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NCS SYSTEMS OVER DIFFERENTIAL OPERATOR

ALGEBRAS AND THE GROSSMAN-LARSON HOPF

ALGEBRAS OF LABELED ROOTED TREES

WENHUA ZHAO

Abstract. Let K be any unital commutative Q-algebra and W

any non-empty subset of N+. Let z = (z1, . . . , zn) be commutative
or noncommutative free variables and t a formal central parameter.
Let D[α]〈〈z〉〉 (α ≥ 1) be the unital algebra generated by the differ-
ential operators of K〈〈z〉〉 which increase the degree in z by at least

α− 1 and A
[α]
t 〈〈z〉〉 the group of automorphisms Ft(z) = z−Ht(z)

of K[[t]]〈〈z〉〉 with o(Ht(z)) ≥ α and Ht=0(z) = 0. First, we study

a connection of the NCS systems ΩFt
(Ft ∈ A

[α]
t 〈〈z〉〉) ([Z5], [Z6])

over the differential operators algebra D[α]〈〈z〉〉 and the NCS sys-
tem ΩW

T
([Z8]) over the Grossman-Larson Hopf algebra HW

GL ([GL],
[F1], [F2]) of W -labeled rooted trees. We construct a Hopf alge-

bra homomorphism AFt
: HW

GL → D[α]〈〈z〉〉 (Ft ∈ A
[α]
t 〈〈z〉〉) such

that A×5
Ft

(ΩW
T

) = ΩFt
. Secondly, we generalize the tree expansion

formulas for the inverse map ([BCW], [Wr]), the D-Log and the for-
mal flow ([WZ]) of Ft in the commutative case to the noncommu-
tative case. Thirdly, we prove the injectivity of the specialization

T : NSym → HN
+

GL ([Z8]) of NCSF’s (noncommutative symmet-
ric functions) ([GKLLRT]). Finally, we show the family of the
specializations SFt

of NCSF’s with all n ≥ 1 and the polynomial
automorphisms Ft = z −Ht(z) with Ht(z) homogeneous and the
Jacobian matrix JHt strictly lower triangular can distinguish any
two different NCSF’s. The graded dualized versions of the main
results above are also discussed.
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2 WENHUA ZHAO

1. Introduction

Let K be any unital commutative Q-algebra and A a unital as-
sociative but not necessarily commutative K-algebra. A NCS (non-

commutative symmetric) system over A (see Definition 2.1) by defini-
tion is a 5-tuple Ω ∈ A[[t]]×5 which satisfies the defining equations (see
Eqs. (2.1)–(2.5)) of the NCSF’s (noncommutative symmetric functions)
first introduced and studied in the seminal paper [GKLLRT]. When
the base algebraK is clear in the context, the ordered pair (A,Ω) is also
called a NCS system. In some sense, a NCS system over an associative
K-algebra can be viewed as a system of analogs in A of the NCSF’s
defined by Eqs. (2.1)–(2.5). For some general discussions on the NCS
systems, see [Z5]. For more studies on NCSF’s, see [T], [KLT], [DKKT],
[KT1], [KT2] and [DFT]. One immediate but probably the most impor-
tant example of the NCS systems is (NSym,Π) formed by the gener-
ating functions of the NCSF’s defined in [GKLLRT] by Eqs. (2.1)–(2.5)
over the free K-algebra NSym of NCSF’s (see Section 2.1). It serves as
the universal NCS system over all associative K-algebra (see Theorem
2.3). More precisely, for any NCS system (A,Ω), there exists a unique
K-algebra homomorphism S : NSym→ A such that S×5(Π) = Ω (here
we have extended the homomorphism S to S : NSym[[t]] → A[[t]] by
the base extension). In [Z8] and [Z6], some families of NCS systems
over differential operator algebras and the Grossman-Larson Hopf al-
gebra ([GL], [F1], [F2]) of labeled rooted trees have been constructed,
respectively. Consequently, by the universal property of the NCS sys-
tem (NSym,Π), one obtains two families of specializations of NCSF’s
by differential operators and labeled rooted trees (see Sections 2.2 and
2.3 for a brief review of the results above).

