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HESSIAN NILPOTENT POLYNOMIALS AND THE
JACOBIAN CONJECTURE

WENHUA ZHAO

Abstract. Let z = (z1, · · · , zn) and ∆ =
∑n

i=1

∂
2

∂z2

i

the Laplace

operator. The main goal of the paper is to show that the well-
known Jacobian conjecture without any additional conditions is
equivalent to the following what we call vanishing conjecture: for
any homogeneous polynomial P (z) of degree d = 4, if ∆mPm(z) =
0 for all m ≥ 1, then ∆mPm+1(z) = 0 when m >> 0, or equiva-
lently, ∆mPm+1(z) = 0 when m > 3

2
(3n−2 − 1). It is also shown

in this paper that the condition ∆mPm(z) = 0 (m ≥ 1) above
is equivalent to the condition that P (z) is Hessian nilpotent, i.e.

the Hessian matrix Hes P (z) = ( ∂
2
P

∂zi∂zj
) is nilpotent. The goal is

achieved by using the recent breakthrough work of M. de Bondt,
A. van den Essen [BE1] and various results obtained in this paper
on Hessian nilpotent polynomials. Some further results on Hessian
nilpotent polynomials and the vanishing conjecture above are also
derived.
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1. Introduction

Let z = (z1, z2, · · · , zn) and F (z) = z − H(z) be a formal map
from Cn to Cn with o(H(z)) ≥ 2 and G(z) the formal inverse map
of F (z). The well-known Jacobian conjecture first proposed by Keller
[Ke] in 1939 claims that, if F (z) is a polynomial map with the Jaco-

bian j(F )(z) = 1, the inverse map G(z) must also be a polynomial

map. Despite intense study from mathematicians in more than half
a century, the conjecture is still wide open even for the case n = 2.
In 1998, S. Smale [S] included the Jacobian conjecture in his list of
18 important mathematical problems for 21st century. For more his-
tory and known results on the Jacobian conjecture, see [BCW], [E] and
references there. Recently, M. de Bondt and A. van den Essen [BE1]
(Also see G. Meng [M]) have made a breakthrough on the Jacobian
conjecture. They reduced the Jacobian conjecture to polynomial maps
F (z) = z − H(z) with H(z) = ∇P (z) = ( ∂P

∂z1
, ∂P

∂z2
, · · · , ∂P

∂zn
) for some

polynomials P (z) ∈ C[z]. In this paper, we will refer to this reduction
as the gradient reduction and the condition H(z) = ∇P (z) for some
P (z) ∈ C[[z]] as the gradient condition. Note that, by Poincaré lemma,
a formal map F (z) = z −H(z) with o(H(z)) ≥ 2 satisfies the gradient
condition if and only if its Jacobian matrix JF (z) is symmetric. Fol-
lowing the terminology in [BE1], we also call the formal maps satisfying
the gradient condition symmetric formal maps.

For further discussion, let us fix the following notions. A power series
P (z) ∈ C[[z]] is said to be HN (Hessian nilpotent) if its Hessian matrix

Hes P (z) = ( ∂2P
∂zi∂zj

) is nilpotent. Let t be a formal parameter which

commutes with z. The deformed inversion pair Qt(z) of any P (z) ∈
C[[z]] with o(P (z)) ≥ 2 is the unique power series Qt(z) ∈ C[[z, t]]
with o(Qt(z)) ≥ 2 such that the formal map G(z) = z + t∇Qt(z) is
the inverse map of F (z) = z − t∇P (z). Recently, G. Meng [M] and
D. Wright [Wr1] have derived a tree expansion formula for the inverse
map G(z) of F (z) = Ft=1(z). In [Z2], by studying the PDE satisfied by
the deformed inversion pairs Qt(z), the author has derived a recurrent
formula and a binary rooted tree expansion formula for the deformed
inversion pairs Qt(z). Furthermore, some close relationships among the
deformed inversion pairs, the Legendre transform, the inviscid Burgers’
equations and the Jacobian conjecture are also clarified in [Z2]. For
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some other recent results on symmetric polynomial or formal maps,
see [BE1]–[BE5], [EW], [M], [Wr1], [Wr2] and [Z2].

In this paper, we will use some general results in [Z2] to study HNS
(Hessian nilpotent power series) P (z) and their deformed inversion
pairs Qt(z). Furthermore, by using the gradient reduction in [BE1]
and various results derived in this paper on HN polynomials, we will
show that the Jacobian conjecture is equivalent to what we call vanish-

ing conjectures of homogeneous HN polynomials. (See the discussion
below.) We first derive the PDE’s satisfied by Qt(z), ∆kQm

t (k, m ≥ 1)

and exp(sQt(z)) (s ∈ C×), where ∆ =
∑n

i=1
∂2

∂z2
i

is the Laplace opera-

tor. In particular, we show in Theorem 3.2 that exp(sQt(z)) (s ∈ C×)
is the unique power series solution of the Cauchy problem of the Heat
equation with the initial condition exp(sQt(z))|t=0 = exp(sP (z)). We
then derive a uniform formula (See Theorem 3.4.) for the powers
Qk

t (z) (k ≥ 1) of the deformed inversion pairs Qt(z) of HNS P (z).
We also prove a general theorem, Theorem 4.1, on a relationship be-
tween {TrHesm(P (z))|m ≥ 1} and {∆mP m(z)|m ≥ 1} for any power
series P (z). From this theorem, we show in Theorem 4.3 that, for any
formal power series P (z), it is HN if and only if ∆mP m(z) = 0 for any
m ≥ 1, or equivalently, ∆mP m(z) = 0 for any 1 ≤ m ≤ n. Finally, we
prove some identities, vanishing properties and isotropic properties of
{∆kP m(z)|m, k ≥ 0} for HNS or HNP’s (Hessian nilpotent polynomi-
als) P (z). Some close relationships of the deformed pairs Qt(z) of HNS
or HNP’s P (z) with the Heat equation and the Jacobian conjecture
are also clarified. In particular, we show that the Jacobian conjecture
without any additional conditions is equivalent to the following van-

ishing conjectures: for any HNP P (z) of degree d = 4, ∆mP m+1(z) = 0
for m >> 0, or more precisely, for all m > 3

2
(3n−2 − 1).

One remark is that, due to the identity TrHes (P ) = ∆P , any HNS
P (z) is automatically harmonic, i.e. ∆P (z) = 0. Note that harmonic
polynomials (See [ABR], [H] and [T].) are among the most classical
objects in mathematics and have been very well studied. The clas-
sical study on harmonic polynomials started from Legendre, Laplace,
Jacobi in the late eighteen century. The modern generalizations of har-
monic polynomials, namely, spherical functions, were first studied by
Cartan and Weyl in the 1930’s and later by Gelfand, Harish-Chandra,
etc. It is quite surprising to see that, first, HNP’s as a family of very
special harmonic polynomials are closely related with the notorious Ja-
cobian conjecture. Secondly, it seems that HNP’s have been overlooked
and have not been studied until the recent work of M. de Bondt, A.
van den Essen [BE1] and G. Meng [M]. Besides the connections with
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the Jacobian conjecture discussed above, another interesting aspect of
HNP’s is their connection with the classical inviscid Burgers’ equation
in Diffusion theory and also the Heat equation. Actually, the vanishing
conjecture above is also equivalent to saying that the power series solu-
tions of certain Cauchy problems of the inviscid Burgers’ equation and
the Heat equation must be polynomials and the exponentials of polyno-
mials, respectively. (See discussion in Section 4 in [Z2] and Conjecture
3.3 in this paper.) Considering the connections of HNP’s with the
classical objects described above, we believe that HNP’s deserve much
more attentions from mathematicians.

Considering the length of this paper, we give the following detailed
arrangement description. In Section 2, we first fix some notation and
definitions that are needed throughout the rest of this paper. We then
briefly recall certain results obtained in [Z2] and prove some prelimi-
nary results including the PDE (See Corollary 2.7) satisfied by ∆kQm

t

(k, m ≥ 1) for the deformed inversion pairs Qt(z) of any power se-
ries P (z). In Section 3, for any HNS P (z) and its deformed inversion
pair Qt(z), we derive the PDE’s satisfied by Qt(z) and exp(sQt(z))
(s ∈ C×), from which we derive with two different proofs a uniform for-
mula Eq. (3.8) for Qk

t (z) (k ≥ 1). In Section 4, we prove a general the-
orem, Theorem 4.1, on a relationship between {Tr Hesm(P (z))|m ≥ 1}
and {∆mP m(z)|m ≥ 1} for the universal formal power series P (z)
with o(P (z)) ≥ 2. From this theorem, we deduce a criterion in The-
orem 4.3 for the Hessian nilpotency of a formal power series P (z) in
terms of certain vanishing properties of {∆mP m(z)|m ≥ 1}. In Sec-
tion 5.1, by using a fundamental theorem of harmonic polynomials
(See Theorem 5.2), we derive a criterion in Proposition 5.3 for Hessian
nilpotency of homogeneous harmonic polynomials. In Section 5.2, we
give constructions for some HNP’s and HNS. In Section 6, by using
some of the main results in the previous sections, we prove more prop-
erties of HNS or HNP’s P (z). We prove in Proposition 6.1 an identity
and in Theorem 6.2 an equivalence of certain vanishing properties of
{∆kP m(z)|k, m ≥ 1} for HNS P (z) ∈ C[[z]]. In Theorem 6.3, we show
some isotropic properties for homogeneous HNP’s. In Section 7, we
discuss some applications to the Jacobian conjecture. We formulate
the vanishing conjecture, Conjecture 7.1, for (not necessary homoge-
neous) HNP’s and the homogeneous vanishing conjecture, Conjecture
7.3, for homogeneous HNP’s. We show in Proposition 7.4 that both
conjectures above are equivalent to the Jacobian conjecture.

