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NONCOMMUTATIVE SYMMETRIC SYSTEMS OVER

ASSOCIATIVE ALGEBRAS

WENHUA ZHAO

Abstract. This paper is the first of a sequence papers ([Z4]–[Z7])
on the NCS (noncommutative symmetric) systems over differen-
tial operator algebras in commutative or noncommutative variables
([Z4]); the NCS systems over the Grossman-Larson Hopf algebras
([GL], [F]) of labeled rooted trees ([Z6]); as well as their connec-
tions and applications to the inversion problem ([BCW], [E4]) and
specializations of NCSFs ([Z5], [Z7]). In this paper, inspired by the
seminal work [GKLLRT] on NCSFs (noncommutative symmetric
functions), we first formulate the notion NCS systems over asso-
ciative Q-algebras. We then prove some results for NCS systems
in general; the NCS systems over bialgebras or Hopf algebras; and
the universal NCS system formed by the generating functions of
certain NCSFs in [GKLLRT]. Finally, we review some of the main
results that will be proved in the followed papers [Z4], [Z6] and
[Z7] as some supporting examples for the general discussions given
in this paper.

1. Introduction

Let K be any unital commutative Q-algebra and A a unital asso-
ciative but not necessarily commutative K-algebra. Let t be a formal
central parameter, i.e. it commutes with all elements of A, and A[[t]]
the K-algebra of formal power series in t with coefficients in A. A
NCS (noncommutative symmetric) system over A (see Definition 2.1)
by definition is a 5-tuple Ω ∈ A[[t]]×5 which satisfies the defining equa-
tions (see Eqs. (2.1)–(2.5)) of the NCSFs (noncommutative symmetric
functions) first introduced and studied in the seminal paper [GKLLRT].
When the base algebra K is clear in the context, the ordered pair (A,Ω)
is also called a NCS system. In some sense, a NCS system over the
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K-algebra A can be viewed as a system of analogs in A of the NCSFs
defined by the same equations. For more studies on NCSFs, see [T],
[KLT], [DKKT], [KT1], [KT2] and [DFT].

One immediate but probably the most important example of the
NCS systems is (NSym,Π) (see Eqs. (2.28)–(2.33) ) formed by the gen-
erating functions of the NCSFs defined in [GKLLRT] by Eqs. (2.1)–
(2.5) over the free K-algebra NSym of NCSFs. It serves as the uni-
versal NCS system over all associative K-algebras (see Theorem 2.15).
More precisely, for any NCS system (A,Ω), there exists a unique K-
algebra homomorphism S : NSym → A such that S×5(Π) = Ω (Here
we have extended the homomorphism S to S : NSym[[t]] → A[[t]] by
the base extension).

Note that, it has been shown in [GKLLRT], in the quotient modulo
the commutator of NSym, the NCSFs in Π become the corresponding
classical (commutative) symmetric functions ([Ma]). Hence, the uni-
versal NCS system for commutative K-algebras is given by the generat-
ing functions of the corresponding classical (commutative) symmetric
functions.

One of the main motivations for the introduction of NCS is as follows
(see Subsection 2.3 for more discussions). Note that, as an important
topic in the theory of symmetric functions, the relations or polynomial
identities among various commutative or noncommutative symmetric
functions have been known explicitly (see [Ma] and [GKLLRT]). When
a NCS system Ω is given over aK-algebra A, by applying theK-algebra
homomorphism S : NSym → A guaranteed by the universal property
of the system (NSym,Π) to the identities of the NCSFs in Π, we see the
same identities hold for the elements of A in the NCS system Ω. This
could be a very effective way to obtain identities for certain elements
of A if we could show they are involved in a NCS system over A.
On the other hand, if the given NCS system (A,Ω) has already been
well-understood, the K-algebra homomorphism S : NSym→ A in turn
gives a specialization or realization ([GKLLRT], [St2]) of NCSFs, which
may provide some new understanding of NCSFs. For more studies on
the specializations of NCSFs, see the references quoted above.

This paper is the first of a sequence papers on the NCS systems over
differential operator algebras in commutative or noncommutative vari-
ables ([Z4]); the NCS systems over the Grossman-Larson Hopf algebras
of labeled rooted trees ([Z6]); as well as their connections and appli-
cations to the inversion problem ([BCW], [E4]) and specializations of
NCSFs ([Z5], [Z7]). In this paper, we first introduce the notion NCS

systems over any associative K-algebras. We then prove some results
on the NCS systems in general, the NCS systems over bi-algebras or
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Hopf algebras and the universal NCS system from NCSFs ([GKLLRT]),
which will be needed in the followed papers. Finally, we briefly review
some of the main results that will be proved in the followed papers [Z4],
[Z6] and [Z7] as some supporting examples to the general discussions
given in the first part of this paper.

The arrangement of this paper is as follows. In Subsection 2.1, we
first formulate the notion NCS systems (A,Ω) over any associative
K-algebra A (see Definition 2.1). We then show in Lemma 2.5 the ex-
istence and uniqueness of the solutions in A[[t]] of any one of Eqs. (2.2)–
(2.5). Several direct consequences of Lemma 2.5 are given in Corollaries
2.6–2.9. Finally, in Proposition 2.12, we prove a property of the NCS
systems over bi-algebras or Hopf algebras. In Subsection 2.2, we first
recall some NCSFs introduced in [GKLLRT] and a graded Hopf alge-
bra structure of the space NSym of NCSFs. We then in Theorem 2.15
show the generating functions of these NCSFs form the universal NCS
system (NSym,Π) over all K-algebra. Moreover, we also give some
sufficient conditions in Theorem 2.15 for the algebra homomorphisms
guaranteed by the universal property of (NSym,Π) to be further ho-
momorphisms of bi-algebras and Hopf algebras. In Subsection 2.3, we
discuss some possible applications of the universal properties of the
NCS system (NSym,Π), which are also the main motivations for the
introduction of the NCS systems over associative K-algebras.

The results above form the first part of this paper. In the second part,
Sections 3 and 4, we review some of the main results that will appear
in the sequels [Z4], [Z6] and [Z7]. The main purposes that we include
Sections 3 and 4 in this paper are as follows. First, we think it is better
to provide some concrete examples for the general discussions of NCS
systems given in Section 2, so the paper can be read as a more complete
introduction to the newly defined NCS systems. Secondly, considering
length of the whole series of papers, we hope that discussions in Sections
3 and 4 can also serve as a shorter survey or review for some of the
main results obtained the followed papers [Z4], [Z6] and [Z7] (Precisely
speaking, they shold be read as an annuouncement since these sequel
papers for the time being are still under submission).

In Section 3, we discuss the NCS systems that will be constructed in
[Z4] over differential operator algebras in commutative or noncommu-
tative free variables. Certain properties of the resulting specialization
of NCSFs by differential operators, which will be proved in [Z4] and
[Z7], are also discussed. In Section 4, for any non-empty W ⊆ N+, we
first recall the Connes-Kreimer Hopf algebra HW

CK and the Grossman-
Larson Hopf algebra HW

GL of W -labeled rooted forests and W -labeled
rooted trees, respectively. We then discuss the NCS system (HW

GL,Ω
W
T

)
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that will be constructed in [Z6] over the Grossman-Larson Hopf algebra
HW

GL. Some of properties to be given in [Z6] and [Z7] of the resulting
specializations of NCSFs by W -labeled rooted trees will also be dis-
cussed in this section. Finally, we briefly explain a connection, which
will be given in [Z7], between the NCS system (HW

GL,Ω
W
T

) with the
NCS systems discussed in Section 3 over differential operator algebras.
Some consequences of this connection to the related specializations of
NCSFs and the inversion problem ([BCW], [E4]) will also be discussed.

Acknowledgment: The author would like to thank the referee for
pointing out some misprints and suggesting a connection of NCS sys-
tems with the combinatorial Hopf algebras introduced and studied by
Marcelo Aguiar, Nantel Bergeron and Frank Sottile in [ABS].

2. NCS Systems over Associative Algebras

Let K be any unital commutative Q-algebra and A any unital asso-
ciative but not necessarily commutative K-algebra. Let t be a formal
central parameter, i.e. it commutes with all elements of A, and A[[t]]
the K-algebra of formal power series in t with coefficients in A.

First let us introduce the following main notion of this paper, which
is mainly motivated by the seminal work [GKLLRT] by I. M. Gelfand;
D. Krob; A. Lascoux; B. Leclerc; V. S. Retakh and J.-Y. Thibon on
NCSFs (noncommutative symmetric functions).

Definition 2.1. For any unital associative K-algebra A, a 5-tuple
Ω = (f(t), g(t), d (t), h(t), m(t)) ∈ A[[t]]×5 is said to be a NCS

(noncommutative symmetric) system over A if the following equations

are satisfied.

f(0) = 1(2.1)

f(−t)g(t) = g(t)f(−t) = 1,(2.2)

ed (t) = g(t),(2.3)

dg(t)

dt
= g(t)h(t),(2.4)

dg(t)

dt
= m(t)g(t).(2.5)

When the base algebra K is clear in the context, we also call the
ordered pair (A,Ω) a NCS system. Since NCS systems often come from
generating functions of certain elements of A that are under concern,
the components of Ω will also be referred as the generating functions

of their coefficients.
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2.1. NCS Systems in General. In this subsection, we prove some
results for the NCS systems in general and also the NCS systems over
bi-algebras and Hopf algebras.

