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3 A FAMILY OF INVARIANTS OF ROOTED FORESTS

WENHUA ZHAO

Abstract. Let A be a commutative k-algebra over a field of k and
Ξ a linear operator defined on A. We define a family of A-valued
invariants Ψ for finite rooted forests by a recurrent algorithm using
the operator Ξ and show that the invariant Ψ distinguishes rooted
forests if (and only if) it distinguishes rooted trees T , and if (and
only if) it is finer than the quantity α(T ) = |Aut(T )| of rooted trees
T . We also consider the generating function U(q) =

∑
∞

n=1 Unqn

with Un =
∑

T∈Tn

1
α(T )Ψ(T ), where Tn is the set of rooted trees

with n vertices. We show that the generating function U(q) sat-
isfies the equation Ξ expU(q) = q−1U(q). Consequently, we get
a recurrent formula for Un (n ≥ 1), namely, U1 = Ξ(1) and
Un = ΞSn−1(U1, U2, ..., Un−1) for any n ≥ 2, where Sn(x1, x2, · · · )
(n ∈ N) are the elementary Schur polynomials. We also show that
the (strict) order polynomials and two well known quasi-symmetric
function invariants of rooted forests are in the family of invariants
Ψ and derive some consequences about these well-known invariants
from our general results on Ψ. Finally, we generalize the invariant
Ψ to labeled planar forests and discuss its certain relations with
the Hopf algebra H

D
P,R in [3] spanned by labeled planar forests.
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1. Introduction

By a rooted tree we mean a finite 1-connected graph with one vertex
designated as its root. Rooted trees not only form a family of important
objects in combinatorics, they are also closely related with many other
mathematical areas. For the connection with the inversion problem
and the Jacobian problem, see [1], [13]. For the connection with D-log
and formal flow of analytic maps, see [14]. For the connection with
renormalization of quantum field theory, see [6], [2].

In this paper, motivated by certain properties of the (strict) order
polynomials encountered in [14], we define a family of A-valued in-
variants Ψ for rooted forests by a recurrent algorithm (See Algorithm
3.1) starting with an arbitrary commutative k-algebra A over a field
of k and a fixed linear operator Ξ defined on A. We show in Propo-
sition 4.2 and Theorem 4.3 that the invariant Ψ distinguishes rooted
forests if (and only if) it distinguishes rooted trees T , and if (and only
if) it is finer than the quantity α(T ) = |Aut(T )| of rooted trees T .
In Section 5, we consider the generating function U(q) =

∑∞
n=1 Unqn,

where Un =
∑

T∈Tn

1
α(T )

Ψ(T ) with Tn the set of rooted trees with n

vertices and α(T ) = |Aut(T )|. We show that the generating function
U(q) satisfies the equation Ξ exp U(q) = q−1U(q). Consequently, we
get the recurrent formula U1 = Ξ(1) and Un = ΞSn−1(U1, U2, ..., Un−1)
for any n ≥ 2, where Sn(x1, x2, · · · ) are the elementary Schur polyno-
mials. In Section 6 and 7, we show that, with properly chosen A and
the linear operator Ξ, the (strict) order polynomials of rooted trees and
two families of quasi-symmetric functions for rooted forests (See (7.1)
and (7.2) for the definitions) are in the family of invariants Ψ defined
by Algorithm 3.1. We also derive some consequences on these well-
known invariants from our general results on the invariant Ψ. Finally,
in Section 8, We generalize our invariants to labeled planar forests and
discuss certain relations of our invariants with the Hopf algebra H

D
P,R

in [3] spanned by labeled planar forests.
The author would like to thank Professor John Shareshian, from

whom the author learned Lemma 6.2 and quasi-symmetric functions
for finite posets, and Professor David Wight for many personal commu-
nications. The author is also very grateful to the referee for suggesting
to consider the generalization of our invariants to labeled planar forests
and its relations with the Hopf algebra H

D
P,R spanned by labeled planar

forests. The last section of this paper is the outcome of the efforts to
these directions.
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2. Notation and An Operation for Rooted Forests

Notation: In a rooted tree there are natural ancestral relations
between vertices. We say a vertex w is a child of vertex v if the two
are connected by an edge and w lies further from the root than v. We
define the degree of a vertex v of T to be the number of its children.
A vertex is called a leaf if it has no children. By a rooted forest
we mean a disjoint union of finitely many rooted trees. When we
speak of isomorphisms between rooted forests, we will always mean
root-preserving isomorphisms, i.e. the image of a root of a connected
component which is always a rooted tree must be a root.

Once for all, we fix the following notation for the rest of this paper.

(1) We let T be the set of isomorphism classes of all rooted trees
and F the set of isomorphism classes of all rooted forests. For
m ≥ 1 an integer, we let Tm (resp Fm) the set of isomorphism
classes of all rooted trees (resp. forests) with m vertices.