Finally, some remarks on this paper are as follows. First, for con-
venience, we will fix C as our base field. But, all results, formulas as
well as their proofs (except the 1st proof of Theorem 3.4) obtained in
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this paper hold or work equally well if one replace C by any Q-algebra.
Secondly, we will not restrict our study just on HNP’s. Instead, we
will formulate and prove results for HN formal power series whenever
they hold in this general setting. Thirdly, for any HNP’s or locally con-
vergent HNS P (z), all formal power series involved in this paper are
locally convergent. This can be seen either from the fact that any local
analytic map with non-zero Jacobian at the origin has a locally con-
vergent inverse, or from the well-known Cauchy-Kowaleskaya theorem
(See [R], for example.)

Acknowledgment: The author is very grateful to Professor Arno
van den Essen who has carefully read through the first preprint of this
paper and pointed out many misprints and several mistakes. Great
thanks also go to Professor David Wright for personal communications,
especially for informing the author some of his own recent results. The
author also would like to thank Professor Mohan Kumar for personal
communications.

2. Deformed Inversion Pairs of Formal Power Series

In this section, we first fix some notation and definitions that are
needed in this paper. We then briefly recall certain results obtained in
[Z2] and prove some preliminary results.

2.1. Notation and Conventions. Once and for all, we fix the fol-
lowing notation and conventions.

(1) We fix n ≥ 1 and set z = (z1, z2, · · · , zn). For any Q-algebra k,
we denote by k[z] (resp. k[[z]]) the polynomial algebra (resp.
formal power series algebra) over k in zi (1 ≤ i ≤ n).

(2) For any Q-algebra k, by a formal map F (z) from kn to kn,
we simply mean F (z) = (F1(z), F2(z), · · · , Fn(z)) with Fi(z) ∈
k[[z]] (1 ≤ i ≤ n). We denote by J(F ) and j(F ) the Jacobian
matrix and the Jacobian of F (z), respectively.

(3) We denote by ∆ the Laplace operator
∑n

i=1
∂2

∂z2
i

. Note that, a

polynomial or formal power series P (z) is said to be harmonic

if ∆P = 0.
(4) For any k ≥ 1 and U(z) = (U1(z), U2(z), · · · , Uk(z)) ∈ C[[z]]×k,

we set

o(U(z)) = min
1≤i≤k

o(Ui(z))

and, when U(z) ∈ C[z]×k,

deg U(z) = max
1≤i≤k

deg Ui(z).



6 WENHUA ZHAO

For any Ut(z) ∈ C[t][[z]]×k or C[[z, t]]×k (k ≥ 1) for some for-
mal parameter t, the notation o(Ut(z)) and deg Ut(z) always
stand for the order and the degree of Ut(z) with respect to z,
respectively.

(5) For any P (z) ∈ C[[z]], we denote by ∇P (z) the gradient of
P (z), i.e. ∇P = ( ∂P

∂z1
, ∂P

∂z2
, · · · , ∂P

∂zn
). We denote by Hes (P )(z)

the Hessian matrix of P (z), i.e. Hes (P )(z) = (∂2P (z)
∂zi∂zj

).

(6) All n-vectors in this paper are supposed to be column vectors
unless stated otherwise. For any vector or matrix U , we denote
by U t its transpose. The standard C-bilinear form of n-vectors
is denoted by < ·, · >.

The following lemma will be very useful in our later arguments.

Lemma 2.1. For any P (z) ∈ C[[z]] and m ≥ 1, we have

∆P m+1(z) = (m + 1)P m∆P + m(m + 1)P m−1 < ∇P,∇P >(2.1)

or

P m−1 < ∇P,∇P >=
1

m(m + 1)

(
∆P m+1 − (m + 1)P m∆P

)
.(2.2)

Furthermore, when P (z) is harmonic, we have

P m−1∆P 2 =
2

m(m + 1)
∆P m+1.(2.3)

Proof: Consider

∆P m+1 =

n∑

i=1

∂

∂zi

∂

∂zi

P m+1

= (m + 1)
n∑

i=1

∂

∂zi

(P m∂P

∂zi

)

= (m + 1)

n∑

i=1

P m∂2P

∂z2
i

+ m(m + 1)

n∑

i=1

P m−1∂P

∂zi

∂P

∂zi

= (m + 1)P m∆P + m(m + 1) < ∇P,∇P > P m−1.

Hence, we get Eq. (2.1) and (2.2).
Now suppose that P (z) is harmonic, i.e. ∆P = 0. By Eq. (2.1) with

m = 1, we have ∆P 2 = 2 < ∇P,∇P > or < ∇P,∇P >= 1
2
∆P 2. It is

easy to see that, in this case, Eq. (2.3) follows directly from Eq. (2.2).
✷
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2.2. Deformed Inversion Pairs of Formal Power Series. For any
P (z) ∈ C[[z]] with o(P (z)) ≥ 2, we set F (z) = z −∇P (z). It is shown
in §1.1 in [M] (Also see Lemma 3.1 in [Z2].) that there is a unique
Q(z) ∈ C[[z]] with o(Q(z)) ≥ 2 such that the formal inverse of F (z)
is given by G(z) = z + ∇Q(z). We call Q(z) the inversion pair of
P (z). Furthermore, following the arguments in [Z1] and [Z2], we also
consider the deformation Ft(z) = z − t∇P (z) of F (z), where t is a
formal parameter which commutes with variables zi (1 ≤ i ≤ n). By
Lemma 3.1 in [Z2], we know that there exists a unique Qt(z) ∈ C[[z, t]]
with o(Qt(z)) ≥ 2 such that the formal inverse Gt(z) of Ft(z) is given
by Gt(z) = z+t∇Qt(z). Note that, when o(P (z)) ≥ 3, we actually have
Qt(z) ∈ C[t][[z]] and Qt=1(z) = Q(z). In general, tQt(z) is nothing but
the inversion pair of tP (z) over the Q-algebra C[[t]]. Another way to
look at the inversion pair is as follows. Set U(z) = 1

2

∑n
i=1 z2

i −P (z) and

V (z) = 1
2

∑n

i=1 z2
i + Q(z), then V (z) is exactly the Legendre transform

(See [Ar], [M] and [Z2].) of the formal power series U(z).

Definition 2.2. For any P (z) ∈ C[[z]] with o(P (z)) ≥ 2, Qt(z) ∈
C[[z, t]] defined above is called the deformed inversion pair of P (z).

Another important definition is the following.

Definition 2.3. For any P (z) ∈ C[[z]], we say P (z) is HN (Hessian

nilpotent) if its Hessian matrix Hes (P ) =
(

∂2P
∂zi∂zj

)
is nilpotent.

Remark 2.4. Note that, TrHes (P ) = ∆P for any P (z) ∈ C[[z]].
Hence any HN formal power series is harmonic. But the converse is

not true. For some examples of HNP’s and HNS, see Subsection 5.2.

Throughout the rest of this paper, for any formal power series P (z) ∈
C[[z]], we will fix the notation F (z), Ft(z), G(z), Gt(z), Q(z) and
Qt(z) defined above unless stated otherwise. We will use the short
words HNS and HNP for “HN power series” and “HN polynomial”,
respectively. Furthermore, we also define a sequence of formal power
series {Q[m](z)|m ≥ 1} by writing

Qt(z) =

∞∑

m=1

tm−1Q[m](z).(2.4)

Lemma 2.5. For any formal power series P (z), we have

(a)

(∆Qt)(Ft) =
∞∑

k=1

tk−1TrHesk(P ).(2.5)
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(b) P (z) is HN if and only if Qt(z) is harmonic as a formal power

series in z, and if and only if Qt(z) is HN as a formal power

series in z.

Proof: (a) Set Nt(z) = ∇Qt(z). It is easy to check that

JNt(z) = Hes Qt(z),(2.6)

Tr Hes (Qt) = ∆Qt.(2.7)

Then Eq. (2.5) follows directly from the equations above and Eq. (2.4)
in [Z2].

(b) follows directly by applying Lemma 2.2 in [Z2] to the formal map
F (z) = z − H(z) with H(z) = ∇P (z). ✷

The following theorem which was first proved in the unpublished
preprint [Z1] and later [Z2] (See Theorem 3.6 and Proposition 3.7 in
[Z2].) will play a fundamental role in this paper.

Theorem 2.6. [Z2] For any Qt(z) ∈ C[[z, t]] with o(Qt(z)) ≥ 2 and

P (z) ∈ C[[z]] with o(P (z)) ≥ 2, the following statements are equivalent.

(1) Qt(z) is the deformed inversion pair of P (z).
(2) Qt(z) is the unique power series solution of the following Cauchy

problem of PDE’s.
{

∂Qt(z)
∂t

= 1
2

< ∇Qt,∇Qt >,

Qt=0(z) = P (z).
(2.8)

Furthermore, we have the following recurrent formula.