In the first part of this paper, we study a connection of the NCS sys-
tems in [Z8] over the Grossman-Larson Hopf algebras of labeled rooted
trees and the NCS systems in [Z6] over differential operator algebras.
We construct a Hopf algebra homomorphism from the former algebra
to the later which maps the former NCS system to the later. In the
second part of this paper, we first apply the connection above to de-
rive tree expansion formulas for the D-Log’s, the formal flows and the
inverse maps of formal automorphisms in commutative or noncommu-
tative variables, which generalize the tree expansion formulas obtained
in [BCW], [Wr] and [WZ] for commutative variables to the noncommu-
tative case. Secondly, by combining the connection above with some
results obtained in [Z6] and [Z8], we prove more properties for the spe-
cializations of NCSF’s by differential operator and labeled rooted trees
obtained in [Z6] and [Z8], respectively.
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To be more precise, let z = (z1, . . . , zn) be commutative or non-
commutative free variables and t a formal central parameter. Denote
uniformly for both commutative and noncommutative variables z by
K〈〈z〉〉 (resp. K〈z〉) the formal power series (resp. polynomial) alge-
bra of z over K. For any α ≥ 1, let D[α]〈〈z〉〉 (resp. D[α]〈z〉) be
the unital algebra generated by the differential operators of K〈〈z〉〉
(resp. K〈z〉) which increase the degree in z by at least α − 1 and

A
[α]
t 〈〈z〉〉 the group of automorphisms Ft(z) = z −Ht(z) of K[[t]]〈〈z〉〉

with o(Ht(z)) ≥ α and Ht=0(z) = 0. In [Z6], associated with each

automorphism Ft ∈ A
[α]
t 〈〈z〉〉, a NCS system ([Z5]) ΩFt

over the differ-
ential operator algebra D[α]〈〈z〉〉 has been constructed. Consequently,
by the universal property of the NCS system (NSym,Π), one obtains a
families of specializations SFt

: NSym→ D[α]〈〈z〉〉 of NCSF’s by differ-
ential operators. In [Z8], for any non-empty W ⊆ N+, a NCS system
ΩW

T
over the Grossman-Larson Hopf algebra HW

GL were given explicitly.
Hence, one also gets a specialization TW : NSym → HW

GL of NCSF’s
by W -labeled rooted trees.

In the first part of this paper, for any fixed α ≥ 1, ∅ 6= W ⊆ N+

and Ft(z) = z − Ht(z) ∈ A
[α]
t 〈〈z〉〉 such that Ht(z) can be written

as
∑

m∈W tmH[m](z) for some H[m](z) ∈ K〈〈z〉〉
×n (m ∈ W ), we con-

struct a Hopf algebra homomorphism AFt
: HW

GL → D[α]〈〈z〉〉 such that
A×5

Ft
(ΩW

T
) = ΩFt

(see Theorem 3.5 and 3.6). Furthermore, we also show

in Proposition 3.9 that the specializations SFt
: NSym→ D[α]〈〈z〉〉 and

TW : NSym→ HW
GL of NCSF’s are connected by SFt

= TW ◦AFt
. Note

that, it has been shown in [Z6] that SFt
is a graded Hopf algebra homo-

morphism from NSym to the Hopf subalgebra D[α]〈z〉 ⊂ D[α]〈〈z〉〉 iff

Ft ∈ A
[α]
t 〈〈z〉〉 has the form Ft(z) = t−1F (tz) for some automorphism

F (z) of K〈〈z〉〉. By taking the graded duals of the results above, we
get the corresponding commutative diagrams (see Proposition 3.12)
for the Hopf algebras QSym of quasi-symmetric functions ([Ge], [MR],
[St2]), the Connes-Kreimer Hopf algebra HW

CK of W -labeled rooted
forests ([CM], [Kr], [CK], [F1], [F2]), and the graded dual D[α]〈z〉∗ of
differential operator algebra D[α]〈z〉 of K〈z〉.

In the second part of this paper, by applying the Hopf algebra ho-
momorphism AFt

: HW
GL → D[α]〈〈z〉〉 described above, we first derive

tree expansion formulas for the D-Log, the formal flow and the inverse
map of Ft (see Theorem 4.1 and Corollaries 4.3, 4.4). Since the proofs
given here do not depend on the commutativity of the free variables
z, the formulas derived here can be viewed as some natural general-
izations to the noncommutative case of the tree expansion formulas
derived in [BCW], [Wr] and [WZ] in the commutative case. Finally,
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we apply the Hopf algebra homomorphism AFt
: HW

GL → D[α]〈〈z〉〉
above combining with some results already obtained in [Z6] and [Z8] to
study more properties of the specializations SFt

: NSym → D[α]〈〈z〉〉
and TW : NSym → HW

GL of NCSF’s. In Theorem 5.1, we show that,
when W = N+, the specialization TW : NSym → HW