First, let us fix the following convention that will be used implicitly
throughout this paper.

Convention:

(a) All K-algebras in this paper are assumed to be unital associative

K-algebras and all K-algebra homomorphsims are assumed to

be unit-preserving.

(b) For any K-algebras B and A and any K-linear map S : B → A,

we always extend S to a linear map, which we will still denote

by S, from B[[t]] to A[[t]] by the base extension, i.e. for any∑
m≥0 bmt

m ∈ B[[t]], we set

S(
∑

m≥0

bmt
m) =

∑

m≥0

S(bm)tm.(2.6)

Furthermore, for any m ≥ 1, we denote by S×m the K-linear

map from B[[t]]×m to A[[t]]×m induced by S : B[[t]]→ A[[t]].

Now let A be any unital K-algebra and Ω a NCS system over A as
given in Definition 2.1. We define five sequences of elements of A by
writing

f(t) :=
∑

m≥0

tmλm.(2.7)

g(t) :=
∑

m≥0

tmsm,(2.8)

d (t) :=
∑

m≥1

tm

m
φm,(2.9)

h(t) :=
∑

m≥1

tm−1ψm,(2.10)

m(t) :=
∑

m≥1

tm−1ξm.(2.11)

We will also denote each sequence of the elements of A defined above
by the corresponding letter without sub-index. For example, λ denotes
the sequence {λm |m ≥ 0} defined in Eq. (2.7) and ξ denotes the se-
quence {ξm |m ≥ 1} defined in Eq. (2.11), etc.

Next, let us start with the following simple but useful properties of
NCS systems.
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Lemma 2.2. Let A and B be any K-algebras and S :B → A an algebra

homomorphism. Let Ω̃ be a NCS system over B. Then Ω := S×5(Ω̃) is

a NCS system over A.

Proof: Note that, by our convention above, S : B[[t]] → A[[t]] is
also a unital K-algebra homomorphism and commutes with the linear
operator d

d t
. With these observations, it is easy to see that, the com-

ponents of the 5-tuple Ω := S×5(Ω̃) also satisfy Eqs. (2.1)–(2.5). Hence
the lemma follows. ✷

Lemma 2.3. Let (A,Ω) be a NCS system as fixed above. Define the

5-tuple Ωτ to be

Ωτ := ( g(−t), f(−t), −d (t), −m(t), −h(t)) .(2.12)

Then Ωτ is also a NCS system over A.

We call the NCS system Ωτ the flip of Ω.
Proof: First, for convenience, we also write Ωτ as

Ωτ =: ( f̃(t), g̃(t), d̃ (t), h̃(t), m̃(t) ) ,

i.e. we set f̃(t) := g(−t); g̃(t) := f(−t); etc.

By setting t = 0 in Eq. (2.2) for Ω, we see that f̃(0) = g(0) = 1. So

we get Eq. (2.1) for Ωτ . By rewriting Eq. (2.2) for Ω in terms of f̃(t)

and g̃(t), we see Eq. (2.2) also holds for Ω̃. To show Eq. (2.3) for Ωτ ,
we consider

ed̃(t) = e−d(t)

= g(t)−1

= f(−t)

= g̃(t).

Hence we get Eq. (2.3) for Ωτ .
Now consider Eqs. (2.4) and (2.5) for Ωτ . Note first that, by applying

d
d t

to Eq. (2.2) for Ω, we have

0 =
df(−t)

d t
g(t) + f(−t)

dg(t)

d t
,

0 =
dg(t)

d t
f(−t) + g(t)

df(−t)

d t
.

Replacing dg(t)
d t

by m(t)g(t) and g(t)h(t) respectively in the last two

equations above and then solving df(−t)
d t

, we get

df(−t)

d t
= −f(−t)m(t) ,
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df(−t)

d t
= −h(t)f(−t) .

Rewriting the last two equations above in terms of g̃(t), h̃(t) and
m̃(t), we get Eqs. (2.4) and (2.5) for Ωτ . ✷

Let Ai (i = 1, 2) be any K-algebras and Ωi a NCS system over Ai.
Write Ωi as

Ωi = (fi(t), gi(t), di(t), hi(t), mi(t))

and set

f3(t) := f1(t)⊗ f2(t) ,

g3(t) := g1(t)⊗ g2(t) ,

d3(t) := d1(t)⊗ 1 + 1⊗ d2(t) ,

h3(t) := h1(t)⊗ 1 + 1⊗ h2(t) ,

m3(t) := m1(t)⊗ 1 + 1⊗m2(t)

Ω1 ⊗K Ω2 := (f3(t), g3(t), d3(t) , h3(t), m3(t)) .(2.13)

We call Ω1 ⊗K Ω2 the tensor product (over K) of the NCS systems
of Ω1 and Ω2. Then we have the following proposition.

Proposition 2.4. Let (Ai,Ωi) (i = 1, 2) be NCS systems. Then, the

tensor product Ω1 ⊗K Ω2 of the NCS systems of Ω1 and Ω2 forms a

NCS system over the K-algebra A1 ⊗K A2.

Proof: The proof is straightforward, and is just to check the com-
ponents of Ω1⊗K Ω2 satisfy Eqs. (2.1)–(2.5). First, it is easy to see that
Eqs. (2.1) and (2.2) are satisfied. To show Eq. (2.3), note that, d1(t)⊗1
and 1⊗ d2(t) as elements of (A1 ⊗K A2)[[t]] commute with each other.
By this fact, we have

ed3(t) = ed1(t)⊗1+1⊗d2(t)

= ed1(t)⊗1e1⊗d2(t)

Applying Eq. (2.3) for g1(t) and g2(t):

= (g1(t)⊗ 1)(1⊗ g2(t))

= g1(t)⊗ g2(t)

= g3(t).

Next, let us show Eq. (2.4) as follows.

d g3(t)

d t
=

d

d t
(g1(t)⊗ g2(t))
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=
d g1(t)

d t
⊗ g2(t) + g1(t)⊗

d g2(t)

d t

Applying Eq. (2.4) for g1(t) and g2(t):

= (g1(t)h1(t))⊗ g2(t) + g1(t)⊗ (g2(t)h2(t))

= (g1(t)⊗ g2(t))(h1(t)⊗ 1 + 1⊗ h2(t))

= g3(t)h3(t).

Hence, we get Eq. (2.4). Eq. (2.5) can be proved similarly. ✷

Next, let us prove the existence and uniqueness of solutions for any
one of Eqs. (2.2)–(2.5).

Lemma 2.5. Let A be any associative K-algebra. Then, for any one

of Eqs. (2.2)–(2.5), if one generating function in the equation fixed to

be an element of A[[t]] with f(0) = 1, g(0) = 1 or d(0) = 0 if f(t), g(t)
or d(t) is the one fixed, the equation has one and only one solution in

A[[t]] for the other generating function.

Proof: First, the lemma is obvious for Eqs. (2.2) and (2.3). To see
it is also true for Eq. (2.4), we write g(t) and h(t) as in Eqs. (2.8) and
(2.10), respectively. Using the fact s0 = 1 and Eq. (2.4), we have

∑

m≥1

msmt
m−1 =

(
1 +

∑

m≥1

smt
m

)(
∑

m≥1

ψmt
m−1

)
.

Comparing the coefficients of tm−1 (m ≥ 2) in the equation above,
we get

ψ1 = s1,(2.14)

msm = ψm +
∑

k+l=m,
k,l≥1

skψl,(2.15)

for any m ≥ 2.
Then, by Gauss’ elimination method, it is easy to see that, if one

of the sequences {sm |m ≥ 1} and {ψm |m ≥ 1} is given, the other
can always be obtained in a unique way. Hence the lemma is true for
Eq. (2.4). Similarly, we can prove the lemma for Eq. (2.5). ✷

From Lemma 2.5 and its proof, it is easy to see that we have the
following three corollaries.

Corollary 2.6. For any K-algebra A and c(t) ∈ A[[t]], we have

(a) If c(0) = 1, then, for any i = 1 or 2, there exists a unique NCS

system Ω over A with c(t) as the ith component.
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(b) If c(0) = 0, then, there exists a unique NCS system Ω over A

with c(t) as the 3rd component.

(c) For any i = 4 or 5, there exists a unique NCS system Ω over A

with c(t) as the ith component.

Corollary 2.7. Let (A,Ω) be a NCS system. Then, any component

of Ω completely determines the others. In other words, if two NCS

systems over A have a same component at a same location, then these

two systems are completely same.