Q[1](z) = P (z),(2.9)

Q[m](z) =
1

2(m − 1)

∑

k,l≥1
k+l=m

< ∇Q[k](z),∇Q[l](z) >(2.10)

for any m ≥ 2.

Corollary 2.7. For any k ≥ 0 and m ≥ 1, we have

∂

∂t
∆kQm

t (z) =
1

2(m + 1)
∆k+1Qm+1

t − 1

2
∆k(Qm

t ∆Qt).(2.11)

Proof: Since ∂
∂t

and ∆k (k ≥ 0) commute, by applying ∆k (k ≥ 1)
to Eq. (2.11) with k = 0, we get Eq. (2.11) for any k ≥ 1. Therefore we
may assume k = 0.

Consider
∂

∂t
Qm

t (z) = mQm−1
t

∂Qt

∂t
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Applying Eq. (2.8) in Theorem 2.6:

=
m

2
Qm−1

t < ∇Qt,∇Qt >

Applying Eq. (2.2) in Lemma 2.1 to Qt(z):

=
m

2

1

m(m + 1)
(∆Qm+1

t − (m + 1)Qm
t ∆Qt)

=
1

2(m + 1)
∆Qm+1

t − 1

2
Qm

t ∆Qt.

✷

3. Deformed Inversion Pairs of HN Power Series

In this section, we study deformed inversion pairs Qt(z) of HNS
(Hessian Nilpotent Formal Power Series) P (z) ∈ C[[z]]. We first derive
the PDE’s satisfied by Qt(z) and exp(sQt(z)) (s ∈ C×). We then
discuss some relationships among deformed inversion pairs, the Heat
equation and the Jacobian conjecture. Note that similar relationships
among deformed inversion pairs of formal power series (not necessarily
HN), the inviscid Burgers’ equations and the Jacobian conjecture have
been discussed in [Z2]. Finally, we derive with two different proofs a
uniform non-recurrent formula (See Eq. (3.8).) for Qk

t (z) (k ≥ 1).

Theorem 3.1. For any Qt(z) ∈ C[[z, t]] with o(Qt(z)) ≥ 2 and HNS

P (z) ∈ C[[z]] with o(P (z)) ≥ 2, the following statements are equivalent.

(1) Qt(z) is the deformed inversion pair of P (z).
(2) Qt(z) is the unique power series solution of the following Cauchy

problem of PDE.
{

∂Qt(z)
∂t

= 1
4
∆Q2

t ,

Qt=0(z) = P (z).
(3.1)

Furthermore, we have the following recurrent formula.

Q[1](z) = P (z),(3.2)

Q[m](z) =
1

4(m − 1)
∆
∑

k,l≥1
k+l=m

Q[k](z)Q[l](z)(3.3)

for any m ≥ 2.
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Proof: First, by Lemma 2.5, (b), we have ∆Qt(z) = 0. Therefore,
for any m ≥ 1, Q[m](z) is harmonic. Secondly, for any harmonic formal
power series U(z),V(z)∈ C[[z]], it is easy to check that we have

∆(UV ) = 2 < ∇U,∇V > .(3.4)

By using the facts above, it is easy to see that the implication (1) ⇒ (2)
and also the recurrent formulas Eq. (3.2), (3.3) follow directly from
Theorem 2.6.

To see (2) ⇒ (1), we denote by Q̃t(z) the deformed inversion pair

of P (z). By the fact proved above, we know that Q̃t(z) also satis-
fies Eq. (3.1). Since the power series solution of the Cauchy problem
Eq. (3.1) is unique, which is given recursively by Eq. (3.2) and (3.3), we

have Q̃t(z) = Qt(z). Therefore (2) ⇒ (1) also holds. ✷

A relation of deformed inversion pairs Qt(z) of HNS P (z) with the
Heat equation is given by the following theorem.

Theorem 3.2. Let P (z) ∈ C[[z]] be HN with o(P (z)) ≥ 2 and Qt(z)
its deformed inversion pair. For any non-zero s ∈ C, set

Ut,s(z) = exp(sQt(z)) =

∞∑

k=0

skQk
t (z)

k!
.

Then, Ut,s(z) is the unique formal power series solution of the following

Cauchy problem of the Heat equation.

{
∂Ut,s

∂t
(z) = 1

2s
∆Ut,s(z),

Ut=0,s(z) = exp(sP (z)).
(3.5)

Proof: The uniqueness can be proved by viewing Ut,s(z) as a power
series in t with coefficients in C[[z]] and showing that the coefficients
of tk (k ≥ 1) are recurrently determined by the coefficient of t0 which
is Ut=0,s(z) = exp(sP (z)). We skip the details here. For a similar
argument, see the proof of Proposition 2.5 in [Z2]. Note that, when
P (z) is locally convergent, Qt(z) and exp(sQt(z)) (s ∈ C×) are locally
convergent. Then the uniqueness in this case also follows from the
Cauchy-Kowaleskaya theorem (See [R]) in PDE.

Now we show that Ut,s(z) satisfies Eq. (3.5). First note that, the ini-
tial condition in Eq. (3.5) follows immediately from the one in Eq. (2.8).
Secondly, by Lemma 2.5, (b), we have ∆Qt(z) = 0.
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Consider

∂Ut,s

∂t
=

∂ exp(sQt)

∂t
(3.6)

= s exp(sQt)
∂Qt

∂t

Applying Eq. (2.8):

=
s

2
Ut,s < ∇Qt,∇Qt > .

On the other hand, we have

∆Ut,s =

n∑

i=1

∂

∂zi

∂

∂zi

esQt(3.7)

= s

n∑

i=1

∂

∂zi

(
∂Qt

∂zi

esQt)

Using the fact that ∆Qt = 0:

= s2
n∑

i=1

∂Qt

∂zi

∂Qt

∂zi

esQt

= s2Us,t < ∇Qt,∇Qt > .

By combining Eq. (3.6) and (3.7), we see that Ut,s(z) does satisfy the
PDE in Eq. (3.5). ✷

By combining the gradient reduction in [BE1], [M] and the ho-
mogeneous reduction in [BCW], [Y] on the Jacobian conjecture, we
see that the Jacobian conjecture can be reduced to polynomial maps
F (z) = z − ∇P (z) with P (z) ∈ C[z] homogeneous of degree d = 4.
By Theorem 3.1 and Theorem 3.2, it is easy to see that the Jacobian
conjecture is equivalent to the following conjecture.

Conjecture 3.3. For any homogeneous HNP P (z) of degree d ≥ 2, the

unique solutions of the Cauchy problems Eq. (3.5) and Eq. (2.8) must

be a polynomial in (z, t) and the exponential of a polynomial (z, t),
respectively.

Since it has been proved by Wang [Wa] that the Jacobian conjecture
holds for polynomial maps F (z) of deg F (z) ≤ 2, hence Conjecture 3.3
is true for d ≤ 3. For more discussion on relationships of HNP’s and
the Jacobian conjecture, see Section 7.
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Next we give two different proofs for the following uniform formula
for the powers Qk

t (z) (k ≥ 1) of the deformed inversion pairs Qt(z) of
HNS P (z).

Theorem 3.4. Suppose P (z) ∈ C[[z]] with o(P (z)) ≥ 2 is HN. Then,

for any k ≥ 1, we have

Qk
t (z) = k!

∞∑

m=0

tm

2mm!(m + k)!
∆mP m+k(z).(3.8)

In particular, for any m ≥ 1,

Q[m](z) =
1

2m−1m!(m − 1)!
∆m−1P m(z).(3.9)

First Proof: First, note that Eq. (3.9) follows directly from Eq. (3.8)
with k = 1 and the definition Eq. (2.4) of Q[m](z) (m ≥ 1). To prove
Eq. (3.8), we consider the formal power series

exp(
t

2s
∆) exp(sP ) =

∞∑

k=0

tk

(2s)kk!
∆k exp(sP ).(3.10)

It is easy to check that the series above is also a formal power series
solution of the Cauchy problem Eq. (3.5). Hence, by Theorem 3.2 and
the uniqueness of the power series solution of Eq. (3.5), we have

exp(sQt) = exp(
t

2s
∆) exp(sP ).(3.11)

By comparing the coefficients of sk (k ≥ 1) of the both sides of the
equation above, we get Eq. (3.8). ✷

The proof above for Theorem 3.4 is shorter but less intriguing than
the second proof below, which begins with the following lemma.

Lemma 3.5. Let P (z) ∈ C[[z]] with o(P (z)) ≥ 2 be HN and Qt(z) the

deformed inversion pair of P (z). Then, for any k, l ≥ 1, we have

∂lQk
t

∂tl
=

∆lQk+l
t

2l(k + 1)(k + 2) · · · (k + l)
.(3.12)

Proof: We fix k ≥ 1 and use the mathematical induction on l ≥ 1.
First, by Lemma 2.5, (b), we have ∆Qt(z) = 0. Then Eq. (3.12) for
l = 1 follows directly from Eq. (2.11).