GL actually em-
beds NSym into HW

GL as a graded K-Hopf subalgebra. By taking the
graded duals, we get a surjective graded Hopf algebra homomorphism
T∗

W : HW
CK → QSym from the Connes-Kreimer Hopf algebra HW

CK

([CM], [Kr], [CK], [F1], [F2]) of W -labeled rooted forests onto the Hopf
algebra QSym of quasi-symmetric functions (see Proposition 5.2). In
Theorem 5.3, we show the family of the differential operator special-
izations SFt

of NCSF’s with all n ≥ 1 and polynomial automorphisms

Ft = z − Ht(z) ∈ A
[α]
t 〈〈z〉〉 such that, Ht(z) is homogeneous and the

Jacobian matrix JH is strictly lower triangular, can distinguish any
two different NCSF’s.

Considering the length of paper, we give a more detailed arrangement
of the paper as follows.

In Section 2, we mainly fix some necessary notations and recall some
main results of [Z6] and [Z8] that will be needed throughout this paper.
In Subsection 2.1, we recall the definition of general NCS systems and
the universal NCS system (NSym,Π) from NCSF’s. In Subsection 2.2,
we recall the NCS systems ΩFt

constructed in [Z6] over the differen-
tial operator algebras D[α]〈〈z〉〉 and the resulted differential operator
specializations SFt

: NSym→ D[α]〈〈z〉〉 of NCSF’s. In Subsection 2.3,
we recall the definition of the NCS systems HW

GL (∅ 6= W ⊆ N+) con-
structed in [Z8] over the Grossman-Larson Hopf algebra of W -labeled

rooted trees. In Section 3, for any Ft(z) = z − Ht(z) ∈ A
[α]
t 〈〈z〉〉 and

any non-empty W ⊆ N+ such that Ht(z) =
∑

m∈W tmH[m](z) for some

H[m](z) ∈ K〈〈z〉〉
×n (m ∈ W ), we constructed a Hopf algebra homo-

morphisms AFt
: HW

GL → D[α]〈〈z〉〉 such that A×5
Ft

(ΩW
T

) = ΩFt
(see The-

orem 3.5 and 3.6). Furthermore, we also show in Proposition 3.9 that
the specializations SFt

: NSym → D[α]〈〈z〉〉 and TW : NSym → HW
GL

of NCSF’s are connected by SFt
= TW ◦ AFt

. The graded dualized
versions of the main results above are also discussed. In Section 4,
by applying the Hopf algebra homomorphism AFt

: HW
GL → D[α]〈〈z〉〉

constructed in the previous section, we derive tree expansion formulas
for the D-Log, formal flow and the inverse map of Ft (see Theorems 4.1
and Corollaries 4.3, 4.4). In Section 5, we study more properties of the
specializations SFt

: NSym → D[α]〈〈z〉〉 and TW : NSym → HW
GL of

NCSF’s. First, we show in Theorem 5.1 that, when W = N+, the spe-
cialization TW : NSym→ HW

GL is actually an injective graded K-Hopf
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algebra homomorphism. By taking the graded duals, we get a sur-
jective graded Hopf algebra homomorphism T∗

W : HW
CK → QSym (see

Proposition 5.2). Secondly, we show in Theorem 5.3 that the family
of the specializations SFt

of NCSF’s with all n ≥ 1 and the polyno-
mial automorphisms Ft = z −Ht(z) with Ht(z) homogeneous and the
Jacobian matrix JHt strictly lower triangular can distinguish any two
different NCSF’s.

2. NCS Systems

Let K be any unital commutative Q-algebra and A any unital asso-
ciative but not necessarily commutative K-algebra. Let t be a formal
central parameter, i.e. it commutes with all elements of A, and A[[t]]
the K-algebra of formal power series in t with coefficients in A. First
let us recall the following notion formulated in [Z5].

Definition 2.1. For any unital associative K-algebra A, a 5-tuple
Ω = (f(t), g(t), d (t), h(t), m(t)) ∈ A[[t]]×5 is said to be a NCS

(noncommutative symmetric) system over A if the following equations

are satisfied.

f(0) = 1(2.1)

f(−t)g(t) = g(t)f(−t) = 1,(2.2)

ed (t) = g(t),(2.3)

dg(t)

dt
= g(t)h(t),(2.4)

dg(t)

dt
= m(t)g(t).(2.5)

When the base algebra K is clear in the context, we also call the
ordered pair (A,Ω) a NCS system. Since NCS systems often come from
generating functions of certain elements of A that are under concern,
the components of Ω will also be refereed as the generating functions

of their coefficients.
Since all K-algebras that we are going to work on in this paper K-

Hopf algebras ([A], [Knu], [Mo]), the following result proved in [Z5]
later will be useful to our later arguments.