Corollary 2.8. Let (A,Ω) be a NCS system. For any sequence w =
{wm |m ≥ 1} of elements of A, we denote by K〈w〉 the unital subalgebra

of A generated by wm’s. Then, for any sequence w = s, φ, ψ or ξ, we

have

K〈w〉 = K〈λ〉 .(2.16)

Corollary 2.9. Let (A,Ω) and (B, Ω̃) be NCS systems and S : B → A

a K-algebra homomorphism. Suppose that, for some 1 ≤ j ≤ 5, S maps

the jth component of Ω̃ to the jth component of Ω. Then, S×5(Ω̃) = Ω.

Proof: First, by Lemma 2.2, we see that S×5(Ω̃) also is a NCS sys-

tem over A. Since the NCS systems S×5(Ω̃) and Ω over A have same
jth component, by Corollary 2.7, we have S×5(Ω̃) = Ω. ✷

Proposition 2.10. Let (A,Ω) a NCS system as fixed in Definition 2.1

and τ : A → A a K-algebra homomorphism such that τ(φm) = −φm

for any m ≥ 1. Then, we have

τ(λm) = (−1)msm ,(2.17)

τ(sm) = (−1)mλm ,(2.18)

τ(ψm) = −ξm ,(2.19)

τ(ξm) = −ψm .(2.20)

Proof: Let τ×5(Ω) and Ωτ be respectively the image of Ω under the
homomorphism τ and the flip of Ω defined in Eq. (2.12). By lemma
2.2 and 2.3, we know both τ×5(Ω) and Ωτ are NCS systems over A.
While on the other hand, by the conditions in the proposition, we know
τ×5(Ω) and Ωτ have the same third component −d(t). So, by Corollary
2.7, we have τ×5(Ω) = Ωτ from which Eqs. (2.17)–(2.20) follow directly.
✷

Next we consider NCS systems over some special algebras A.
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Proposition 2.11. Let (A,Ω) be any NCS system over a commutative

K-algebra A. Then we have

m(t) = h(t) = d′(t),(2.21)

where d′(t) denotes the first derivative of d(t) over t.

In particular, the system of Eqs. (2.1)–(2.5) is reduced to:




f(0) = 1 ,

f(−t)g(t) = 1 ,
dg(t)

dt
= g(t)h(t) , or equivalently, ed (t) = g(t) .

Proof: Since A is commutative, so is A[[t]]. In this case, Eqs. (2.4)
and (2.5) become same. Applying d

dt
to Eq. (2.3) and, by the chain

rule, we have

d g(t)

d t
=

d

dt
ed(t) = ed(t)d′(t) = g(t)d′(t).

From the observations above, we see that h(t), m(t) and d′(t) are all
solutions of Eq. (2.4) with (same) g(t). Therefore, by Lemma 2.5, we
have Eq. (2.21) and the proposition follows. ✷

Next, we consider NCS systems over K-bialgebras. First we need
recall the following notions (see [A], [Knu] and [Mo] for more details).
Let A be aK-bialgebra with the co-product denoted by ∆ : A→ A⊗A.
An element x ∈ A is primitive if ∆(x) = 1⊗x+x⊗1. x ∈ A is a group-

like element if ∆(x) = x ⊗ x. A sequence {am |m ≥ 0} of elements of
A is said to be a sequence of divided powers if, for any m ≥ 0, we have

∆am =
∑

k+l=m
k,l≥0

ak ⊗ al.(2.22)

Now let t be a central parameter as before, we extend the counit ǫ
of A to ǫ : A[[t]] → k by setting ǫ(t) = 0 and the co-product ∆ of A
to ∆ : A[[t]] → A[[t]] ⊗K A[[t]] by the base extension. Then, with the
extended counit and co-product, A[[t]] is also a K-bialgebra. With this
K-bialgebra structure fixed on A[[t]], for any sequence {am |m ≥ 0} of
elements of A, it is easy to check that the following facts:

• the sequence {am |m ≥ 0} is a sequence of divided powers of
A iff its generating function a(t) :=

∑
m≥0 amt

m is a group-like
element of A[[t]];
• all elements am (m ≥ 0) are primitive in A iff the generating

function a(t) is a primitive element of A[[t]].
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Proposition 2.12. Let (A,Ω) be a NCS system. Suppose A is further

a K-bialgebra. Then the following statements are equivalent.

(1) {λm |m ≥ 0} is a sequence of divided powers of A.

(2) {sm |m ≥ 0} is a sequence of divided powers of A.

(3) One (hence also all) of d(t), h(t) and m(t) is primitive in A[[t]].

Note that, the statement (3) is same as saying that, the sequence
{φm |m ≥ 1}, {ψm |m ≥ 1} or {ξm |m ≥ 1} is a sequence of the
primitive elements of A.

Proof: By the discussion before the proposition, it will be enough
to show that the following equations are equivalent to each other.

∆f(t) = f(t)⊗ f(t),(2.23)

∆g(t) = g(t)⊗ g(t),(2.24)

∆d(t) = d(t)⊗ 1 + 1⊗ d(t),(2.25)

∆h(t) = h(t)⊗ 1 + 1⊗ h(t),(2.26)

∆m(t) = m(t)⊗ 1 + 1⊗m(t).(2.27)

First, we identify the K-algebras A[[t]]⊗KA[[t]] with (A⊗KA)[[t]] in
the standard way. Then, both sides of Eqs. (2.23)–(2.27) can be viewed
as elements of the K-algebra (A⊗K A)[[t]].

Secondly, note that, the 5-tuple of (A⊗KA)[[t]] formed by the LHS’s
of Eqs. (2.23)–(2.27) in the same order as the equations displayed above

is the image ∆×5(Ω) in ((A⊗A)[[t]])×5 of the NCS system Ω over A
under the K-algebra homomorphism ∆×5 : A×5 → (A ⊗K A)×5; while
the 5-tuple of (A⊗KA)[[t]] on the RHS’s is the tensor product Ω⊗K Ω of
the NCS system Ω with itself. Then, by Lemma 2.2, we know ∆Ω is a
NCS system over the K-algebra (A⊗K A)[[t]], and, by Proposition 2.4,
Ω⊗K Ω is also a NCS system over (A⊗K A)[[t]]. Also note that, one of
Eqs. (2.23)–(2.27) holds iff the NCS systems ∆Ω and Ω⊗Ω have a same
component at a same location. Hence, by Corollary 2.7, Eqs. (2.23)–
(2.27) are equivalent to each other and the proposition follows. ✷

2.2. The Universal NCS System from Noncommutative Sym-

metric Functions. In this subsection, we first recall the definitions of
some NCSFs (noncommutative symmetric functions) first introduced
and studied in [GKLLRT], whose generating functions form a NCS
system Π over the free associative algebra NSym generated by an al-
phabet {Λm |m ≥ 1}. We then show in Theorem 2.15 that the NCS
system (NSym,Π) from NCSFs is actually the universal NCS sys-
tem over all associative K-algebras. When A is further a K-bialgebra
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(resp. Hopf algebra), some sufficient conditions for the algebra homo-
morphism S : NSym → A to be a bialgebra (resp. Hopf algebra) ho-
momorphism are also given in Theorem 2.15.

First, let K be a unital commutative Q-algebra as before and Λ =
{Λm |m ≥ 1} be an alphabet, i.e. a sequence of noncommutative free
variables. For convenience, we also set Λ0 = 1. Let NSym or K〈Λ〉 be
the free associative algebra generated by Λ over K. We denote by λ(t)
the generating function of Λm (m ≥ 0), i.e. we set

λ(t) :=
∑

m≥0

tmΛm = 1 +
∑

k≥1

tmΛm.(2.28)

In the theory of NCSFs, Λm (m ≥ 0) is the noncommutative analog
of the mth classical (commutative) elementary symmetric function and
is called the mth (noncommutative) elementary symmetric function.

To define some other NCSFs, we consider Eqs. (2.2)–(2.5) over the
free K-algebra NSym with f(t) = λ(t). The solutions for g(t), d (t),
h(t), m(t) exist and are unique (see Corollary 2.6, for example), whose
coefficients will be the NCSFs that we are going to define. Following
the notation in [GKLLRT], we denote the resulting 5-tuple by

Π = (λ(t), σ(t), Φ(t), ψ(t), ξ(t))(2.29)

and write the last four generating functions of Π explicitly as follows.

σ(t) =
∑

m≥0

tmSm,(2.30)

Φ(t) =
∑

m≥1

tm
Φm

m
(2.31)

ψ(t) =
∑

m≥1

tm−1Ψm,(2.32)

ξ(t) =
∑

m≥1

tm−1Ξm.(2.33)

Note that, in terms of the terminology in the previous subsection,
the 5-tuple Π defined above is the unique NCS system with f(t) = λ(t)
in Eq. (2.28) over the free K-algebra NSym.