Now we assume that Eq. (3.12) holds for l = l0 ≥ 1 and consider the
case l = l0 + 1.
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∂lQk
t

∂tl
=

∂

∂t

(
∂l0Qk

t

∂tl0

)

=
1

2l0(k + 1)(k + 2) · · · (k + l0)

∂

∂t
∆l0Qk+l0

t

=
k + l0

2l0(k + 1)(k + 2) · · · (k + l0)
∆l0(Qk+l0−1

t

∂Qt

∂t
)

Applying the PDE in Eq. (3.1):

=
1

2l0(k + 1)(k + 2) · · · (k + l0 − 1)

1

4
∆l0(Qk+l0−1

t ∆Q2
t )

Applying Eq. (2.3) to Qk+l0−1
t ∆Q2

t :

=
1

2l0+2(k + 1) · · · (k + l0 − 1)

2

(k + l0)(k + l0 + 1)
∆l0+1Qk+l0+1

t

=
1

2l0+1(k + 1)(k + 2) · · · (k + l0 + 1)
∆l0+1Qk+l0+1

t

=
1

2l(k + 1)(k + 2) · · · (k + l)
∆lQk+l

t .

Hence, Eq. (3.12) holds for l = l0 + 1. ✷

2nd Proof of Theorem 3.4: First, by the initial condition in Eq. (2.8),
we have

∆lQk+l
t (z)

∣∣
t=0

= ∆lP k+l(z)(3.13)

for any k ≥ 1 and l ≥ 0.
Secondly, by setting t = 0 in Eq. (3.12) and applying the equation

above, we see that the coefficient of tl of Qk
t (z) is equal to

1

l!

∆lP k+l

2l(k + 1)(k + 2) · · · (k + l)
=

k!

2ll!(k + l)!
∆lP k+l.

Hence Eq. (3.8) holds. ✷

By comparing the coefficients of sk (k ≤ 0) of the both sides of
Eq. (3.10), we see that ∆kP m = 0 for any k ≥ m, which is equivalent
to saying that ∆mP m = 0 for any m ≥ 1. Note that the later state-
ment also follows from Eq. (3.8) with k = 1 and the fact that Qt(z) is
harmonic.
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Corollary 3.6. For any HNS P (z) ∈ C[[z]] with o(P (z)) ≥ 2, we have

∆mP m = 0 for any m ≥ 1.

Later, we will show in Theorem 4.3 that the converse of the corollary
above is also true.

Note that, by setting s = 1 in Eq. (3.11), we have the following
formula.

exp(Qt) = exp(
t

2
∆) exp(P ).(3.14)

Actually, a more delicate formula (See Eq. (3.20) below.) can be
derived as follows.

Set

Q̃t(z) = Qt(z) − P (z),(3.15)

Ũt(z) = exp(Q̃t(z)),(3.16)

ΛP (z) =
n∑

i=1

∂P (z)

∂zi

∂

∂zi

.(3.17)

Lemma 3.7. For any HNS P (z) ∈ C[[z]] with o(P (z)) ≥ 2, let Q̃t(z),

Ũt(z) and ΛP be as above. Then we have

(a) Q̃t(z) is the unique power series solution of the following Cauchy

problem of PDE’s.
{

∂Q̃t(z)
∂t

= 1
4
∆Q̃2

t (z) + ΛP Q̃t(z) + 1
4
∆P 2,

Q̃t=0(z) = 0.
(3.18)

(b) Ũt(z) is the unique power series solution of the following Cauchy

problem of PDE’s.
{

∂Ũt(z)
∂t

= (1
2
∆ + ΛP + 1

4
∆P 2) Ũt(z),

Ũt=0(z) = 1.
(3.19)

The proof of this lemma is straightforward and similar as the proof
of Theorem 3.2, so we omit it here. From Eq. (3.19), it is also easy to
derive the following formula.

Proposition 3.8. For any HNS P (z) ∈ C[[z]] with o(P (z)) ≥ 2, we

have

exp(Q̃t) = exp(t(
1

2
∆ + ΛP +

1

4
∆P 2)) · 1.(3.20)

Proof: We first set

Vt(z) = exp(t(
1

2
∆ + ΛP +

1

4
∆P 2)) · 1.(3.21)
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Note that Vt=0(z) = 1. Now we consider

∂Vt

∂t
= (

1

2
∆ + ΛP +

1

4
∆P 2) exp(t(

1

2
∆ + ΛP +

1

4
∆P 2)) · 1

= (
1

2
∆ + ΛP +

1

4
∆P 2) Vt(z).

Therefore Vt(z) satisfies the PDE in Eq. (3.19). On the other hand,

by Lemma 3.7, (b) above, exp(Q̃t) also satisfies Eq. (3.19). Hence,
Eq. (3.20) follows from the uniqueness of power series solutions of the
Cauchy problem Eq. (3.19). ✷

One interesting aspect of the formula above is as follows. It shows
the differential operator ΛP and the operator of the multiplication by
∆P 2 also play important roles for deformed inversion pairs Qt(z). For
example, from Eq. (3.20), it is easy to see that we have the following
corollary.

Corollary 3.9. For any P (z) ∈ C[[z]] with o(P (z)) ≥ 2 such that

∆2P (z) = 0, we have Q̃t(z) = 0, or in other words, Qt(z) = P (z).

4. A Criterion for Hessian nilpotency

Let a = {aI |I ∈ Nn, |I| ≥ 2} be a set of variables which commute
with each other. Let P (z) =

∑
I∈Nn aIz

I be the universal formal power
series in z with o(P (z)) ≥ 2. We will also view P (z) as a formal power
series in z with coefficients in C[a], i.e. P (z) ∈ C[a][[z]].

For any m ≥ 1, we set

um(P ) = Tr Hesm(P ),(4.1)

vm(P ) = ∆mP m.(4.2)

In this section, we prove a general theorem, Theorem 4.1, about a
relation between {um(P )|m ≥ 1} and {vm(P )|m ≥ 1}. Consequently,
we get a criterion for Hessian nilpotency of formal power series P (z) ∈
C[[z]] in terms of certain vanishing properties of {∆mP m(z)|m ≥ 1}.

Let P (z) ∈ C[a][[z]], {um(P )|m ≥ 1} and {vm(P )|m ≥ 1} be defined
as above.

For any k ≥ 1, we define Uk(P ) (resp. Vk(P )) to be the ideal in
C[a][[z]] generated by {um(P )|1 ≤ m ≤ k} (resp. {vm(P )|1 ≤ m ≤ k})
and all their partial derivatives of any order. For convenience, we also
set U0(P ) = V0(P ) = 0.

The first main result of this subsection is the following theorem.

Theorem 4.1. For any k ≥ 1, Uk(P ) = Vk(P ) as ideals in C[a][[z]].
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One immediate consequence of Theorem 4.1 is the following corollary.

For any k ≥ 1, we define Ũk(P ) (resp. Ṽk(P )) to be the ideal in C[a]
generated by all coefficients of {um(P )|1 ≤ m ≤ k} (resp. {vm(P )|1 ≤
m ≤ k}).
Corollary 4.2. 1 For any k ≥ 1, Ũk(P ) = Ṽk(P ) as ideals in C[a].

From Theorem 4.1 or Corollary 4.2, it is easy to see that we have the
following criteria for Hessian nilpotency of formal power series P (z) ∈
C[[z]].

Theorem 4.3. For any P (z) ∈ C[[z]] with o(P (z)) ≥ 2, the following

statements are equivalent.

(1) P (z) is HN.

(2) ∆mP m = 0 for any m ≥ 1.
(3) ∆mP m = 0 for any 1 ≤ m ≤ n.

Proof: By Theorem 4.1 or Corollary 4.2, we have, for any fixed
k ≥ 1, ∆mP m = 0 (1 ≤ m ≤ k) if and only if Tr Hesm(P ) = 0
(1 ≤ m ≤ k). Then, the theorem follows directly from the following
facts in linear algebra, namely, for any n × n matrix A ∈ Mn(C), A is
nilpotent if and only if Tr Am = 0 (m ≥ 1), and if and only if Tr Am = 0
(1 ≤ m ≤ n). ✷

Besides the criteria in Theorem 4.3, we believe the following one is
also true.

Conjecture 4.4. Let P (z) ∈ C[[z]] with o(P (z)) ≥ 2. If ∆mP m(z) = 0
for m >> 0, then P (z) is HN.

In the rest of this subsection, we fix the universal formal power series
P (z) =

∑
I∈Nn aIz

I with o(P (z)) ≥ 2 and give a proof for Theorem 4.1.
Note that all results proved in the previous sections also hold for formal
power series over the C-algebra C[a]. In particular, they hold for our
universal formal power series P (z) ∈ C[a][[z]].

We begin with the following two lemmas.

Lemma 4.5. Let Qt(z) ∈ C[a][[z, t]] be the deformed inversion pair of

P (z). Then, there exists a sequence {wk(P )(z) ∈ Uk(P )|k ≥ 1} such

that

∆Qt(z) =
∞∑

k=1

wk(P )(z) tk−1,(4.3)

1Professor David Wright [Wr3] recently informed the author that he has obtained
a different proof for this result.
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and, for any k ≥ 1,

wk(P )(z) ≡ uk(P )(z) mod (Uk−1(P )).(4.4)

Proof: We set Nt(z) = ∇Qt(z). First, by composing Gt(z) = z +
tNt(z) from right to Eq. (2.5) in Lemma 2.5, we have

∆Qt(z) =

∞∑

i=1

ui(P )(z + tNt(z)) ti−1.(4.5)

Now we write the Taylor expansion of ui(P )(z + tNt(z)) (i ≥ 1) at
z as

ui(P )(z + tNt(z)) = ui(P )(z) +
∞∑

k=1

∑

s∈N
n

|s|=k

1

s!