(2) For any rooted tree T , we set the following notation:
• rtT denotes the root vertex of T .
• V (T ) (resp. L(T )) denotes the set of vertices (resp. leaves)

of T .
• v(T ) (resp. l(T )) denotes the number of the elements of

V (T ) (resp. L(T )).
• For v ∈ V (T ) we define the height of v to be the number

of edges in the (unique) geodesic connecting v to rtT .
• h(T ) denotes the height of T .
• α(T ) denotes the number of the elements of the automor-

phism group Aut(T ).
• For v1, . . . , vr ∈ V (T ), we write T\{v1, . . . , vr} for the

graph obtained by deleting each of these vertices and all
edges adjacent to these vertices.

(3) A rooted subtree of a rooted tree T is defined as a connected
subgraph of T containing rtT , with rtT ′ = rtT .

(4) We call the rooted tree with one vertex the singleton, denoted
by ◦.

We define the operation B+ for rooted forests as follows. Let S be a
rooted forest which is disjoint union of rooted trees Ti (i = 1, 2, ..., d).
We define B+(S) = B+(T1, ..., Td) to be the rooted tree obtained by
connecting all roots of Ti (i = 1, 2, ..., d) to a single new vertex, which
is set to the root of the new rooted tree B+(T1, ..., Td). If a forest S is
the disjoint union of k1 copies of rooted tree T1, k2 copies of T2, · · · ,
kd copies of Td, we also use the notation B+(T k1

1 , · · ·T kd
r ) for the new

rooted tree B+(S).
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Lemma 2.1. For any ki ∈ N, Ti ∈ T (i = 1, 2, · · · , d) with Ti ≇ Tj

(i 6= j), we have

α(B+(T k1

1 , · · ·T kd
r )) = (k1)! · · · (kd)!α(T1)

k1 · · ·α(Td)
kd(2.1)

Proof: Set T = B+(T k1

1 , · · ·T kd
r ) and R the rooted subtree of T con-

sisting of the root rtT of T and all its children in T . Let φ : Aut(T ) →
Aut(R) be the restriction map which clearly is a homomorphism of
groups. Let H ≤ Aut(R) be the image of φ. Since Ti ≇ Tj for any
i 6= j, It is easy to see that |H| = k1!k2! · · ·kd!. Let K be the kernal
of φ. Note that an element α ∈ Aut(T ) is in K if and only if it fixes

all the vertices of R. Hence the order |K| is equals to
∏d

i=1 α(Ti)
ki.

Therefore, we have

α(T ) = |K||H| = (k1)! · · · (kd)!α(T1)
k1 · · ·α(Td)

kd

✷

3. A Family of Invariants Ψ for Rooted Forests

Let A be a commutative k-algebra over a field k and Ξ an k-linear
map from A to A. Set a = Ξ(1). We first define an A-valued invariant
Ψ for rooted forests by the following algorithm:

Algorithm 3.1.

(1) For any rooted tree T ∈ T, we define Ψ(T ) as follows.

(i) For each leaf v of T , set Nv = Ξ(1) = a.

(ii) For any other vertex v of T , define Nv inductively starting

from the highest level by setting Nv = Ξ(Nv1
Nv2

· · ·Nvk
),

where vj (j = 1, 2, . . . , k), are the distinct children of v.

(iii) Set Ψ(T ) = NrtT
.

(2) For any rooted forest S ∈ F, we set

Ψ(S) =

m∏

i=1

Ψ(Ti)(3.1)

where Ti (i = 1, 2, · · · , m) are connected components of S.

From Algorithm 3.1, the following two lemmas are obvious.

Lemma 3.2. a) B = {Ψ(S)|S ∈ F} is a multiplicative subset of A,

i.e. it is closed under the multiplication of the algebra A.

b) Ξ(B) ⊂ B.

Lemma 3.3. Let Γ be an A-valued invariant for rooted forests. Γ can

be re-defined and calculated by Algorithm 3.1 for some k-linear map Ξ
if and only if
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(1) It satisfies Eq. (3.1) for any rooted forest S ∈ F.

(2) For any rooted tree T ∈ T,

Γ(T ) = Ξ
d∏

i=1

Γ(Ti)(3.2)

where Ti (i = 1, 2, ..., d) are the connected components of T\rtT .

In Section 6 and 7, we will show that the strict order polynomials,
order polynomials as well as two family well known quasi-symmetric
functions of rooted forests (See (7.1) and (7.2) for the definitions) are
in this family of invariants Ψ.

4. When the Invariants Ψ Distinguish Rooted Forests

Definition 4.1. We say an invariant Ψ distinguishes rooted forests

(resp. trees) if, for any S1, S2 ∈ F (resp. S1, S2 ∈ T), Ψ(S1) = Ψ(S2) if

and only if S1 ≃ S2 . We say an invariant Ψ is finer than the quantity

α(T ) if, for any T1, T2 ∈ T, α(T1) 6= α(T2) implies Ψ(T1) 6= Ψ(T2).