Following [GKLLRT], we call §m (m ≥ 1) the mth complete homo-

geneous symmetric function, and Ψm and Ξm (m ≥ 1) respectively the
mth power sum symmetric function of the first and second kind. Note
that, Ξm (m ≥ 1) were denoted by Ψ∗

m in [GKLLRT]. Due to Propo-
sition 2.14 below, the NCSFs Ξm (m ≥ 1) do not play an important
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role in the NCSF theory (see the comments in page 234 in [GKLLRT]).
But, in the context of some other problems, relations of Ξm’s with other
NCSFs, especially, with Ψm’s, are also important. For example, this is
indeed the case in [Z5] where connections of NCSFs with the inversion
problem are concerned. So we here refer Ξm ∈ NSym (m ≥ 1) as
the mth (noncommutative) power sum symmetric function of the third

kind.
The following two propositions proved in [GKLLRT] and [KLT] will

be very useful for our later arguments.

Proposition 2.13. For any unital commutative Q-algebra K, the free

algebra NSym is freely generated by any one of the families of the

NCSFs defined above.

Proposition 2.14. Let ωΛ be the anti-involution of NSym which fixes

Λm (m ≥ 1). Then, for any m ≥ 1, we have

ωΛ(Sm) = Sm,(2.34)

ωΛ(Φm) = Φm,(2.35)

ωΛ(Ψm) = Ξm.(2.36)

As shown in [GKLLRT], the connections between the NCSFs and the
classical (commutative) symmetric functions ([Ma]), are as follows. Let
X = {Xm |m ≥ 1} be another alphabet and K〈X〉 the free associative
algebra generated by X over K. We can view NSym as a subalgebra
of K〈X〉 by setting, for any m ≥ 1,

Λm =
∑

i1<i2<···<im

Xi1Xi2 · · ·Xim .(2.37)

Let I be the two-sided ideal generated by the commutators of Xm’s
and x the image of X in the quotient algebra modulo I. Then, in the
quotient algebra K[x], Λm and Sm (m ≥ 1) become the mth elemen-

tary symmetric function and the mth complete elementary symmetric

function, respectively; while Φm, Ψm and Ξm (m ≥ 1) all become the
mth power sum symmetric function. See [Ma] for more studies on the
classical symmetric functions above.

Next, let us recall the following graded K-Hopf algebra structure of
NSym. It has been shown in [GKLLRT] that NSym is the universal
enveloping algebra of the free Lie algebra generated by Ψm (m ≥ 1).
Hence, it has a Hopf K-algebra structure as all other universal envelop-
ing algebras of Lie algebras do. Its co-unit ǫ : NSym→ K, co-product
∆ and antipode S are uniquely determined by

ǫ(Ψm) = 0,(2.38)
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∆(Ψm) = 1⊗Ψm + Ψm ⊗ 1,(2.39)

S(Ψm) = −Ψm,(2.40)

for any m ≥ 1.
Furthermore, we define the weight for NCSFs by setting the weight

of any monomial Λi1
m1

Λi2
m2
· · ·Λik

mk
to be

∑k

j=1 ijmj . For any m ≥ 0,
we denote by NSym[m] the vector subspace of NSym spanned by the
monomials of Λ of weight m. Then it is easy to see that

NSym =
⊕

m≥0

NSym[m],(2.41)

which provides a grading for NSym.
Note that, it has been shown in [GKLLRT], for any m ≥ 1, the

NCSFs Sm,Φm,Ψm ∈ NSym[m]. By Proposition 2.14, this is also true
for the NCSFs Ξm’s. By the facts above and Eqs. (2.38)–(2.40), it is
also easy to check that, with the grading given in Eq. (2.41), NSym

forms a graded K-Hopf algebra. Its graded dual is given by the space
QSym of quasi-symmetric functions, which were first introduced by I.
Gessel [Ge] (see also [MR] and [St2] for more discussions).

Now we come back to our discussions on the NCS systems. Note
that, we have seen that (NSym,Π) by definition forms a NCS system.
More importantly, we have the following theorem on the NCS system
(NSym,Π).

Theorem 2.15. Let A be a K-algebra and Ω a NCS system over A.

Then,

(a) There exists a unique K-algebra homomorphism S : NSym→ A

such that S×5(Π) = Ω.

(b) If A is further a K-bialgebra (resp. K-Hopf algebra) and one of

the equivalent statements in Proposition 2.12 holds for the NCS sys-

tem Ω, then S : NSym → A is also a homomorphism of K-bialgebras

(resp. K-Hopf algebras).

Proof: (a) Let Ω be given as in Definition 2.1 and its components
given as in Eqs. (2.7)–(2.11). Let S : NSym → A to be the unique
K-algebra homomorphism such that, for any m ≥ 1,

S(Λm) = λm.(2.42)

Since NSym is freely generated by Λm (m ≥ 1) as a K-algebra, so
S is well defined. Then, by Corollary 2.9, we have S×5(Π) = Ω. The
uniqueness of S follows from the requirement S(λ(t)) = f(t), which is
same as Eq. (2.42), and again the fact that NSym is freely generated
by Λm (m ≥ 1).
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(b) Let ǫ and ǫA denote the co-units of NSym and A, respectively,
and ∆ denote the co-products of both NSym and A. Then we need
show the following two equations.

(S⊗ S) ◦∆ = ∆ ◦ S(2.43)

ǫA ◦ S = ǫ.(2.44)

First, by the second condition in (b) and Proposition 2.12, we may
assume ψm (m ≥ 1) are all primitive elements of A. By Eq.(2.39), we
know that Ψm (m ≥ 1) are all primitive elements of NSym. Secondly,
note that, all the maps involved in Eqs. (2.43) and (2.44) are K-algebra
homomorphisms, and, by Proposition 2.13, NSym is freely generated
by Ψm (m ≥ 1) as a K-algebra. Therefore, to show Eqs. (2.43) and
(2.44), it will be enough to show that both sides of the equations have
same values at Φm (m ≥ 1).

With the observations above, for any m ≥ 1, we consider

(S⊗ S)(∆Ψm) = (S⊗ S)(Ψm ⊗ 1 + 1⊗Ψm)

= S(Ψm)⊗ 1 + 1⊗ S(Ψm)

= ψm ⊗ 1 + 1⊗ ψm

= ∆ψm.

Hence, we have Eqs. (2.43).
To show Eq. (2.44), first, by Theorem 2.1.3 in [A], we know that the

counit of any K-bialgebra B maps any primitive element y ∈ B to
zero. Therefore, for any m ≥ 1, we have ǫ(ψm) = 0 and ǫA(S(Ψm)) =
ǫA(ψm) = 0. Hence we have Eq. (2.44).

Finally, let us consider the case that A is further a K-Hopf algebra.
We need show that S in this case also commutes with the antipodes of
K〈Λ〉 and A, i.e.

S ◦ S = S ◦ S,(2.45)

where both the antipodes of K〈Λ〉 and A are denoted by S.
First, since both antipodes S are anti-homomorphisms of K-algebras

and S : NSym → A is a K-algebra homomorphism, it will be enough
to show that both sides of Eq. (2.45) have same values at Ψm (m ≥ 1).
Secondly, it is well-known (see [A], for example) and also easy to check
that the antipode S of any Hopf algebra A maps any primitive element
x ∈ A to −x. By the observations above, we have

S ◦ S (Ψm) = S(ψm) = −ψm,

S ◦ S (Ψm) = S(−Ψm) = −ψm.

Hence, Eq. (2.45) holds. ✷
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Remark 2.16. By taking the quotient over the two-sided ideal gener-

ated by the commutators of Λm’s, or applying the similar arguments

as in the proof of Theorem 2.15, it is easy to see that, over the cate-

gory of commutative K-algebras, the universal NCS system is given by

the generating functions of the corresponding classical (commutative)
symmetric functions ([Ma]).

Remark 2.17. Following the referee’s suggestion, we would like to

point out a connection of the universal homomorphism S : NSym →
A with the universal homomorphism from the Hopf algebra QSym of

quasi-symmetric functions to combinatorial Hopf algebras introduced

and studied in [ABS].
Suppose that A is a graded and connected, and one of the statements

of Proposition 2.12 holds, say statement (b). Furthermore assume in

this case that the elements sm (m ≥ 1) are homogeneous and with

grading m. Denote by A∗ the graded dual Hopf algebra of A. Then,

by taking duals, we get a homomorphism S∗ : A∗ → QSym of K-Hopf

algebras. Let ζ be the linear functional of A∗ induced by the sequence

{sm |m ≥ 0}, i.e. ζ |A∗

m
(m ≥ 0) is given by evaluating elements of A∗

m

at sm. Since the sequence {sm |m ≥ 0} is a sequence of divided powers,

one may easily check that ζ is a character of A∗, i.e. ζ : A∗ → K is

a homomorphism of K-algebras. In terms of the notion introduced in

[ABS], the pair (A∗, ζ) becomes a combinatorial Hopf algebra, and the

homomorphism S∗ : A∗ → QSym coincides the unique homomorphism

guaranteed by Theorem 4.1 in [ABS] for combinatorial Hopf algebras.