∂sui(P )

∂zs

(z)N s

t (z)tk.(4.6)

Next we want to write the RHS of Eq. (4.6) as a formal power series
in t with coefficients in C[[a, z]]. This can be done by first doing so for
N s

t (z) (s ∈ Nn) in Eq. (4.6) and then re-arranging properly all the terms

involved. Note that, ui(P )(z) or ∂sui(P )
∂zs

(z) (s ∈ Nn) do not depend on t

and are in the ideal Ui(P ). Also note that all the terms or products in
the sum of Eq. (4.6) except the first one ui(P )(z) have positive degree
in t due to the factors tk (k ≥ 1). By using the observations above and
keeping track the degree in t, it is easy to see that ui(P )(z + tNt(z))
can be written as

ui(P )(z + tNt(z)) = ui(P )(z) +

∞∑

j=1

Aij(z) tj(4.7)

for some Aij(z) ∈ Ui(P )(z) (i, j ≥ 1).
Now, by combining Eq. (4.5) and (4.7), we have

∆Qt(z) =

∞∑

i=1

(
ui(P )(z) +

∞∑

j=1

Aij(z)tj

)
ti−1

=
∞∑

k=1

(uk(P ) +
∑

i+j=k
i,j≥1

Aij(z)) tk−1

=
∞∑

i=1

wk(P )(z) tk−1,
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where, for any k ≥ 1,

wk(P )(z) = uk(P ) +
∑

i+j=k
i,j≥1

Aij(z).(4.8)

Hence we get Eq. (4.3). By the fact that Ai,j(z) ∈ Ui(P )(z) for any
i, j ≥ 1, we see that each Ai,j(z) in Eq. (4.8) lies in Uk−1(P )(z) since
i ≤ k − 1. Therefore Eq. (4.4) also holds. ✷

Lemma 4.6. For any m, k ≥ 1 and 1 ≤ l ≤ k, we have

∂l

∂tl
∆mQm

t (z) ≡ ∆m+lQm+l
t

2l(m + 1) · · · (m + l)
mod (Uk(P ), tk−l+1).(4.9)

Proof: We fix k ≥ 1 and use the mathematical induction on l to
show Eq. (4.9) holds for any m ≥ 1.

By Eq. (2.11) with k = m and Eq. (4.3), it is easy to see that Eq. (4.9)
holds for any m ≥ 1 when l = 1.

Now we assume that Eq. (4.9) holds for any 1 ≤ l ≤ k0 < k and
consider the case l = k0 + 1. By applying ∂

∂t
to Eq. (4.9) with l = k0,

we have

∂k0+1∆mQm
t

∂tk0+1
≡

∂
∂t

∆m+k0Qm+k0

t

2k0(m + 1) · · · (m + k0)
mod (Uk(P ), tk−k0).(4.10)

While, from Eq. (4.9) with l = 1, we have

∂

∂t
∆m+k0Qm+k0

t ≡ ∆m+k0+1Qm+k0+1
t

2(m + k0 + 1)
mod (Uk(P ), tk).

Since k − k0 ≤ k, hence we also have

∂

∂t
∆m+k0Qm+k0

t ≡ ∆m+k0+1Qm+k0+1
t

2(m + k0 + 1)
mod (Uk(P ), tk−k0).(4.11)

By combining Eq. (4.10) and (4.11), we have

∂k0+1

∂tk0+1
∆mQm

t ≡ ∆m+k0+1Qm+k0+1
t

2k0+1(m + 1)(m + 2) · · · (m + k0 + 1)

mod (Uk(P ), tk−k0 = tk−(k0+1)+1)

which is Eq. (4.9) for l = k0 + 1. ✷

Now we are ready to prove Theorem 4.1.
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Proof of Theorem 4.1: We use the mathematical induction on k ≥ 1.
Since u1(P ) = ∆P = v1(P ), hence, the theorem is true for k = 1.

Now, we assume that Uk(P ) = Vk(P ) for some k ≥ 1. By Eq. (4.9)
with m = 1 and l = k, we have

∂k

∂tk
∆Qt ≡

∆k+1Qk+1
t

2k(k + 1)!
mod (Uk(P ), t).

In other words, we have

∂k

∂tk
∆Qt

∣∣∣∣
t=0

≡ ∆k+1Qk+1
t

2k(k + 1)!

∣∣∣∣
t=0

mod (Uk(P )).(4.12)

On the other hand, by the initial condition in Eq. (2.8), we have

∆k+1Qk+1
t

2k(k + 1)!

∣∣∣∣
t=0

=
∆k+1P k+1

2k(k + 1)!
=

vk+1(P )

2k(k + 1)!
.

By Eq. (4.3) and (4.4), we have

∂k

∂tk
∆Qt

∣∣∣∣
t=0

= k! wk+1(P ) ≡ k!uk+1(P ) mod (Uk(P )).

Therefore, by Eq. (4.12) and the two equations above, we have

uk+1(P ) ≡ 1

2kk!(k + 1)!
vk+1(P ) mod (Uk(P )).

Since Uk(P ) = Vk(P ), hence we have Uk+1(P ) = Vk+1(P ). ✷

5. Hessian Nilpotent Polynomials

In this section, we first derive in Subsection 5.1 a criterion for Hes-
sian nilpotency of homogeneous polynomials by using a fundamental
theorem (See Theorem 5.2) of harmonic polynomials. We then give in
Subsection 5.2 some examples of HNP’s (Hessian nilpotent polynomi-
als) and HNS (Hessian nilpotent formal power series).

5.1. A Criterion for Hessian Nilpotency of Homogeneous Har-
monic Polynomials. For any n ≥ 1, we let X(Cn) or simply X denote
the affine variety defined by

∑n
i=1 z2

i = 0. For any d ≥ 0, we denoted
by Vd(z) the vector space of homogeneous polynomials in z of degree
d ≥ 0. For any α ∈ Cn, we denote by hα(z) the linear function < α, z >

of Cn.
The following identities are almost trivial but very useful for our later

arguments. So we formulate them as a lemma without giving proofs.
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Lemma 5.1. (a) For any α ∈ Cn and m ≥ 1, we have

Hes (hm
α )(z) = m(m − 1)hm−2

α (z) α · αt(5.1)

(b) For any α, β ∈ X(Cn) and m, k ≥ 1, we have

∆(hm
α (z)hk

β(z)) = 2mk < α, β > hm−1
α (z)hk−1

β (z)(5.2)

By Remark 2.4, we know that any HNS P (z) is automatically har-
monic, i.e. ∆P (z) = 0. For harmonic polynomials, we have the follow-
ing fundamental theorem.

Theorem 5.2. For any homogeneous harmonic polynomial P (z) of

degree d ≥ 2, we have

P (z) =
k∑

i=1

cih
d
αi

(z)(5.3)

for some ci ∈ C and αi ∈ X(Cn) (1 ≤ i ≤ k).

For the proof of this theorem, see, for example, [H] and [T].

Note that, by replacing αi by c
− 1

d

i αi (1 ≤ i ≤ k) in Eq. (5.3), we see
that any homogeneous harmonic polynomial P (z) of degree d ≥ 2 can
be written as

P (z) =
k∑

i=1

hd
αi

(z)(5.4)

for some αi ∈ X(Cn) (1 ≤ i ≤ k).
In the rest of this subsection, we fix a homogeneous harmonic poly-

nomial P (z) ∈ Vd(z) of degree d ≥ 2 and assume that P (z) is given
by Eq. (5.4) for some αi ∈ X(Cn) (1 ≤ i ≤ k). We also assume
{hd

α(z)|α ∈ Cn} are linearly independent in Vd(z).
We first define the following matrices associated with P (z).

AP = (< αi, αj >)k×k,(5.5)

ΨP = (< αi, αj > hd−2
αj

(z))k×k.(5.6)

The main result of this section is the following proposition.

Proposition 5.3. Let P (z) ∈ Vd(z) be given by Eq. (5.4). Then, for

any m ≥ 1, we have

TrHes m(P ) = (d(d − 1))mTrΨm
P .(5.7)

In particular, P (z) is HN if and only if the matrix ΨP is nilpotent.
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Proof: First, by Eq (5.4) and (5.1), we can write Hes (P ) explicitly
as

Hes (P ) = d(d − 1)
k∑

i=1

hd−2
αi

(z) αi · αt
i.(5.8)

For any m ≥ 1, we set cm = (d(d − 1))m. By Eq. (5.8), we have

Hes m(P ) = cm

k∑

i1,i2,··· ,im=1

hd−2
αi1

(z) · · ·hd−2
αim

(z)(αi1 · αt
i1
) · · · (αim · αt

im
)

= cm

k∑

i1,i2,··· ,im=1

αi1(α
t
i1
· αi2)(α

t
i2
· αi3) · · · (αt

im−1
· αim)αt

im

· hd−2
αi1

(z) · · ·hd−2
αim

(z)

= cm

k∑

i1,i2,··· ,im=1

< αi1, αi2 >< αi2 , αi3 > · · · < αim−1
, αim >

· hd−2
αi1

(z) · · ·hd−2
αim

(z) αi1 · αt
im

= cm

k∑

i1,im=1

(
Ψm−1

P

)
i1,im

hd−2
αi1

(z) αi1 · αt
im

.