In Combinatorics, it is very desirable to find an invariant which can
distinguish rooted trees or rooted forests. For the invariant Ψ defined
by Algorithm 3.1, we have the following results.

Proposition 4.2. An A-valued invariant Ψ defined by Algorithm 3.1

distinguishes rooted forests if (and only if ) it distinguishes rooted trees.

Proof: Suppose Ψ distinguishes rooted trees. Let S1, S2 ∈ F with
Ψ(S1) = Ψ(S2). We need show that S1 ≃ S2. First, by Lemma
3.3, we have Ψ(B+(Si)) = ΞΨ(Si) for i = 1, 2. Hence, Ψ(B+(S1)) =
Ψ(B+(S2)). Therefore, by our assumption, we have B+(S1) ≃ B+(S2),
which clearly implies S1 ≃ S2. ✷

Theorem 4.3. An A-valued invariant Ψ defined by Algorithm 3.1 dis-

tinguishes rooted trees if (and only if ) it is finer than α(T ).

Proof: Suppose Ψ is finer than α(T ). Let T1, T2 ∈ T such that
Ψ(T1) = Ψ(T2). Hence α(T1) = α(T2). We need show that T1 ≃ T2.

Suppose T1 and T2 are not isomorphic to each other. Let T =
B+(T1, T1) and T ′ = B+(T1, T2). By Lemma 3.3, we have

Ψ(T ) = Ξ
(
Ψ(T1)

2
)

Ψ(T ′) = Ξ (Ψ(T1)Ψ(T2))
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Since Ψ(T1) = Ψ(T2), we have Ψ(T ) = Ψ(T ′). On the other hand, by
Lemma 2.1, we have

α(T ) = 2α(T1)
2

α(T ′) = α(T1)α(T2) = α(T1)
2

Therefore, α(T ) 6= α(T ′). So Ψ is not finer than α(T ), which is a
contradiction. ✷

5. A Generating Function for the Invariant Ψ of Rooted
Trees

In this section, we fix an invariant Ψ defined by Algorithm 3.1 and
consider the generating function

U(q) =
∑

T∈T

1

α(T )
Ψ(T )qv(T )(5.1)

For any n ≥ 1, set Un =
∑

T∈Tn

1
α(T )

Ψ(T ). Hence, we have U(q) =∑∞
n=1 Unqn. We will derive an equation satisfied by the generating

function U(q), from which {Un|n ∈ N} (n ≥ 2) can be calculated
recursively by using the elementary Schur polynomials.

Theorem 5.1. The generating function U(q) satisfies the equation

Ξ eU(q) = q−1U(q)(5.2)

Proof: Consider

Ξ eU(q) = Ξ(1) + Ξ

∞∑

k=1

Uk(q)

k!

= a +

∞∑

k=1

Ξ

k!

(
∑

T∈T

1

α(T )

(
Ψ(T )qv(T )

)
)k

While, for the general term of the right hand side of the equation above,
we have

Ξ

k!

(
∑

T∈T

1

α(T )
Ψ(T )qv(T )

)k

=

k∑

r=1

∑

T1,··· ,Tr∈T

Ti 6=Tj(i6=j)

∑

k1+···+kr=k
k1,··· ,kr≥1

1

(k1)! · · · (kr)!

Ξ
(∏r

i=1 Ψ(Ti)
ki
)

∏r

i=1 α(Ti)ki
q
∑r

i=1
kiv(Ti)
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By Lemma 2.1 and 3.3, we have

=

k∑

r=1

∑

T1,··· ,Tr∈T

Ti 6=Tj(i6=j)

∑

k1+···+kr=k
k1,··· ,kr≥1

Ψ(B+(T k1

1 , · · · , T kr
r )

α(B+(T k1

1 , · · · , T kr
r ))

qv(B+(T
k1
1

,··· ,T kr
r ))−1

= q−1
k∑

r=1

∑

T∈Tr,k+1

Ψ(T )

α(T )
qv(T )

where Tr,k+1 is the set of equivalence classes of rooted trees with k + 1
vertices and the degree of the root being exactly r. Therefore, we have

Ξ eU(q) = Ξ(1) + q−1

∞∑

k=1

k∑

r=1

∑

T∈Tr,k+1

Ψ(T )

α(T )
qv(T )

= Ξ(1) + q−1
∑

T∈T

T 6=◦

Ψ(T )

α(T )
qv(T )

= q−1U(q) ( since U1 = Ψ(◦) = Ξ(1).)