2.3. Possible Applications. In this subsection, we discuss the follow-
ing possible applications of the universal property of the NCS system
(NSym,Π) given in Theorem 2.15. From the discussions below, we
also can see some of the main motivations for the introduction of the
NCS systems over associative algebras.

First, the universal property of the NCS system (NSym,Π) can be
used to solve any equations of Eqs. (2.2)–(2.5) over any K-algebras A.
For example, given a K-algebra A and h(t) ∈ A[[t]] with h(0) = 0,
we can solve Eqs. (2.3) and (2.4) for d(t) and g(t) as follows. First,
by Corollary 2.6, we know, theoretically, there exists a unique NCS
system Ω over A with h(t) as its fourth component. Hence, by the
universal property of (NSym,Π), we have a unique homomorphism
S : NSym → A such that S×5(Π) = Ω. On the other hand, the rela-
tions or polynomial identities between any two families of the NCSFs in
the first four components of Π have been given explicitly in [GKLLRT].
By applying the anti-involution ωΛ in Proposition 2.14, one can easily
derive the relations of the NCSFs Ξm’s with other NCSFs in Π (for
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example, see §4.1 in [Z5] for a complete list). In particular, the coef-
ficients of σ(t) and Φ(t) can be written as certain polynomials in the
coefficients of ψ(t). Now, by simply applying the algebra homomor-
phism S to these polynomials, we get the coefficients of the wanted
solutions d(t) and g(t) in terms of the same polynomials in the co-
efficients of h(t). Hence, we get the solution g(t) and h(t) in A[[t]].
From the arguments above, we see that the generating functions of the
NCSFs in the universal NCS system (NSym,Π) can be viewed as the
universal solutions to Eqs. (2.2)–(2.5) over all associative K-algebras.

Secondly, suppose that a NCS system (A,Ω) is given. By applying
the K-algebra homomorphism S : NSym→ A guaranteed by the uni-
versal property of the system (NSym,Π) to the identities of the NCSFs
in the NCS system Π, we get same identities for the corresponding el-
ements of A in the NCS system Ω. This could be a very effective way
to obtain identities for certain elements of A if we could show that
they are involved in a NCS system over A. For example, this gadget
will be applied in the followed paper [Z5] to derive some identities for
certain differential operators which are important in the studies of the
inversion problem ([BCW], [E4]), i.e. the problem to study various
properties of the inverse maps of affine spaces. On the other hand,
if the given NCS system (A,Ω) has already been well-understood, the
K-algebra homomorphism S : NSym→ A in turn gives a specialization

or realization ([GKLLRT], [St2]) of NCSFs, which may be applied to
study certain properties of NCSFs.

3. NCS Systems over Differential Operator Algebras

In this section, we discuss the NCS systems that will be constructed
in [Z4] over differential operator algebras in commutative or noncom-
mutative free variables. Certain properties of the resulting differential
operator specializations of NCSFs, which will be proved in [Z4] and
[Z7], will also be discussed. The main purposes of this section and
the next one are, first, to provide some supporting examples for the
general discussions of NCS systems given in the previous section, and
second, to give a shorter survey or review for some of the main results
to be given in the followed papers [Z4], [Z6] and [Z7]. For more exam-
ples of the specializations of NCSFs, see the references quoted in the
introduction.

First, let us fix the following notation.
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Let K be any unital commutative Q-algebra as before and z =
(z1, z2, ..., zn) commutative or noncommutative free variables.1 Let t
be a formal central parameter, i.e. it commutes with z and elements
of K. We denote by K〈〈z〉〉 and K[[t]]〈〈z〉〉 the K-algebras of formal
power series in z over K and K[[t]], respectively.

By a K-derivation or simply derivation of K〈〈z〉〉, we mean a K-
linear δ : K〈〈z〉〉 → K〈〈z〉〉 that satisfies the Leibniz rule, i.e. for any
f, g ∈ K〈〈z〉〉, we have

δ(fg) = (δf)g + f(δg).(3.1)

We will denote by DerK〈〈z〉〉 or Der〈〈z〉〉, when the base algebra K

is clear from the context, the set of all K-derivations of K〈〈z〉〉. The
unital subalgebra of Endk(K〈〈z〉〉) (endomorphisms of K〈〈z〉〉 as a K-
vector space) generated by all K-derivations of K〈〈z〉〉 will be denoted
by DK〈〈z〉〉 or D〈〈z〉〉. Elements of D〈〈z〉〉 will be called (formal)
differential operators in the free variables z.

For any α ≥ 1, we denote by Der[α]〈〈z〉〉 the set of the K-derivations
of K〈〈z〉〉 which increase the degree in z by at least α − 1. The uni-
tal subalgebra of D〈〈z〉〉 generated by elements of Der[α]〈〈z〉〉 will be
denoted by D[α]〈〈z〉〉. Note that, by the definitions above, the opera-
tors of scalar multiplications are also in D〈〈z〉〉 and D[α]〈〈z〉〉. When
the base algebra is K[[t]] instead of K itself, the notation Der〈〈z〉〉,
D〈〈z〉〉, Der[α]〈〈z〉〉 and D[α]〈〈z〉〉 will be denoted by Dert〈〈z〉〉, Dt〈〈z〉〉,

Der
[α]
t 〈〈z〉〉 and D

[α]
t 〈〈z〉〉, respectively. For example, Der

[α]
t 〈〈z〉〉 stands

for the set of all K[[t]]-derivations of K[[t]]〈〈z〉〉, which increase the de-

gree in z by at least α − 1. Note that, Der
[α]
t 〈〈z〉〉 = Der[α]〈〈z〉〉[[t]]

and D
[α]
t 〈〈z〉〉 = D[α]〈〈z〉〉[[t]].

For any 1 ≤ i ≤ n and u(z) ∈ K〈〈z〉〉, we denote by
[
u(z) ∂

∂zi

]
the

K-derivation which maps zi to u(z) and zj to 0 for any j 6= i. For any

~u = (u1, u2, · · · , un) ∈ K〈〈z〉〉
×n, we set

[~u
∂

∂z
] :=

n∑

i=1

[ui

∂

∂zi

].(3.2)

Note that, in the noncommutative case, we in general do not have[
u(z) ∂

∂zi

]
g(z) = u(z) ∂g

∂zi
for all u(z), g(z) ∈ K〈〈z〉〉. This is the reason

why we put a bracket [·] in the notation above for the K-derivations.

1Since most of the results in this section do not depend on the commutativity of
the free variables z, we will not distinguish the commutative and the noncommu-
tative case, unless stated otherwise, and adapt the notations for noncommutative
variables uniformly for the both cases.
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With the notation above, it is easy to see that any K-derivations δ of

K〈〈z〉〉 can be written uniquely as
∑n

i=1

[
fi(z)

∂
∂zi

]
with fi(z) = δzi ∈

K〈〈z〉〉 (1 ≤ i ≤ n).
With the commutator bracket, Der[α]〈〈z〉〉 (α ≥ 1) forms a Lie al-

gebra and its universal enveloping algebra is exactly the differential
operator algebra D[α]〈〈z〉〉. Consequently, D[α]〈〈z〉〉 (α ≥ 1) has a Hopf
algebra structure as all other enveloping algebras of Lie algebras do.
In particular, Its coproduct ∆, antipode S and co-unit ǫ are uniquely
determined by the properties

∆(δ) = 1⊗ δ + δ ⊗ 1,(3.3)

S(δ) = −δ,(3.4)

ǫ(δ) = δ · 1,(3.5)

respectively, for any δ ∈ Der〈〈z〉〉.

For any α ≥ 1, let A
[α]
t 〈〈z〉〉 be the set of all the automorphisms

Ft(z) of K[[t]]〈〈z〉〉 over K[[t]], which have the form Ft(z) = z −Ht(z)
for some Ht(z) ∈ K[[t]]〈〈z〉〉×n with o(Ht(z)) ≥ α and Ht=0(z) = 0,
where o(Ht(z)) denotes the minimum of the orders of all components
of Ht(z) as formal power series in z with coefficients in K[[t]]. It is

easy to check that A
[α]
t 〈〈z〉〉 forms a subgroup of the automorphism

group of K[[t]]〈〈z〉〉 over K[[t]]. In particular, for any Ft ∈ A
[α]
t 〈〈z〉〉 as

above, its inverse map Gt := F−1
t can always be written uniquely as

Gt(z) = z + Mt(z) for some Mt(z) ∈ K[[t]]〈〈z〉〉×n with o(Mt(z)) ≥ α

and Mt=0(z) = 0. Throughout this section, we will always let Ht(z),
Gt(z) and Mt(z) be determined as above.