By taking the trace of the matrices above, we get

Tr Hes m(P ) = cm

k∑

i1,im=1

(
Ψm−1

P

)
i1,im

Tr (αi1 · αt
im

) hd−2
αi1

(z)

= cm

k∑

i1,im=1

(
Ψm−1

P

)
i1,im

< αim , αi1 > hd−2
αi1

(z)

= cm

k∑

i1,im=1

(
Ψm−1

P

)
i1,im

(ΨP )im,i1

= cmTr Ψm
P .

Hence, we get Eq. (5.7). ✷

Corollary 5.4. Let P (z) ∈ Vd(z) be given by Eq. (5.4). Suppose that

P (z) is HN. Then the matrix AP must be singular.
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Proof: By Proposition 5.3, we have ΨP is nilpotent. Therefore, we
have

0 = det ΨP = hd−2
α1

(z)hd−2
α2

(z) · · ·hd−2
αk

(z) det AP .

Hence, we have det AP = 0. ✷

Corollary 5.5. Let P (z) be HN and given by Eq. (5.4). Then, for any

2 ≤ m ≤ d, we have

k∑

i,j=1

< αi, αj >m hd−m
αi

(z)hd−m
αj

(z) = 0.(5.9)

In particular, we have

k∑

i=1

P (αi) = 0.(5.10)

Proof: First, note that, Eq. (5.10) follows directly from Eq. (5.9)
with m = d.

To prove Eq. (5.9), we first consider the case m = 2, the LHS of
Eq. (5.9) is just Tr Ψ2

P up to a non-zero constant. Hence, by Proposition
5.3, Eq. (5.9) holds in this case.

Now consider the case m > 2. By Eq. (5.1), we have

∆l(hd−2
αi

(z)hd−2
αj

(z)) = 2l(d − 2)2 · · · (d − l − 1)2·(5.11)

· < αi, αj >l hd−2−l
αi

(z)hd−2−l
αj

(z)

for any 1 ≤ i, j ≤ k and 1 ≤ l ≤ d − 2.
Now by applying ∆m−2 to Eq. (5.9) for the case m = 2 and applying

Eq. (5.11), it is easy to see that Eq. (5.9) holds for any 3 ≤ m ≤ d− 2.
✷

Actually, by Eq. (5.2), the LHS of Eq. (5.9) is also ∆mP 2(z) up to a
non-zero constant. Hence the corollary above also follows from Theo-
rem 4.3, which implies that ∆mP 2(z) = 0 for any m ≥ 2.

One remark is that, by applying similar arguments as above to the
equations ∆mP m(z) = 0 and Tr Ψm

P = 0 (m ≥ 1), one can derive more
explicit identities satisfied by certain powers of hαi

(z) (1 ≤ i ≤ k).
But, in order to keep this paper in certain size, we skip them here.
More study on homogeneous HNP’s will be given in [Z3].
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5.2. Some Examples of HNP’s and HNS. In this subsection, we
give some examples of HNS and HNP’s.

First, let Ξ = {βi|1 ≤ i ≤ k} be any non-empty subset of X(Cn)
such that < βi, βj >= 0 for any 1 ≤ i, j ≤ k. For any d ≥ 2, we set

W[Ξ, d](z) =

k∑

i=1

hd
βi

(z).(5.12)

For convenience, we also set W[Ξ, d](z) = 0 for Ξ = ∅.
Now let Ξ̃ = (Ξ1, Ξ2, · · · , Ξm, · · · ) be a sequence of finite subsets of

X(Cn) such that, for any m1, m2 ≥ 1 and any βi ∈ Ξmi
(i = 1, 2), we

have < β1, β2 >= 0. We set

WΞ̃(z) =
∞∑

m=1

W[Ξm, m+1](z) =
∞∑

m=1

∑

βmi
∈Ξm

hm+1
βmi

(z).(5.13)

A more general construction is as follows.
Let w = (w1, w2, · · · , wk) be a sequence of commutative variables

and (β1, β2, · · · , βk) a sequence of elements of Cn with < βi, βj >= 0
(1 ≤ i, j ≤ k). For any formal power series g(w) ∈ C[[w]], we define
Ug(z) ∈ C[[z]] by

Ug(z) = g(hβ1
(z), hβ2

(z), · · · , hβk
(z)).(5.14)

One special case of the construction above is as follows. We introduce
new commutative variables u = (u1, u2, ..., un) and v = (v1, v2, ..., vn).
For any g(z) ∈ C[[z]], we set

Pg(u, v) = g(u1 +
√
−1v1, u2 +

√
−1v2, · · · , un +

√
−1vn).(5.15)

Note that, by setting wi = zi and βi ∈ X(C2n) such that hαi
(u, v) =

ui +
√
−1vi (1 ≤ i ≤ n), we have Ug(u, v) = Pg(u, v).

The following lemma is easy to check directly by using Lemma 5.1.

Lemma 5.6. For any P (z) ∈ C[[z]] given by Eq. (5.13), Eq. (5.14), we

have

∆P m(z) = 0.(5.16)

In particular, P (z) is HN.

Note that, by choosing Ξ̃ in Eq. (5.13) and g(w) ∈ C[[w]] in Eq. (5.14)
properly, we can construct many HNS, HNP’s and homogeneous HNP’s.
Unfortunately, all these HNS or HNP’s P (z) are of “trivial type” in
the sense that their deformed inversion pair Qt(z) = P (z). This can be
easily seen from Eq. (5.16) and Corollary 3.9. A family of non-trivial
HNP’s was given in [BE1] which was constructed as follows.
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Let H(z) = (H1(z), H2(z), · · · , Hn(z)) ∈ C[z]×n. Let u, v as defined
before Eq.(5.15) and set

PH(u, v) =
n∑

i=1

viHi(u1 +
√
−1v1, u2 +

√
−1v2, · · · , un +

√
−1vn).

It was shown in Lemma 1.2 in [BE1] that PH(u, v) ∈ C[u, v] is HN
if and only if JH(z) is nilpotent.

6. More Properties of HN Polynomials

In this section, we derive more properties of HNS (Hessian nilpo-
tent formal power series) and HNP’s (Hessian nilpotent polynomials).
We prove an identity in Proposition 6.1 and an equivalence of certain
vanishing properties in Theorem 6.2 of {∆kP m(z)|k, m ≥ 1} for HNS
P (z) ∈ C[[z]]. In Subsection 6.3, we study an isotropic property of
{∆kP m(z)|k, m ≥ 1} for homogeneous HNP’s P (z).

6.1. An Identity of HN Formal Power Series. Let P (z) ∈ C[[z]]
be a HNS. For any k ≥ 0 and α ≥ 1, we set

uk,α(P ) =
α!

2kk!(k + α)!
∆kP k+α.(6.1)

Proposition 6.1. For any α, β ≥ 1 and m ≥ 0, we have

um,α+β(P ) =
∑

k+l=m
k,l≥0

uk,α(P )ul,β(P ).(6.2)

More explicitly, we have

∆mP m+α+β =

(
α + β

α

)−1 ∑

k+l=m
k,l≥0

(
m

k

)(
m + α + β

k + α

)
(∆kP k+α)(∆lP l+β).

(6.3)

Proof: First, it is easy to see that Eq. (6.3) follows directly from
Eq. (6.2) and (6.1). So we only need prove Eq. (6.2).

By Eq. (3.8) and (6.1), we have

Q
γ
t (z) =

∞∑

m=0

um,γ(P )tm(6.4)

for any γ ≥ 1. By comparing the coefficients of tm of both sides of the
equation Q

α+β
t (z) = Qα

t (z)Qβ
t (z), we see that Eq. (6.2) holds. ✷
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6.2. A Vanishing Property of HN Formal Power Series.

Theorem 6.2. For any HNS P (z) ∈ C[[z]], the following statements

are equivalent.

(1) For any k ≥ 1, ∆mP m+k = 0 when m >> 0.
(2) There exists k0 ≥ 1, ∆mP m+k0 = 0 when m >> 0.
(3) ∆mP m+1 = 0 when m >> 0.

Proof: (1) ⇒ (2) is trivial. To show (2) ⇒ (3), we assume that
∆mP m+k0 = 0 when m > M0 for some M0 ≥ 1. For any m > M0 +
k0 − 1, we have

∆mP m+1 = ∆k0−1(∆m−k0+1P (m−k0+1)+k0) = 0.

Hence (3) holds in this case.
Now we consider (3) ⇒ (1). Since P (z) is HN, Eq. (3.8) in Theorem

3.4 holds for any k ≥ 1. In particular, Qt(z) is a polynomial in t with
coefficients in C[[z]] by our assumption of (3). Therefore, for any k ≥ 1,
Qk

t (z) is also a polynomial in t with coefficients in C[[z]]. By Eq. (3.8)
again, we see that (1) holds. ✷

We believe that Theorem 7.2 is still true without the Hessian nilpo-
tency condition. Actually, if Conjecture 4.4 is true, it is certainly the
case. More precisely, suppose that one of the statements, say (3), of
Theorem 7.2 holds for some P (z) ∈ C[[z]]. Then we have

∆m+1P m+1 = ∆(∆mP m+1) = 0

when m >> 0. If Conjecture 4.4 is true, then P (z) is HN. Hence all
other statements of Theorem 7.2 also hold.