✷

Recall that the elementary Schur polynomials Sn(x) (n ∈ N) in x =
(x1, x2, · · · , xk · · · ) are defined by the generating function:

e
∑

∞

k=1 xkqk

=

∞∑

n=0

Sn(x)qn = 1 +

∞∑

n=1

Sn(x)qn(5.3)

Note that, if we sign the weight of the variable xk to be k for any
k ∈ N+ and set

wt(xa1

i1
xa2

i2
· · ·xad

id
) =

d∑

k=1

akik

for any ik, ak ∈ N+ (k = 1, 2, · · · , d). Then, for any n ∈ N, Sn(x)
is a polynomial which is homogeneous with respect to weight with
wt Sn(x) = n. In particular, Sn(x) depends only on the variables xi (i =
1, 2, · · · , n). For more properties of the elementary Schur polynomials
Sn(x) and their relationship with Schur symmetric functions, see [5],
[7].

Proposition 5.2. For any n ≥ 1, we have

U1 = Ξ (1) = a(5.4)

Un = Ξ Sn−1(U1, U2, · · · , Un−1)(5.5)
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Proof: Set U = (U1, U2, · · · , Uk, · · · ). From (5.2) and (5.3), we have
∞∑

n=1

Ξ Sn(U) qn = q−1
∞∑

n=2

Un(t)qn−1

By comparing the coefficient of qn−1 (n ≥ 2), we have

Un(t) = Ξ Sn−1(U1, U2, · · · , Un−1)

Hence, we get (5.5). ✷

Remark 5.3. One interesting aspect of the invariant Ψ and its gen-

erating function U(q) is as follows. From Proposition 5.2, we see that

U(q) is the unique solution of Eq. (5.2) in the power series algebra

A[[q]]. Therefore, any equation of the form (5.2) can be solved by look-

ing at the invariant Ψ defined by Algorithm 3.1 for rooted trees and its

generating function U(q) defined by (5.1).

6. (Strict) Order Polynomials

Let T ∈ T be a rooted tree. Note that T with the natural partial
order induced from rooted tree structure forms a finite poset (partially
ordered set), in which the root of T serves the unique minimum element.
Similarly, any rooted forest also forms a finite poset. In the rest of this
paper, we will always view rooted forests as finite posets in this way.
Recall the strict order polynomial Ω̄(P ) for a finite poset P is defined
to be the unique polynomial Ω̄(P ) such that Ω̄(P )(n) equals to the
number of strict order preserving maps φ from P to the totally ordered
set [n] = {1, 2, · · · , n} for any n ≥ 1. Here a map φ : P → [n] is said to
be strict order preserving if, for any elements x, y ∈ P with x > y in P ,
then φ(x) > φ(y) in [n]. Also recall that the order polynomial Ω(P ) for
a finite poset P is defined to be the unique polynomial Ω(P ) such that
Ω(P )(n) equals to the number of order preserving maps φ : P → [n]
for any n ≥ 1. Here a map φ : P → [n] is said to be order preserving

if, for any elements x, y ∈ P with x > y in P , then φ(x) ≥ φ(y) in [n].
For general studies of these two invariants, see [10].

In this section, we show that the strict order polynomials Ω̄(T ) and
order polynomials Ω(T ) are both in the family of the invariants Ψ
defined by Algorithm 3.1. We also derive some consequences from our
general results on the invariants Ψ.

Consider the polynomial ring C[t] in one variable t over C and the
difference operator ∆, which is defined by

∆ : C[t] → C[t](6.1)

f(t) → f(t + 1) − f(t)(6.2)
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We define the operator ∆−1 : C[t] → tC[t] by setting ∆−1(g) to be
the unique polynomial f ∈ tC[t] such that ∆(f) = g for any g ∈ C[t].
Note that ∆−1 : C[t] → tC[t] is well-defined because that, for any
polynomial f ∈ C[t], ∆(f) = 0 if and only if f is a constant.

We also define the operator ∇ by

∇ : C[t] → C[t]

f(t) → f(t) − f(t − 1)

and ∇−1 by setting ∇−1(g) to be the unique polynomial f ∈ tC[t] such
that ∇(f) = g for any g ∈ C[t].

Proposition 6.1. Let A = C[t], then the strict order polynomials Ω̄
(resp. order polynomials Ω) of rooted forests can be re-defined and cal-

culated by Algorithm 3.1 with Ξ = ∆−1 (resp. Ξ = ∇−1).

The proof of the proposition above immediately follows from Lemma
3.3, the fact that Ω̄ and Ω also satisfy Eq. (3.1) and the following lemma
due to John Shareshian.

Lemma 6.2. [J. Shareshian]
For any rooted trees Ti (i = 1, 2, · · · , r), we have

∆Ω̄(B+(T1, T2, · · · , Tr)) = Ω̄(T1)Ω̄(T2) · · · Ω̄(Tr)(6.3)

∇Ω(B+(T1, T2, · · · , Tr)) = Ω(T1)Ω(T2) · · ·Ω(Tr)(6.4)

For the proof of Eq. (6.3), see the proof of Theorem 4.5 in [14]. Eq.
(6.4) can be proved similarly. Actually, Proposion 6.1 has been proved
in [14] for the strict order polynomials Ω̄.

