationships of the invariants W defined by
Algorithm with the Hopf algebra Hp , defined and studied in [3].
Even though, the links present here have no obvious logical implication
one way or the other, they provide a new point of view to the invariants
U defined by Algorithm Besides the Hopf algebra J-Cg r and its
certain universal property studied in [3], we also need the Hopf algebra
structure defined in [3] on the tensor algebra T'(V') for any vector space
V. Since definitions of various operations of the Hopf algebras f}{g R
and T'(V') are quite involved, we will follow the notation in [3] closely
and quote necessary results directly from [3]. We refer readers to [3]
and references there for more details.

First, let us assume that our fixed associate algebra (A, m,n) also has
a co-algebra structure with which it forms a bi-algebra (A, m,n, A, €).
We further assume that the linear operators =, (« € D) are 1-cocycles,
i.e. they satisfy the following equation

(8.9) AoZ,=Z,®1+ (Id®Z,) o A.

By the universal property of the Hopf algebra }Cg r given in The-
orem 24 in [3], there exists a unique homomorphism of bi-algebras
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¢ : HPp — A such that
(8.10) poBf=1L,o0p.

Note that the map ¢ : J{g r — A gives an A-valued invariant for
labeled planar forests.

Proposition 8.6. The A-valued invariant o(F') defined above belongs
to the family of invariants of labeled planar forests defined by Algorithm
B with the linear operators L, (o € D).

In other words, in this special situation, the invariant ¥ by Algo-
rithm coincides with the unique map ¢ guaranteed by the universal
property of the Hopf algebra J{g R

Proof: Since the homomorphism ¢ preserves the algebra products
and satisfies Eq. (83), the proposition follows immediately from Re-
mark and Lemma 82 O

One remark is that Algorithm does not depends on whether the
algebra A has a bi-algebra structure. It only depends on the associate
algebra structure of A. But, on the other hand, it is shown in [3]
that the tensor algebra T'(V') of any vector space V has a Hopf algebra
structure. In particular, we have a Hopf algebra sturcture on the tensor
algebra T'(A). Next we show that, by using the linear operators =,
(v € D) and the associate algebra stucture of A, we can construct a
family of 1-cocycles L, (o € D) of the Hopf algebra T'(A). Therefore,
the corresponding unique map ¢ : Hp , — T(A) does give us a family
of T'(A)-valued invariants for labeled planar forests.

First, for any o € D, we define a linear map from =, : T(A) — A
by setting

= k— A
a—aZ=(1ly)
and, for any n > 1,
ot A% — A
V1@ Uz @ Uy — Ea(v1- V2 Un)

and extend it linearly to T'(A). Note that here we use 1,4 for the identity
element of the algebra A to distinguish the identity element 1, in the
ground field &.
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Next we define a sequence linear maps {L,, : T(A) — T(A)|a € D}
by setting

(8.11) Lo(a) =aZ=(14) for any a € k and

(8.12) Lo(v1 @ug- - @ wy)
n—1
= Ul®U2"'®Uj®Ea(vj+1®"'®vn>
j=1
+Ea(01 @ ® ) + 11 @y D v, @ En(1)

i
L

I
™

V) @V @V ® (Vg1 - Vi Uyp)

5
m -

(V1 vy 0,) F U R Uy U, ® (1)

and extend it linearly to T'(A).

By Proposition 72 in [3], the linear maps L, : T(A) — T(A) are
1-cocycles of the Hopf algebra T'(A). By the universal property of the
Hopf algebra J{g r given in Theorem 24 in [3], there exists a unique
homomorphism of Hopf algebras ¢ : Hp , — T'(A) such that

(8.13) poBf=1L,o00p.

Note that the map ¢ : Hp, — T(A) gives a T(A)-valued invariant
for labeled planar forests, which, by Proposition R0, is same as the one
defined by Algorithm Bl with the linear operators L, (a € D).
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