Later we will show in Theorem 7.2 that the Jacobian conjecture is
equivalent to saying that one of the statements in Theorem 6.2 holds
for HNP’s P (z).

6.3. Isotropic Properties of Homogeneous HN Polynomials.
For any 1 ≤ i ≤ n, we set Di = ∂

∂zi
and D = (D1, D2, · · · , Dn).

We define a C-bilinear map {·, ·} : C[z] × C[z] → C[z] by setting
{f, g} = f(D)g(z) for any f, g ∈ C[z]. The C-bilinear map {·, ·} defined
above is closely related with the following commonly used Hermitian
inner product of C[z]. See, for example, [ABR], [H] and [KR].

(·, ·) : C[z] × C[z] → C,

(f, g) → (f(D)ḡ)(0),
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where, ḡ(z) =
∑

I∈Nn āsz
s if g(z) =

∑
I∈Nn asz

s. In particular, for
any homogeneous polynomials f, g ∈ C[z] of the same degree, we have
{f, ḡ} = (f, g).

Actually, the Hermitian inner product (·, ·) plays an very important
role in the study of classical harmonic polynomials (See [ABR] and
[H].). Due to the connection of {·, ·} with the Hermitian inner product
(·, ·) described above, we refer to the properties of HNP’s derived in
this subsection as certain isotropic properties.

The main result of this subsection is the following theorem.

Theorem 6.3. Let P (z) be a homogeneous HNP of degree d ≥ 3 and

I(P ) the ideal of C[z] generated by σ2 :=
∑n

i=1 z2
i and ∂P

∂zi
(1 ≤ i ≤ n).

Then, for any f(z) ∈ I(P ) and m ≥ 0, we have

{f, ∆mP m+1} = f(D)∆mP m+1 = 0.(6.5)

To prove this theorem, we first need the following two lemmas.

Lemma 6.4. For any homogeneous polynomial f(z) of degree k ≥ 1,
we have

n∑

i1,i2,··· ,ik=1

∂kf(z)

∂zi1∂zi2 · · ·∂zik

∂k

∂zi1∂zi2 · · ·∂zik

(6.6)

=
∑

s∈N
n

|s|=k

(
k

s

)
∂kf

∂zs

∂k

∂zs

= k!f(D),

where
(

k

s

)
= k!

s1!s2!···sn!
for any s = (s1, s2, · · · , sn) ∈ Nn with |s| = k.

Proof: Since Eq. (6.6) is linear on f(z), we may assume that f(z) is
a single monomial, say, f(z) = zl1

1 zl2
2 · · · zln

n with li ≥ 0 and
∑n

i=1 li = k.
Now, we consider

n∑

i1,i2,··· ,ik=1

(
∂k

∂zi1∂zi2 · · ·∂zik

zl1
1 zl2

2 · · · zln
n

)
∂k

∂zi1∂zi2 · · ·∂zik

=

(
k!

l1!l2! · · · ln!

∂k

∂zl1
1 ∂zl2

2 · · ·∂zln
n

zl1
1 zl2

2 · · · zln
n

)
∂k

∂zl1
1 ∂zl2

2 · · ·∂zln
n

= k!

(
∂

∂z1

)l1
(

∂

∂z2

)l2

· · ·
(

∂

∂zn

)ln

= k!f(D).

✷
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Lemma 6.5. For any f(z), g(z) ∈ C[[z]] and l ≥ 1, we have

∆l(gf) =
∑

k1+k2+k3=l
k1,k2,k3≥0

2k2

(
l

k1, k2, k3

) n∑

i1,i2,··· ,ik2
=1

∂k2∆k1g(z)

∂zi1 · · ·∂zik2

∂k2∆k3f(z)

∂zi1 · · ·∂zik2

(6.7)

=
∑

k1+k2+k3=l
k1,k2,k3≥0

2k2

(
l

k1, k2, k3

) ∑

s∈Nn

|s|=k2

(
k2

s

)
∂k2∆k1g

∂zs

∂k2∆k3f

∂zs

.

where
(

l

k1,k2,k3

)
= l!

k1!k2!k3!
for any k1, k2, k3 ≥ 0.

Proof: We use the mathematical induction on l ≥ 1. When l = 1,
by the Leibniz’s rule, it is easy to check that

∆(gf)(z) = (∆g(z))f(z) + 2

n∑

i=1

∂g(z)

∂zi

∂f(z)

∂zi

+ g(z)∆f(z)(6.8)

which is exactly Eq. (6.7) with l = 1.
Now we assume Eq. (6.7) holds for l = l0 ≥ 0. By using Eq. (6.8)

and Eq. (6.7) with l = l0, we have

∆l0+1(gf) = ∆(∆l0(gf))

=
∑

k1+k2+k3=l
k1,k2,k3≥0

2k2

(
l

k1, k2, k3

) n∑

i1,i2,··· ,ik2
=1

∆

(
∂k2∆k1g(z)

∂zi1 · · ·∂zik2

∂k2∆k3f(z)

∂zi1 · · ·∂zik2

)

=
∑

k1+k2+k3=l
k1,k2,k3≥0

2k2

(
l

k1, k2, k3

) n∑

i1,i2,··· ,ik2
=1

∂k2∆k1+1g(z)

∂zi1 · · ·∂zik2

∂k2∆k3f(z)

∂zi1 · · ·∂zik2

+
∑

k1+k2+k3=l
k1,k2,k3≥0

2k2+1

(
l

k1, k2, k3

) n∑

i1,i2,··· ,ik2+1=1

∂k2+1∆k1g(z)

∂zi1 · · ·∂zik2+1

∂k2+1∆k3f(z)

∂zi1 · · ·∂zik2+1

+
∑

k1+k2+k3=l
k1,k2,k3≥0

2k2

(
l

k1, k2, k3

) n∑

i1,i2,··· ,ik2
=1

∂k2∆k1g(z)

∂zi1 · · ·∂zik2

∂k2∆k3+1f(z)

∂zi1 · · ·∂zik2
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By shifting indices and using the convention that
(

l

k1,k2,k3

)
= 0 if k1, k2

or k3 < 0 :

=
∑

k1+k2+k3=l+1
k1,k2,k3≥0

2k2

((
l

k1 − 1, k2, k3

)
+

(
l

k1, k2 − 1, k3

)

+

(
l

k1, k2, k3 − 1

)) n∑

i1,i2,··· ,ik2
=1

∂k2∆k1g(z)

∂zi1 · · ·∂zik2

∂k2∆k3f(z)

∂zi1 · · ·∂zik2

.

Hence, we only need show that
(

l + 1

k1, k2, k3

)
=

(
l

k1 − 1, k2, k3

)
+

(
l

k1, k2 − 1, k3

)
+

(
l

k1, k2, k3 − 1

)

for any k1, k2, k3 ≥ 0. But this identity follows directly from the bino-
mal expression of (x + y + z)k for k = l, l + 1 and the identity

(x + y + z)l+1 = (x + y + z)(x + y + z)l.

✷

One immediate consequence of Eq. (6.7) is the following corollary.

Corollary 6.6. For g(z), f(z) ∈ C[[z]] with g(z) harmonic, we have

∆l(gf) =

l∑

k=0

2k

(
l

k

)∑

s∈N
n

|s|=k

(
k

s

)
∂kg

∂zs

∂k∆l−kf

∂zs

.(6.9)

Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3: Since P (z) is HN, by Theorem 4.3, we know
that ∆mP m = 0 for any m ≥ 1. Therefore, we have,

σ2(D)∆mP m+1 = ∆m+1P m+1 = 0.

Hence it will be enough to prove the theorem for f(z) = ∂P
∂zi

(z) for any
fixed 1 ≤ i ≤ n.

Since d ≥ 3, we have m + d − 1 ≥ m + 2 and

∆m+d−1P m+2 = 0.(6.10)

By applying ∂
∂zi

to the equation above, we get

∆m+d−1 ∂P

∂zi

P m+1 = ∆m+d−1(fP m+1) = 0.(6.11)
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But, on the other hand, by Eq. (6.9), we have

∆m+d−1
(
fP m+1

)
(6.12)

=
m+d−1∑

k=0

2k

(
m + d − 1

k

)∑

s∈Nn

|s|=k

(
k

s

)
∂kf

∂zs

∂k∆m+d−1−kP m+1

∂zs

.

Furthermore, we also have the following equations.

∂sf

∂zs

= 0 for any s ∈ Nn with |s| = k > d − 1,

∆aP m+1 = 0 for any a ≥ m + 1.

Hence all the terms in the RHS of Eq. (6.12) except the one with k =
d − 1 are zero. Therefore, by Eq. (6.6) in Lemma 6.4, we have

∆m+d−1(fP m+1) = 2d−1
∑

s∈Nn

|s|=d−1

(
d − 1

s

)
∂d−1f

∂zs

∂d−1∆mP m+1

∂zs

= 2d−1(d − 1)!f(D)∆mP m+1.