Now we consider the corresponding generating functions Ū(t, q) =∑
T∈T

Ω̄(T )
α(T )

qv(T ) and U(t, q) =
∑

T∈T

Ω(T )
α(T )

qv(T ). By Theorem 5.1, we

have

Proposition 6.3. The generating functions satisfy the equations

eŪ(t,q) = q−1∆Ū(t, q)(6.5)

eU(t,q) = q−1∇U(t, q)(6.6)

For any n ≥ 1, we set Ūn(t) =
∑

T∈Tn

Ω̄(T )
α(T )

and Un(t) =
∑

T∈Tn

Ω(T )
α(T )

.

By Proposition 5.2, we have

Proposition 6.4. a) For any n ≥ 2, we have

Ū1 = ∆−1(1) = t(6.7)

Ūn = ∆−1Sn−1(Ū1, Ū2, · · · , Ūn−1)(6.8)
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b) For any n ≥ 2, we have

U1 = ∇−1(1) = t(6.9)

Un = ∇−1Sn−1(U1, U2, · · · , Un−1)(6.10)

Set u(q) = U(t, 1) and write u(q) =
∑∞

n=1 unq
n. Since Ω(T )(1) = 1

and Ω(T )(0) = 0 for any rooted tree T , we see that un =
∑

T∈Tn

1
α(T )

and U(0, q) = 0. Therefore,

(∇U(t, q))(1) = U(1, q) − U(0, q) = u(q)

Combining with Eq. (6.6), we see that the generating function u(q)
satisfies the equation

eu(q) = q−1u(q)(6.11)

But, on the other hand, it is well known that there is another generating
function related with rooted trees satisfying Eq. (6.11) which is defined
as follows. Let r(n) be the number of rooted trees on the labeled set

[n] = {1, 2, · · · , n}. Let R(q) =
∑

n≥1
r(n)
n!

qn. Then, by Proposition
5.3.1 in [11], R(q) also satisfies Eq. (6.11) and by Proposition 5.3.2 in
[11], we know that r(n) = nn−1. Therefore, we have

Corollary 6.5. u(q) = R(q). In particular, for any n ≥ 1, we have

the identities

n!
∑

T∈Tn

1

α(T )
= r(n)(6.12)

∑

T∈Tn

1

α(T )
=

nn−1

n!
(6.13)

For the corollary above, we see that Eq. (6.6) can be viewed as a
natural generalization of Eq. (6.11).

7. Two Quasi-Symmetric Function Invariants for Rooted
Forests

Let us first recall the following well known quasi-symmetric functions
K̄(P ) and K(P ) defined in [11] for finite posets P . For more general
studies on quasi-symmetric functions, see [4], [12], [8] and [11].

Let x = (x1, x2, · · · , ) be a sequence of commutative variables and
C[[x]] the formal power series algebra in xk (k ≥ 1) over C. For
any finite poset P and any map σ : P → N+ of sets, we set xσ :=∏∞

i=1 x
|σ−1(i)|
i and define

K̄(P )(x) =
∑

σ

xσ(7.1)
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where the sum runs over the set of all strict order preserving maps
σ : P → N+. Similarly, we define

K(P )(x) =
∑

σ

xσ(7.2)

where the sum runs over the set of all order preserving maps σ : P →
N+. Note that K̄(P )(x) and K(P )(x) are always in C[[x]] and satisfy
Eq. (3.1) for rooted forests.

Recall that an element f ∈ C[[x]] is said to be quasi-symmetric if the
degree of f is bounded, and for any a1, a2, · · · , ak ∈ N+, i1 < i2 < · · · <

ik and j1 < j2 < · · · < jk, the coefficient of the monomial xa1

i1
xa2

i2
· · ·xak

ik

is always same as the coefficient of the monomial xa1

j1
xa2

j2
· · ·xak

jk
. From

the definitions (7.1) and (7.2), it is easy to check that, for any finite
poset P , K̄(P ) and K(P ) are quasi-symmetric.

In this section, we will show that the quasi-symmetric functions K̄

and K for rooted forests are also in the family of the invariants Ψ
defined by Algorithm 3.1.

We define the shift operator S : C[[x]] → C[[x]] by first setting

S(1) = 1

S(xm) = xm+1

and then extending it to C[[x]] to be the unique C-algebra homomor-
phism from C[[x]] to C[[x]]. For any m ∈ N+, we denote by the abusing
notation xm the C-linear map from C[[x]] to C[[x]] induced by the mul-
tiplication by xm.

The following lemma follows immediately from the definition of the
linear operator S.

Lemma 7.1. As the linear maps from C[[x]] to C[[x]], xmSk = Skxm−k

for any k, m ∈ N+ with k < m.

We define the linear maps Λ̄ and Λ from C[[x]] to C[[x]] by setting

Λ̄ =
∞∑

k=1

xkS
k = (

∞∑

k=1

Sk) x1S(7.3)

Λ =
∞∑

k=1

xkS
k−1 = (

∞∑

k=1

Sk) x1(7.4)

where the last equalities of the equations above follow from Lemma
7.1. It is easy to see that Λ̄ and Λ are well defined.