Now we fix an α ≥ 1 and an arbitrary Ft ∈ A
[α]
t 〈〈z〉〉 and consider

the NCS systems (D[α]〈〈z〉〉,ΩFt
) that will be constructed in [Z4] over

the differential operator algebra D[α]〈〈z〉〉. Note that, Ft ∈ A
[α]
t 〈〈z〉〉

can be viewed as a deformation parameterized by t of the formal
map F (z) := Ft=1(z), when it makes sense. For more studies on

Ft ∈ A
[α]
t 〈〈z〉〉 from the deformation point view, see [Z2] and [Z3]. Ac-

tually, the construction of the NCS system (D[α]〈〈z〉〉,ΩFt
) is mainly

motivated by and also depends on the studies of Ft ∈ A
[α]
t 〈〈z〉〉 given

in [Z2] and [Z3].
We first denote by the to-be-constructed NCS system ΩFt

as

ΩFt
= (f(t), g(t), d(t), h(t), m(t)) ∈ D[α]〈〈z〉〉[[t]]×5(3.6)

and write the components of ΩFt
above as in Eqs. (2.7)–(2.11) with the

to-be-determined coefficients in D[α]〈〈z〉〉. Then the components of ΩFt

are determined as follows.
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The first three components of ΩFt
are given by the following propo-

sition which will be proved in Section 3.2 in [Z4].

Proposition 3.1. There exist unique f(t), g(t), d(t) ∈ D[α]〈〈z〉〉[[t]]
with f(0) = 1 and d(0) = 0 such that, for any ut(z) ∈ K[[t]]〈〈z〉〉, we

have

f(−t) ut(z) = ut(Ft),(3.7)

g(t) ut(z) = ut(Gt),(3.8)

ed(t) ut(z) = ut(Gt),(3.9)

where, as usual, the exponential in Eq. (3.9) is given by

ed(t) =
∑

m≥0

d(t)m

m!
.(3.10)

Note that, when we write d(t) above as d(t) = −
[
at(z)

∂
∂z

]
for some

at(z) ∈ tK[[t]]〈〈z〉〉, then we get the so-called D-Log at(z) of the auto-

morphism Ft(z) ∈ A
[α]
t 〈〈z〉〉, which has been studied in [E1]–[E3], [N],

[Z1] and [WZ] for the commutative case.
The last two components of ΩFt

are given directly as

h(t) :=

[
∂Mt

∂t
(Ft)

∂

∂z

]
,(3.11)

m(t) :=

[
∂Ht

∂t
(Gt)

∂

∂z

]
.(3.12)

To get some concrete ideas for the differential operators defined
above, let us recall the following lemma proved in [Z3] for the special

Ft ∈ A
[α]
t 〈〈z〉〉 with Ht(z) = tH(z) for some H(z) ∈ K〈〈z〉〉×n.

Lemma 3.2. For any Ft ∈ A
[α]
t 〈〈z〉〉 of the form Ft(z) = z − tH(z) as

above, let Nt(z) = t−1Mt(z). Then we have

m(t) =

[
Nt(z)

∂

∂z

]
,(3.13)

h(t) =
∑

m≥1

tm−1

[
Cm(z)

∂

∂z

]
,(3.14)

where Cm(z) ∈ K〈〈z〉〉×n (m ≥ 1) are defined recurrently by

C1(z) = H(z),(3.15)
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Cm(z) =

[
Cm−1(z)

∂

∂z

]
H(z),(3.16)

for any m ≥ 2.
Consequently, for any m ≥ 1, the derivations ψm and ξm defined in

Eqs. (3.12) and (3.11) are given by

ψm =

[
Cm(z)

∂

∂z

]
,(3.17)

ξm =

[
N[m](z)

∂

∂z

]
,(3.18)

where N[m](z) ∈ K〈〈z〉〉
×n (m ≥ 1) is the coefficient of tm−1 of Nt(z).

By the mathematical induction on m ≥ 1, it is easy to show that,
when z are commutative variables, we further have

Cm(z) = (JH)m−1H(z)(3.19)

for any m ≥ 1, where JH is the Jacobian matrix of H(z) ∈ K[[z]]×n.

Theorem 3.3. ([Z4]) For any α ≥ 1 and Ft(z) ∈ A
[α]
t 〈〈z〉〉, we have,

(a) the 5-tuple ΩFt
defined as above forms a NCS system over the

differential operator algebra D[α]〈〈z〉〉.
(b) let (NSym,Π) be the NCS system of NCSFs introduced in Section

2.2, then there exists a unique homomorphism SFt
: NSym→ D[α]〈〈z〉〉

of K-Hopf algebras such that S×5
Ft

(Π) = ΩFt
.

Note that, (b) follows directly from (a) and Theorem 2.15, since all
the coefficients of h(t) by Eq. (3.11) are K-derivations and hence are
primitive elements of the Hopf algebra Der[α]〈〈z〉〉.

For any Ft(z) ∈ A
[α]
t 〈〈z〉〉, let ΩFt

be defined above. We write the
components of ΩFt

as in Eq. (3.6) and coefficients of the components as
in Eqs. (2.7)–(2.11). Then we have the following differential operator
specializations of the NCSFs in the NCS system (NSym,Π).

Corollary 3.4. For any α ≥ 1 and Ft(z) ∈ A
[α]
t 〈〈z〉〉, let SFt

:NSym→
D[α]〈〈z〉〉 be the homomorphism of K-Hopf algebras in Theorem 3.3, (b).
Then, for any m ≥ 1, we have

SFt
(Λm) = λm,(3.20)

SFt
(Sm) = sm,(3.21)

SFt
(Ψm) = ψm,(3.22)

SFt
(Φm) = φm,(3.23)

SFt
(Ξm) = ξm.(3.24)
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Note that, one direct consequence of Theorem 3.3 above is the fol-
lowing well-defined map:

S : A
[α]
t 〈〈z〉〉 −→ Hopf (NSym,D[α]〈〈z〉〉)(3.25)

Ft −→ SFt
,

where Hopf (NSym,D[α]〈〈z〉〉) denotes the set of K-Hopf algebra ho-
momorphisms from NSym to D[α]〈〈z〉〉.

Actually, as will be shown in [Z4], the following proposition holds.

Proposition 3.5. For any α ≥ 1, the map S defined in Eq. (3.25) is a

bijection.

Moreover, by identifying Hopf (NSym,D[α]〈〈z〉〉) with the set of all
sequences of divided powers of the Hopf algebra D[α]〈〈z〉〉, one can de-
fine a group product for the set Hopf (NSym,D[α]〈〈z〉〉), with respect
to which the bijection S above becomes an isomorphism of groups.

Next, let us consider the question when the Hopf algebra homomor-
phism SFt

: NSym → D[α]〈〈z〉〉 preserves the gradings of NSym and
D[α]〈〈z〉〉. Note that, precisely speaking, D[α]〈〈z〉〉 is not graded in the
usual sense, for some infinite sums are allowed in D[α]〈〈z〉〉. But we
can consider the following graded subalgebras of D[α]〈〈z〉〉.

Let D〈z〉 be the differential operator algebra of the polynomial alge-
bra K〈z〉, i.e. D〈z〉 is the unital subalgebra of EndK(K〈z〉) generated
by all K-derivations of K〈z〉. For any m ≥ 0, let D[m]〈z〉 be the set of
all differential operators U such that, for any homogeneous polynomial
h(z) ∈ K〈z〉 of degree d ≥ 0, Uh(z) either is zero or is homogeneous
of degree m+ d. For any α ≥ 1, set D[α]〈z〉 := D〈z〉 ∩D[α]〈〈z〉〉. Then,
we have the grading

D[α]〈z〉 =
⊕

m≥α−1

D[m]〈z〉,(3.26)

with respect to which D[α]〈z〉 becomes a graded K-Hopf algebra.

Now, for any α ≥ 2, we let G
[α]
t 〈〈z〉〉 be the set of all automorphisms

Ft ∈ A
[α]
t 〈〈z〉〉 such that Ft(z) = t−1F (tz) for some automorphism F (z)

of K〈〈z〉〉. It is easy to check that G
[α]
t 〈〈z〉〉 is a subgroup of A

[α]
t 〈〈z〉〉.

Then we have the following proposition that will be proved in [Z4].

Proposition 3.6. For any α ≥ 2 and Ft ∈ A
[α]
t 〈〈z〉〉, the differential

operator specialization SFt
is a graded K-Hopf algebra homomorphism

SFt
: NSym→ D[α]〈z〉 ⊂ D[α]〈〈z〉〉 iff Ft ∈ G

[α]
t 〈〈z〉〉.
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Now, for any Ft ∈ G
[α]
t 〈〈z〉〉 (α ≥ 2), by the proposition above, we

can take the graded dual of the graded K-Hopf algebra homomorphism
SFt

: NSym→ D[α]〈z〉 and get the following corollary.

Corollary 3.7. For any α ≥ 2 and Ft ∈ G
[α]
t 〈〈z〉〉, let D[α]〈z〉

∗
be the

graded dual of the graded K-Hopf algebra D[α]〈z〉. Then,

S∗
Ft

: D[α]〈z〉
∗
→ QSym

is a homomorphism of graded K-Hopf algebras.

Next, let us point out the following property to be proved in [Z7] of

the differential operator specializations SFt
(Ft ∈ A

[α]
t 〈〈z〉〉).