Hence, by Eq. (6.11) and the equation above, we see that the theorem
holds for f(z) = ∂P

∂zi
(z) (1 ≤ i ≤ n). ✷

Corollary 6.7. Let P (z) be a homogeneous HNP of degree d ≥ 3 and

Qt(z) its deformed inversion pair. Then, for any k, l ≥ 0 with k > l,

we have

(∆lP k)(D)Qt(z) = 0.(6.13)

More precisely, we have

(∆lP k)(D)(∆mP m+1(z)) = 0(6.14)

for any k, l ≥ 0 with k > l.

In particular, we have

P (D)Qt(z) = 0.(6.15)

Proof: First note that Eq. (6.15) follows from Eq. (6.13) by setting
l = 0 and k = 1. By Eq. (3.8), we see that Eq. (6.13) and Eq. (6.14)
are equivalent to each other. Hence, it is enough to show Eq. (6.14).
Furthermore, by Theorem 6.3, it will be enough to show that ∆lP k(z)

for any k, l ≥ 0 with k > l lies in the ideal Ĩ(P ) generated by ∂P
∂zi

(z)

(1 ≤ i ≤ n).
By Euler’s lemma, we have P (z) = 1

d

∑n

i=1 zi
∂P
∂zi

(z). Hence, for any

k ≥ 1, P k(z) ∈ Ĩ(P ) and Eq. (6.14) holds when l = 0. Now we consider
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the case l > 0. Note that ∆l is a sum of the differential operators of
the form ∂2

∂z2
i1

∂2

∂z2
i2

· · · ∂2

∂z2
il

with 1 ≤ i1, i2, · · · , il ≤ n. When we distribute

the 2l derivations ∂
∂zij

(1 ≤ j ≤ l) of the differential operator above to

k copies P (z) of P k(z), there is always at least one copy P (z) of P k(z)
receives none or one derivation. Otherwise, we would have 2k ≤ 2l,
which contradicts to our condition k > l. Since we have already shown
P (z) ∈ Ĩ(P ) above, hence we have ∆lP k(z) ∈ Ĩ(P ) for any k, l ≥ 0
with k > l > 0. ✷

Theorem 6.3 and Corollary 6.7 do not hold for homogeneous HNP’s
P (z) of degree d = 2. But, by similar arguments as the proof of
Theorem 6.3 starting from ∆m+2P m+2 = ∆m+2(P · P m+1) = 0 instead
of Eq. (6.11), one can show the following proposition.

Proposition 6.8. Let P (z) be a homogeneous HNP of degree d = 2
and J(P ) the ideal of C[z] generated by P (z) and σ2 =

∑n

i=1 z2
i . Then,

for any f(z) ∈ J(P ) and m ≥ 0, we have

f(D)∆mP m+1 = 0.(6.16)

In particular, we have

P (D)Qt(z) = 0.(6.17)

7. Vanishing Conjectures of HN Polynomials

In this section, we propose some conjectures on certain vanishing
properties of polynomials {∆kP m(z)|m, k ≥ 1 and m > k} for HNP’s
(Hessian Nilpotent polynomials) P (z). We also show that these so-
called vanishing conjectures are equivalent to the well-known Jacobian
conjecture.

Conjecture 7.1. (Vanishing Conjecture )
For any HN (not necessarily homogeneous) polynomial P (z) of degree

d ≥ 2, its deformed inversion pair Qt(z) is a polynomial in both t and

z. More precisely, ∆kP k+1 = 0 when k >> 0.

Theorem 7.2. The following statements are equivalent.

(1) The vanishing conjecture for homogeneous HNP of degree d = 4.
(2) The vanishing conjecture for homogeneous HNP of degree d ≥ 2.
(3) The vanishing conjecture.

(4) The Jacobian conjecture.

Proof: First, it is easy to see that (2) ⇒ (1), (3) ⇒ (1) and (3) ⇒
(2) are trivial. By the gradient reduction in [BE1] and the homogeneous
reduction in [BCW], [Y] on the Jacobian conjecture, we know that
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the Jacobian conjecture will be true if it is true for polynomial maps
F (z) = z−∇P (z) with P (z) being homogeneous HNP of degree d = 4.
Therefore, (4) ⇔ (1) follows directly from Eq. (3.8) in Theorem 3.4.
Hence we only need show (4) ⇒ (3).

Now we assume the Jacobian conjecture and let P (z) be a HNP of
degree d ≥ 2. Let Ft(z) = z − t∇P (z) and Gt(z) = z + t∇Qt(z) as
before. Consider the formal map U(z, t) = (Ft(z), t) from Cn+1 →
Cn+1. It is easy to check that the Jacobian of the map U(z, t) with
respect to (z, t) is also identically equal to 1 and the formal inverse
V (z, t) is given by V (z, t) = (Gt(z), t). Since we have assumed the
Jacobian conjecture, V (z, t) must be a polynomial in (z, t). Hence so is
Gt(z). By Eq. (3.8) again, we see that ∆mP m+1(z) must vanish when
m >> 0. ✷

Next, by using the upper bound given in [BCW], Corollary 1.4, for
the degrees of inverse maps of polynomial automorphisms of Cn, we
show that Conjecture 7.1 for homogeneous HNP’s can actually be re-
formulated more precisely as follows.

Conjecture 7.3. (Homogeneous Vanishing Conjecture)
For any homogeneous HNP P (z) of degree d ≥ 2, we have

(1) ∆mP m+1 = 0 for any m > α[n,d] := 1
d−2

((d − 1)n−1 − (d − 1)).

(2) For any k ≥ 1, ∆mP m+k = 0 for any m > kα[n,d].

Proposition 7.4. (a) For any homogeneous HNP P (z) of degree d ≥ 2,
the statements (1) and (2) in Conjecture 7.3 are equivalent.

(b) Conjecture 7.3 for d ≥ 2 and Conjecture 7.3 for d = 4 are both

equivalent to the Jacobian conjecture.

Proof: (a) First, (2) ⇒ (1) is trivial. Now we show that (1) ⇒ (2).
By Eq. (3.8) with k = 1, we see that the degree degt Qt(z) of Qt(z) with
respect to t is less or equal to αn,d, i.e. degt Qt(z) ≤ α[n,d]. Therefore,
for any k ≥ 1, we have, degt Q

k
t (z) ≤ kα[n,d]. By Eq. (3.8) again, we

see that (2) holds for any k ≥ 1.
(b) By theorem 7.2, it is easy to see that Conjecture 7.3 for d ≥ 2 or

Conjecture 7.3 with d = 4 implies the Jacobian conjecture. Therefore it
will be enough to show that the Jacobian conjecture implies Conjecture
7.3. By Corollary 1.4 in [BCW], we know that, for any polynomial
automorphism F (z) of Cn with deg F (z) = d − 1, deg G(z) ≤ (d −
1)n−1. By applying this result to the polynomial automorphism F (z) =
z − ∇P (z) and its inverse G(z) = z − ∇Q(z), we get deg Q(z) ≤
(d − 1)n−1 + 1. Furthermore, by Eq. (3.8) with k = 1 and the fact



32 WENHUA ZHAO

deg ∆mP m+1(z) = (m + 1)d − 2m (m ≥ 1), we get ∆mP m+1(z) = 0 if

(m + 1)d − 2m > (d − 1)n−1 + 1.

By separating m from the inequality above, we get ∆mP m+1(z) = 0
whenever m > α[n,d]. ✷

Finally, by translating certain known results on the Jacobian con-
jecture, we know that the vanishing conjectures, Conjecture 7.1 or 7.3,
are true for the following cases.

• S. Wang [Wa] proved that the Jacobian conjecture holds for any

polynomial map F (z) of deg F (z) ≤ 2. Hence Conjecture 7.1

and 7.3 hold for any HNP P (z) of degree d ≤ 3.
• For any symmetric polynomial map F (z) = z − H(z) with

o(H(z)) ≥ 2 and JH(z) nilpotent, A. van den Essen and S.

Washburn [EW] showed that the Jacobian conjecture holds when

n ≤ 4 and H(z) is homogeneous. Later, M. de Bondt and A.

van den Essen [BE2]-[BE4] further proved that the Jacobian

conjecture holds either n ≤ 4 without H(z) being homogeneous,

or n = 5 with H(z) being homogeneous. (For an exposition dis-

cussion on these results, see [BE5].). From the results above, we

see that, Conjecture 7.1 has an affirmative answer when n ≤ 4,
and Conjecture 7.3 is true when n ≤ 5.

• By Theorem 4.1 in [EW] and similar arguments there, it is

easy to show that the only HNP’s (not necessarily homogeneous)
P (z) ∈ R[z] (o(P (z)) ≥ 2) with real coefficients are P (z) = 0.
Hence, Conjecture 7.1 and 7.3 hold trivially in this case.

• Recently, D. Wright [Wr1] showed that the Jacobian conjecture

holds for any symmetric polynomial map F (z) = z −H(z) with

H(z) homogeneous and JH3(z) = 0. Hence Conjecture 7.3

holds for any homogeneous HNP P (z) with Hes 3(P (z)) = 0.

Furthermore, by Corollary 3.9, we also know that Conjecture 7.1
holds for any HNP P (z) such that ∆P 2(z) = 0. In particular, it is true
for HNP’s constructed by Eq.(5.13) and Eq.(5.14).
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