Lemma 7.2. a) The linear maps Λ̄ and Λ from C[[x]] to C[[x]] are

injective.
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b)

Λ̄(1) = Λ(1) =
∞∑

k=1

xk(7.5)

Proof: b) follows immediately from Eq. (7.3) and (7.4).
To prove a), let f ∈ C[[x]] such that Λ̄f = 0. By Eq. (7.3), we have

(1 − S)Λ̄ = x1S. Hence, x1Sf = 0 and Sf = 0. Therefore, we must
have f = 0. The injectivity of Λ can be proved similarly. ✷

Lemma 7.3. For any rooted tree T , we have

K̄(T ) = Λ̄
d∏

i=1

K̄(Ti)(7.6)

K(T ) = Λ
d∏

i=1

K(Ti)(7.7)

where Ti (i = 1, 2, · · · , Td) are the connected components of T\rtT .

Proof: Here we only prove Eq. (7.6). For Eq. (7.7), the ideas of the
proof are similar.

Let W be the set of all strict order preserving maps σ : P → N+ and
Wk (k ≥ 1) the set of σ ∈ W such that σ(rtT ) = k. Clearly, W equals
to the disjoint union of Wk (k ≥ 1). By the definition of K̄, see (7.1),
we see that

∑
σ∈Wk

xσ ∈ C[[xk, xk+1, · · · , ]]. Since K̄ satisfies Eq. (3.1)
for rooted forests, we have

∑

σ∈Wk

xσ = xkS
kK̄(T\rtT ) = xkS

k

d∏

i=1

K̄(Ti)(7.8)

Therefore,

K̄(T ) =
∞∑

k=1

∑

σ∈Wk

xσ

=

∞∑

k=1

xkS
k

d∏

i=1

K(Ti)

= Λ(

d∏

i=1

K(Ti))

✷

From the lemma above and Lemma 3.3 and the fact that K̄ and K

satisfy Eq. (3.1) for rooted forests, we immediately have
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Proposition 7.4. The quasi-symmetric functions K̄ (resp. K) for

rooted forests can be re-defined and calculated by Algorithm 3.1 with

A = C[[x]] and Ξ = Λ̄ (resp. Ξ = Λ).

Now we consider the generating functions

Q̄(x, q) =
∑

T∈T

K̄(P )(x)

α(T )
qv(T ) =

∞∑

n=1

Qn(x)qn

Q(x, q) =
∑

T∈Tn

K(P )(x)

α(T )
qv(T ) =

∞∑

n=1

Qn(x)qn

where Q̄n(x) =
∑

T∈Tn

K̄(P )(x)
α(T )

and Qn(x) =
∑

T∈Tn

K(P )(x)
α(T )

for any

n ≥ 1. By Theorem 5.1, Lemma 7.2 and Proposition 7.4, we have

Proposition 7.5. a) The generating functions Q(x, q) and Q(x, q) sat-

isfy the equations

Λ̄eQ̄(x,t) = q−1Q(x, t)(7.9)

ΛeQ(x,t) = q−1Q(x, t)(7.10)

b) Consequently, we have the recurrent formula for Q̄n(x) and Qn(x)
(n ∈ N+)

Q̄1(x) =
∞∑

k=1

xk(7.11)

Q̄n(x) = Λ̄
(
Sn−1(Q̄1(x), Q̄2(x), · · · , Q̄n−1(x))

)
(7.12)

and

Q1(x) =
∞∑

k=1

xk(7.13)

Qn(x, t) = Λ (Sn−1(Q1(x), Q2(x), · · · , Qn−1(x)))(7.14)

respectively.

One natural question one may ask is whether or not the invariants
Ω̄(T ), Ω(T ), K̄(T ) and K(T ) distinguish rooted forests. The answers
for the strict order polynomials Ω̄ and order polynomial Ω are well
known to be negative. (See, for example, Exercise 3.60 in [10]). For
the quasi-symmetric polynomial invariants K̄ and K, the answers seem
to be positive, but we do not know any proof in literature.

One remark is that the invariant Ψ defined by Algorithm 3.1 can
also be extended to the set of finite posets by a more general recurrent
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procedure. This will be done in the appearing paper [9]. But for the
corresponding generating function

V (q) =
∑

P

Ψ(P )

α(P )
qv(P )(7.15)

where the sum runs over the set of all finite posets P , it is not clear
what the generalization of Eq. (5.2) satisfied by V (q) should be. This
is unknown even for the case of (strict) order polynomials.