For any α ≥ 1, let B
[α]
t 〈z〉 be the set of automorphisms Ft = z−Ht(z)

of the polynomial algebra K[t]〈z〉 over K[t] such that the following
conditions are satisfied.

• Ht=0(z) = 0.
• Ht(z) is homogeneous in z of degree d ≥ α.
• With a proper permutation of the free variables zi’s, the Jaco-

bian matrix JHt(z) becomes strictly lower triangular.

Theorem 3.8. In both commutative and noncommutative cases, the

following statement holds.

For any fixed α ≥ 1 and non-zero NCSF P ∈ NSym, there exist

n ≥ 1 (the number of the free variable zi’s) and Ft(z) ∈ B
[α]
t 〈z〉 such

that SFt
(P ) 6= 0.

Remark 3.9. As pointed out earlier in Subsection 2.3, we can apply

the homomorphism SFt
: NSym→ D[α]〈〈z〉〉 to transform the identities

of the NCSFs to the identities of the corresponding differential opera-

tors in the NCS systems ΩFt
. Combining with the special forms of the

differential operators ψm’s and ξm’s in Eqs. (3.17) and (3.18), respec-

tively, we can derive more identities for the inverse map, the D-Log

of Ft ∈ A
[α]
t 〈〈z〉〉 as well as the formal flow generated by Ft(z), which

may be applied further to study the inversion problem. For detailed

discussions in this direction, see the sequel paper [Z5].

Finally, let us summarize the main results discussed in this section

as follows. By Theorem 3.3, for any Ft ∈ A
[α]
t 〈〈z〉〉, we have a spe-

cialization SFt
: NSym→ D[α]〈〈z〉〉 of NCSFs by differential operators

in D[α]〈〈z〉〉; by Proposition 3.5, we know any such a specialization of
NCSFs, if it is also a K-Hopf algebra homomorphism, is give by SFt

for some Ft ∈ A
[α]
t 〈〈z〉〉; By Proposition 3.6, we know exactly when the

specialization SFt
: NSym → D[α]〈z〉 preserves the gradings of NSym
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and D[α]〈z〉; Finally, by Theorem 3.8, we know the smaller family of the

specializations SFt
with all possible n ≥ 1 and Ft ∈ B

[α]
t 〈z〉 is already

fine enough to distinguish any two different NCSFs.

4. A NCS System over the Grossman-Larson Hopf Algebra

of Labeled Rooted Trees

In this section, we fix a non-empty W ⊆ N+ and first recall the
Connes-Kreimer Hopf algebra HW

CK ([CM], [Kr], [CK], [F]) and the
Grossman-Larson Hopf algebra HW

GL ([GL], [CK], [F]) of W -labeled
rooted forests and W -labeled rooted trees, respectively. We then dis-
cuss the NCS system (HW

GL,Ω
W
T

) that will be constructed in [Z7] over
the Grossman-Larson Hopf algebra HW

GL and certain properties of the
resulting specializations of NCSFs by W -labeled rooted trees. Finally,
we briefly explain a connection, which will be given in [Z7], between
the NCS system (HW

GL,Ω
W
T

) with the NCS system (D[α]〈〈z〉〉,ΩFt
) (Ft ∈

A
[α]
t 〈〈z〉〉) discussed in Section 3. Some consequences of this connection

will also be discussed.
First, let us fix the following notation.

Notation:

By a rooted tree we mean a finite 1-connected graph with one vertex
designated as its root. For convenience, we also view the empty set ∅
as a rooted tree and call it the emptyset rooted tree. The rooted tree
with a single vertex is called the singleton and denoted by ◦. There
are natural ancestral relations between vertices. We say a vertex w is a
child of vertex v if the two are connected by an edge and w lies further
from the root than v. In the same situation, we say v is the parent of
w. A vertex is called a leaf if it has no children.

Let W ⊆ N+ be any non-empty subset of positive integers. A W -

labeled rooted tree is a rooted tree with each vertex labeled by an ele-
ment of W . If an element m ∈ W is assigned to a vertex v, then m

is called the weight of the vertex v. When we speak of isomorphisms
between unlabeled (resp. W -labeled) rooted trees, we will always mean
isomorphisms which also preserve the root (resp. the root and also the
labels of vertices). We will denote by T (resp. TW ) the set of isomor-
phism classes of all unlabeled (resp. W -labeled) rooted trees. A disjoint
union of any finitely many rooted trees (resp. W -labeled rooted trees)
is called a rooted forest (resp. W -labeled rooted forest). We denote by
F (resp. FW ) the set of unlabeled (resp. W -labeled) rooted forests.

With these notions in mind, we establish the following notation.
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(1) For any rooted tree T ∈ TW , we set the following notation:
• rtT denotes the root vertex of T and O(T ) the set of all

the children of rtT . We set o(T ) = |O(T )| (the cardinal
number of the set O(T )).
• E(T ) denotes the set of edges of T .
• V (T ) denotes the set of vertices of T and v(T ) = |V (T )|.
• L(T ) denotes the set of leaves of T and l(T ) = |L(T )|
• For any T ∈ TW and T 6= ∅, |T | denotes the sum of the

weights of all vertices of T . When T = ∅, we set |T | = 0.
• For any T ∈ TW , we denote by Aut(T ) the automorphism

group of T and α(T ) the cardinal number of Aut(T ).
• For any v ∈ V (T ), we define the height of v to be the

number of edges in the (unique) geodesic connecting v to
rtT . The height of T is defined to be the maximum of the
heights of its vertices.

(2) Any subset of E(T ) is called a cut of T . A cut C ⊆ E(T ) is said
to be admissible if no two different edges of C lie in the path
connecting the root and a leaf. We denote by C(T ) the set of
all admissible cuts of T . Note that, the empty subset ∅ of E(T )
and C = {e} for any e ∈ E(T ) are always admissible cuts.

(3) For any T ∈ TW with T 6= ◦, let C ∈ C(T ) be an admissible cut
of T with |C| = m ≥ 1. Note that, after deleting the edges in
C from T , we get a disjoint union of m+1 rooted trees, say T0,
T1, ..., Tm with rt(T ) ∈ V (T0). We define RC(T ) = T0 ∈ TW

and PC(T ) ∈ FW the rooted forest formed by T1, ..., Tm.
(4) For any T ∈ TW , we say T is a chain if its underlying rooted

tree is a rooted tree with a single leaf. We say T is a shrub if
its underlying rooted tree is a rooted tree of height 1. We say
T is primitive if its root has only one child. For any m ≥ 1,
we set Hm, Sm and Pm to be the sets of the chains, shrubs and
primitive rooted trees T of weight |T | = m, respectively. H, S

and P are set to be the unions of Hm, Sm and Pm, respectively,
for all m ≥ 1.

Let K be any unital commutative Q-algebra and W a non-empty
subset of positive integers. First, let us recall the Connes-Kreimer
Hopf algebras HW

CK of labeled rooted forests.
As a K-algebra, the Connes-Kreimer Hopf algebra HW

CK is the free
commutative algebra generated by formal variables {XT | T ∈ TW}.
Here, for convenience, we will still use T to denote the variable XT

in HW
CK . The K-algebra product is given by the disjoint union. The

identity element of this algebra, denoted by 1, is the free variable X∅
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corresponding to the emptyset rooted tree. The coproduct ∆ : HW
CK →

HW
CK ⊗HW

CK is uniquely determined by setting

∆(1) = 1⊗ 1,(4.1)

∆(T ) = T ⊗ 1 +
∑

C∈C(T )

PC(T )⊗ RC(T ).(4.2)

The co-unit ǫ : HW
CK → K is the K-algebra homomorphism which

sends 1 ∈ HW
CK to 1 ∈ K and T to 0 for any T ∈ TW with T 6= ∅. With

the operations defined above and the grading given by the weight, the
vector space HW

CK forms a connected graded commutative bi-algebra.
Since any connected graded bialgebra is a Hopf algebra, there is a
unique antipode S : HW

CK → HW
CK that makes HW

CK a connected graded
commutative K-Hopf algebra. For a formula for the antipode, see [F].

Next we recall the Grossman-Larson Hopf algebra of labeled rooted
trees. First we need define the following operations for labeled rooted
forests. For any labeled rooted forest F which is disjoint union of la-
beled rooted trees T1, T2, ... , Tm, we set B+(T1, T2, · · · , Tm) the rooted
tree obtained by connecting roots of Ti (1 ≤ i ≤ m) to a newly added
root. We will keep the labels for the vertices of B+(T1, T2, · · · , Tm)
from Ti’s, but for the root, we label it by 0.

Now, we set T̄W := {B+(F ) |F ∈ FW}. Then, B+ : FW → T̄W

becomes a bijection. We denote by B− : T̄W → FW the inverse map
of B+. More precisely, for any T ∈ T̄W , B−(T ) is the W -labeled
rooted forest obtained by cutting off the root of T as well as all edges
connecting to the root in T .