8. Generalization to Labeled Planar Forests

In this section, we first generalize the construction of the invariant
Ψ defined by Algorithm 3.1 for rooted forests to labeled planar forests

and then consider its certain relationships with the Hopf algebra H
D
P,R

in [3] spanned by labeled planar forests.
Once for all, we fix a non-empty finite or countable set D. By a

labeled planar rooted tree T , we always mean in this section a rooted
tree T such that each vartex of T is assigned a unique element of D

and set of all children of any single vertex of T is an ordered set.
A labeled planar rooted forest F is an ordered set of finitely many
labeled planar rooted trees. We let TD

P,R denote the set of all labeled

planar rooted trees and FD
P,R the set of all labeled planar rooted forests.

For any labeled planar rooted forest F = T1T2 · · ·Td, with Ti ∈ TD
P,R

(1 ≤ i ≤ d) and α ∈ D, we define Bα
+(F ) = Bα

+(T1T2 · · ·Td) to be the
labeled planar rooted tree obtained by connecting the root of each Ti

to a α-labeled vertex v by an edge and set the new vertex v to be the
root of this new labeled planar rooted tree.

We also fix an associative (not necessarily commutative) algebra A

over a field k and {Ξα|α ∈ D} a sequence of linear operators of A. Now
we define an A-valued invariant Ψ(F ) for labeled planar forests F by
the following algorithm.

Algorithm 8.1. (1) For any labeled planar rooted tree T ∈ T, we

define Ψ(T ) as follows.

(i) For each α-labeled leaf v of T , set Nv = Ξα(1).
(ii) For any other vertex v of T , define Nv inductively starting

from the highest level by setting Nv = Ξα(Nv1
Nv2

· · ·Nvk
),

where α is the label of v and (v1, v2, . . . , vk) are the ordered

children of v.

(iii) Set Ψ(T ) = NrtT
.
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(2) For any labeled planar rooted forest F = T1T2 · · ·Tm, where Ti

(i = 1, 2, · · · , m) are connected components of F , we set

Ψ(F ) = Ψ(T1)Ψ(T2) · · ·Ψ(Tm)(8.1)

Note that the order in the product in Eq. (8.1) must be same as the
one in the expression F = T1T2 · · ·Tm.

From Algorithm 8.1, the following lemma is obvious.

Lemma 8.2. Let Γ be an A-valued invariant for labeled planar rooted

forests FD
P . Then Γ can be re-defined and calculated by Algorithm 3.1

for some k-linear map Ξ if and only if

(1) It satisfies Eq. (8.1) for any F ∈ FD
P,R.

(2) For any T ∈ TD
P,R with T = Bα

+(T1T2 · · ·Td), we have

Γ(T ) = Ξα(Γ(T1)Γ(T2) · · ·Γ(Td))(8.2)

Remark 8.3. Let H
D
P,R be the vector spaces spanned by labeled pla-

nar forests. In [3], a Hopf algebra structure in H
D
P,R is given, which

is a labeled planar version of Kreimer’s Hopf algebra (See [6] and [2])
spanned by rooted forests. The product of the Hopf algebra H

D
P,R is

given by the ordered disjoint union operation. We extend the map Γ
defined by Algorithm 8.1 to H

D
P,R linearly and still denote it by Γ. Then

it is easy to see that condition (1) in the lemma above is equivalent to

saying that the map Γ is a homomorphism of algebras from to H
D
P,R to

A, while condition (2) is equivalent to the following equation.

Γ ◦ Bα
+ = Ξα ◦ Γ(8.3)

Now let us consider the corresponding generating functions U(q) for
the invariants of Ψ defined by Algorithm 8.1.

First, for each α ∈ D, we set

Uα(q) =
∑

T∈TD
P,R,α

Ψ(T )qv(T )(8.4)

where TD
P,R,α is the set of all labeled planar rooted trees with α-labeled

roots. We also set

U(q) =
∑

α∈D

Uα(q)(8.5)

Ξ =
∑

α∈D

Ξα(8.6)
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Theorem 8.4. The generating functions Uα(q) (α ∈ D) and U(q)
satisfy the following equations.

Ξα

1

1 − U(q)
= q−1Uα(q)(8.7)

Ξ
1

1 − U(q)
= q−1U(q)(8.8)

First, note that the second equation follows from the first one by
taking sum over the set D. The proof of the first equation is parallel
to the proof of Eq. (5.2) in Theorem 5.1 but a little easier, since
automorphism groups of planar labeled rooted trees are trivial. So we
omit the proof here.

Remark 8.5. (1) Note that, when |D| = 1, FD
P,R is same as the set

FP,R of unlabeled planar rooted forests. Hence Algorithm 8.1 gives an

invariant for planar rooted forests in this case. Since the solution of

Eq. (8.8) in A[[q]] is unique, any equation of the form Eq. (8.8) can be

solved by looking at the invariant Ψ defined by Algorithm 8.1 for planar

rooted trees and its generating function U(q) defined by Eq. (8.5).
(2) When |D| = 1 and the algebra A is commutative, for any planar

rooted forest F , the invariant Ψ(F ) defined by Algorithm 8.1 coincides

with the one defined by Algorithm 3.1 for the underlying rooted forest

of F , which is obtained by simply ignoring the planar structure of F .

Next we discuss certain relationships of the invariants Ψ defined by
Algorithm 8.1 with the Hopf algebra H

D
P,R defined and studied in [3].

Even though, the links present here have no obvious logical implication
one way or the other, they provide a new point of view to the invariants
Ψ defined by Algorithm 8.1. Besides the Hopf algebra H

D
P,R and its

certain universal property studied in [3], we also need the Hopf algebra
structure defined in [3] on the tensor algebra T (V ) for any vector space
V . Since definitions of various operations of the Hopf algebras H

D
P,R

and T (V ) are quite involved, we will follow the notation in [3] closely
and quote necessary results directly from [3]. We refer readers to [3]
and references there for more details.

First, let us assume that our fixed associate algebra (A, m, η) also has
a co-algebra structure with which it forms a bi-algebra (A, m, η, ∆, ǫ).
We further assume that the linear operators Ξα (α ∈ D) are 1-cocycles,
i.e. they satisfy the following equation

∆ ◦ Ξα = Ξα ⊗ 1 + (id ⊗ Ξα) ◦ ∆.(8.9)

By the universal property of the Hopf algebra H
D
P,R given in The-

orem 24 in [3], there exists a unique homomorphism of bi-algebras
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ϕ : H
D
P,R → A such that

ϕ ◦ B+
α = Lα ◦ ϕ.(8.10)

Note that the map ϕ : H
D
P,R → A gives an A-valued invariant for

labeled planar forests.

Proposition 8.6. The A-valued invariant ϕ(F ) defined above belongs

to the family of invariants of labeled planar forests defined by Algorithm

8.1 with the linear operators Lα (α ∈ D).

In other words, in this special situation, the invariant Ψ by Algo-
rithm 8.1 coincides with the unique map ϕ guaranteed by the universal
property of the Hopf algebra H

D
P,R.

Proof: Since the homomorphism ϕ preserves the algebra products
and satisfies Eq. (8.3), the proposition follows immediately from Re-
mark 8.3 and Lemma 8.2. ✷

One remark is that Algorithm 8.1 does not depends on whether the
algebra A has a bi-algebra structure. It only depends on the associate
algebra structure of A. But, on the other hand, it is shown in [3]
that the tensor algebra T (V ) of any vector space V has a Hopf algebra
structure. In particular, we have a Hopf algebra sturcture on the tensor
algebra T (A). Next we show that, by using the linear operators Ξα

(α ∈ D) and the associate algebra stucture of A, we can construct a
family of 1-cocycles Lα (α ∈ D) of the Hopf algebra T (A). Therefore,
the corresponding unique map ϕ : H

D
P,R → T (A) does give us a family

of T (A)-valued invariants for labeled planar forests.

First, for any α ∈ D, we define a linear map from Ξ̃α : T (A) → A

by setting

Ξ̃α : k → A

a → a Ξ(1A)

and, for any n ≥ 1,

Ξ̃α : A⊗n → A

v1 ⊗ v2 · · · ⊗ vn → Ξα(v1 · v2 · · · vn)

and extend it linearly to T (A). Note that here we use 1A for the identity
element of the algebra A to distinguish the identity element 1k in the
ground field k.
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Next we define a sequence linear maps {Lα : T (A) → T (A)|α ∈ D}
by setting

Lα(a) = a Ξ(1A) for any a ∈ k and(8.11)

Lα(v1 ⊗ v2 · · · ⊗ vn)(8.12)

=

n−1∑

j=1

v1 ⊗ v2 · · · ⊗ vj ⊗ Ξ̃α(vj+1 ⊗ · · · ⊗ vn)

+ Ξ̃α(v1 ⊗ · · · ⊗ vn) + v1 ⊗ v2 · · · ⊗ vn ⊗ Ξ̃α(1)

=

n−1∑

j=1

v1 ⊗ v2 · · · ⊗ vj ⊗ Ξα(vj+1 · vj+2 · · · vn)

+ Ξα(v1 · v2 · · · vn) + v1 ⊗ v2 · · · ⊗ vn ⊗ Ξα(1)

and extend it linearly to T (A).
By Proposition 72 in [3], the linear maps Lα : T (A) → T (A) are

1-cocycles of the Hopf algebra T (A). By the universal property of the
Hopf algebra H

D
P,R given in Theorem 24 in [3], there exists a unique

homomorphism of Hopf algebras ϕ : H
D
P,R → T (A) such that

ϕ ◦ B+
α = Lα ◦ ϕ.(8.13)

Note that the map ϕ : H
D
P,R → T (A) gives a T (A)-valued invariant

for labeled planar forests, which, by Proposition 8.6, is same as the one
defined by Algorithm 8.1 with the linear operators Lα (α ∈ D).
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