Note that, precisely speaking, elements of T̄W are not W -labeled
trees for 0 6∈ W . But, if we set W̄ = W ∪ {0}, then we can view T̄W

as a subset of W̄ -labeled rooted trees T with the root rtT labeled by 0
and all other vertices labeled by non-zero elements of W̄ . We extend
the definition of the weight for elements of FW to elements of T̄W by
simply counting the weight of roots by zero. We set S̄W

m := B+(SW
m )

(m ≥ 1) and S̄W := B+(SW ). We also define H̄W
m , P̄W

m , H̄W and P̄W in
the similar way.

The Grossman-Larson Hopf algebra HW
GL as a vector space is the

vector space spanned by elements of T̄W over K. For any T ∈ T̄W ,
we will still denote by T the vector in HW

GL that is corresponding to
T . The algebra product is defined as follows. For any T, S ∈ T̄W with
T = B+(T1, T2, · · · , Tm), we set T · S to be the sum of the rooted trees
obtained by connecting the roots of Ti (1 ≤ i ≤ m) to vertices of S in
all possible mv(S) different ways. Note that, the identity element with
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respect to this algebra product is given by the singleton ◦ = B+(∅).
But we will denote it by 1.

To define the co-product ∆ : HW
GL → HW

GL ⊗HW
GL, we first set

∆(◦) = ◦ ⊗ ◦.(4.3)

Now let T ∈ T̄W with T 6= ◦, say T = B+(T1, T2, · · · , Tm) with
m ≥ 1 and Ti ∈ TW (1 ≤ i ≤ m). For any non-empty subset
I ⊆ {1, 2, · · · , m}, we denote by B+(TI) the rooted tree obtained by
applying the B+ operation to the rooted trees Ti with i ∈ I. For con-
venience, when I = ∅, we set B+(TI) = 1. With this notation fixed,
the co-product for T is given by

∆(T ) =
∑

I⊔J={1,2,··· ,m}

B+(TI)⊗B+(TJ).(4.4)

Note that, a rooted tree in T̄W is a primitive element of the Hopf
algebra HW

GL iff it is a primitive rooted tree in the sense that we defined
before, namely the root of T has one and only one child.

The co-unit ǫ : HW
GL → K is the K-algebra homomorphism which

sends 1 ∈ HW
CK to 1 ∈ K and T to 0 for any T ∈ TW with T 6= ∅. With

the operations defined above and the grading given by the weight, the
vector space HW

GL forms a connected graded commutative bi-algebra.
Since any connected graded bialgebra is a Hopf algebra, there is a
unique antipode S : HW

GL → HW
CK that makes HW

GL a connected graded
commutative K-Hopf algebra. For a formula for the antipode, see [Z6].

Note that it has been shown in [H] and [F] that, the Grossman-Larson
Hopf algebra HW

GL and the Connes-Kreimer HW
CK are graded dual to

each other. The pairing is given by, for any T ∈ T̄W and S ∈ FW ,

< T, F >=

{
0, if T 6≃ B+(F ),

α(T ), if T ≃ B+(F ).
(4.5)

Now we consider the NCS system ΩW
T

that will be constructed in
[Z6] over the Grossman-Larson Hopf algebra HW

GL.
First, let us define the following constants for the rooted trees in T̄W :

• We set βT to be the weight of the unique leaf of T if T ∈ H̄W

and 0 otherwise.
• We set γT to be the weight of the unique child of the root of T

if T ∈ P̄W and 0 otherwise.
• We set θT to be the coefficient of s of the order polynomial

Ω(B−(T ), s) of the underlying unlabeled rooted forest of B−(T ).

For general studies on the order polynomials Ω(P, s) of finite posets
P , see [St1]. For a combinatorial interpretation of the constant φT :=
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(−1)v(T )−1θB+(T ) in terms of the numbers of chains with fixed lengths
in the lattice of the ideals of the poset T , see Lemma 2.8 in [SWZ].

Now we consider the following generating functions of T ∈ T̄W .

f̃(t) : =
∑

T∈S̄W

(−1)o(T )−|T |t|T |VT = 1 +
∑

T∈S̄W

T 6=◦

(−1)o(T )−|T |t|T |VT ,(4.6)

g̃(t) : =
∑

T∈T̄W

t|T |VT = 1 +
∑

T∈T̄
W

T 6=◦

t|T |VT ,(4.7)

d̃(t) : =
∑

T∈P̄W

t|T |θT VT .(4.8)

h̃(t) : =
∑

T∈H̄W

t|T |−1βT VT ,(4.9)

m̃(t) : =
∑

T∈P̄W

t|T |−1γT VT ,(4.10)

where, for any T ∈ T̄W , VT := 1
α(T )

T. We further set

ΩW
T

:= ( f̃(t), g̃(t), d̃ (t), h̃(t), m̃(t) ).(4.11)

Theorem 4.1. ([Z6]) For any non-empty set W ⊆ N+, we have

(a) the 5-tuple ΩW
T

defined in Eq. (4.11) forms a NCS system over

the Grossman-Larson Hopf algebra HW
GL.

(b) let (NSym,Π) be the NCS system of NCSFs introduced in Section

2.2, then there exists a unique graded K-Hopf algebra homomorphism

TW : NSym→ HW
GL such that T×5

W (Π) = ΩW
T

.

Note that the grade duals of NSym and HW
GL are the graded K-Hopf

algebras QSym of quasi-symmetric functions and the Connes-Kreimer
Hopf algebra HW

CK , respectively. Since the K-Hopf algebra homomor-
phism TW : NSym → HW

GL in Theorem 4.1 preserves the gradings, by
taking the graded duals, we have the following correspondence.

Corollary 4.2. For any non-empty W ⊆ N+, T∗
W : HW

CK → QSym is

a homomorphism of graded K-Hopf algebras.

Furthermore, the following result will be proved in [Z7].

Proposition 4.3. When W = N+, the graded Hopf algebra homomor-

phism TW : NSym → HW
GL in Theorem 4.1 is an embedding. Conse-

quently, its graded dual T∗
W : HW

CK → QSym in this case is a surjective

homomorphism of graded Hopf algebras.
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Remark 4.4. As we mentioned earlier in Subsection 2.3, by applying

the specialization TW : NSym → HW
GL in Theorem 4.1, we will get a

host of identities from the identities of the NCSFs in the NCS system

(NSym,Π) for the W -rooted trees in the NCS system (HW
GL,Ω

W
T

). We

believe some of these identities are interesting from the aspect of com-

binatorics of rooted trees. But, to keep this paper in a certain size, we

have to ask the reader who is interested in these identities to do the

translations via the Hopf algebra homomorphism TW : NSym→ HW
GL.

Next, we briefly explain a connection, which will be given in [Z7],
between the NCS system ΩW

T
over the Grossman-Larson Hopf algebra

HW
GL and the NCS system ΩFt

(Ft ∈ A
[α]
t 〈〈z〉〉) over the differential

operator algebra D[α]〈〈z〉〉 discussed in Section 3. This connection will
play an important role in the proofs of Theorem 3.8 and Proposition
4.3 mentioned before.

Let W ⊆ N+ be any non-empty subset of positive integers and Ft =

z−Ht(z) ∈ A
[α]
t 〈〈z〉〉 such thatHt(z) can be written as

∑
m∈W tmH[m](z)

for some H[m](z) ∈ K〈〈z〉〉
×n (m ∈ W ). In [Z7], a Hopf algebra homo-

morphism AFt
: HW

GL → D[α]〈〈z〉〉 such that A×5
Ft

(ΩW
T

) = ΩFt
will be

constructed. Furthermore, with this Hopf algebra homomorphism AFt
,

we have the following commutative diagrams.

Proposition 4.5. For any α ≥ 1, let W ⊆ N+ and Ft ∈ A
[α]
t 〈〈z〉〉

fixed as above, we have the following commutative diagrams of K-Hopf

algebra homomorphisms.

NSym
TW−−−→ HW

GL

SFt

y AFt

y

D[α]〈〈z〉〉 D[α]〈〈z〉〉

(4.12)

Combining Proposition 3.7 and Proposition 4.5 above, we have the
following proposition.

Proposition 4.6. For any α ≥ 2 and Ft ∈ G
[α]
t 〈〈z〉〉, we have the

following commutative diagrams of K-Hopf algebra homomorphisms.

QSym
T∗

W←−−− HW
CK

S∗

Ft

x A∗

Ft

x

D[α]〈z〉
∗

D[α]〈z〉
∗

(4.13)

Finally, let us point out that, by applying the Hopf algebra homo-
morphism AFt

: HW
GL → D[α]〈〈z〉〉 above, we can also derive the tree
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expansion formulas for the inverse map Gt(z), the D-Log at(z) and the

formal flow generated by Ft ∈ A
[α]
t 〈〈z〉〉, which will generalize the tree

expansion formulas obtained in [BCW], [Wr] and [WZ] in the commu-
tative case to the noncommutative case. For more details, see [Z7].
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