Proposition 2.2. Let (A,Ω) be a NCS system as above. Suppose A is

further a K-bialgebra. T

(a) The coefficients of f(t) form a divided power series of A.

(b) The coefficients of g(t) form a divided power series of A.

(c) One (hence also all) of d(t), h(t) and m(t) has all its coeffi-

cients primitive in A.



6 WENHUA ZHAO

In this section, we briefly recall in Subsection 2.1 the NCS system
(NSym,Π) formed by generating functions of some of the NCSF’s de-
fined in [GKLLRT] and its universal property (see Theorem 2.3). In
Subsection 2.2, we recall the NCS systems constructed in [Z6] over
differential operator algebras. Finally, in Subsection 2.3, we recall the
NCS systems constructed in [Z8] over the Grossman-Larson Hopf al-
gebra of labeled rooted trees.

2.1. The Universal NCS System from Noncommutative Sym-

metric Functions. Let Λ = {Λm |m ≥ 1} be a sequence of noncom-
mutative free variables and NSym the free associative algebra gener-
ated by Λ over K. For convenience, we also set Λ0 = 1. We denote by
λ(t) the generating function of Λm (m ≥ 0), i.e. we set

λ(t) :=
∑

m≥0

tmΛm = 1 +
∑

k≥1

tmΛm.(2.6)

In the theory of NCSF’s ([GKLLRT]), Λm (m ≥ 0) is the noncommu-
tative analog of the mth classical (commutative) elementary symmetric
function and is called the mth (noncommutative) elementary symmetric

function.

To define some other NCSF’s, we consider Eqs. (2.2)–(2.5) over the
free K-algebra NSym with f(t) = λ(t). The solutions for g(t), d (t),
h(t), m(t) exist and are unique, whose coefficients will be the NCSF’s
that we are going to define. Following the notation in [GKLLRT] and
[GKLLRT], we denote the resulted 5-tuple by

Π := (λ(t), σ(t), Φ(t), ψ(t), ξ(t))(2.7)

and write the last four generating functions of Π explicitly as follows.

σ(t) =
∑

m≥0

tmSm,(2.8)

Φ(t) =
∑

m≥1

tm
Φm

m
(2.9)

ψ(t) =
∑

m≥1

tm−1Ψm,(2.10)

ξ(t) =
∑

m≥1

tm−1Ξm.(2.11)

Following [GKLLRT], we call Sm (m ≥ 1) the mth (noncommutative)
complete homogeneous symmetric function and Φm (resp. Ψm) the mth
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power sum symmetric function of the second (resp. first) kind. Follow-
ing [Z5], we call Ξm ∈ NSym (m ≥ 1) the mth (noncommutative) power

sum symmetric function of the third kind.
Next, let us recall the following graded K-Hopf algebra structure of

NSym. It has been shown in [GKLLRT] that NSym is the universal
enveloping algebra of the free Lie algebra generated by Ψm (m ≥ 1).
Hence, it has a Hopf K-algebra structure as all other universal envelop-
ing algebras of Lie algebras do. Its co-unit ǫ : NSym→ K, co-product
∆ and antipode S are uniquely determined by

ǫ(Ψm) = 0,(2.12)

∆(Ψm) = 1⊗Ψm + Ψm ⊗ 1,(2.13)

S(Ψm) = −Ψm,(2.14)

for any m ≥ 1.
Next, we introduce the weight of NCSF’s by setting the weight of any

monomial Λi1
m1

Λi2
m2
· · ·Φik

mk
to be

∑k

j=1 ijmj . For any m ≥ 0, we denote
by NSym[m] the vector subspace of NSym spanned by the monomials
of Λ of weight m. Then it is easy to see that

NSym =
⊕

m≥0

NSym[m],(2.15)

which provides a grading for NSym.
Note that, it has been shown in [GKLLRT], for any m ≥ 1, the

NCSF’s Sm,Φm,Ψm ∈ NSym[m]. By the facts above and Eqs. (2.12)–
(2.14), it is also easy to check that, with the grading given in Eq. (2.15),
NSym forms a graded K-Hopf algebra. Its graded dual is given by the
space QSym of quasi-symmetric functions, which were first introduced
by I. Gessel [Ge] (also see [MR] and [St2] for more discussions).

Now we come back to our discussions on the NCS systems. From
the definitions of the NCSF’s above, we see that (NSym,Π) obviously
forms a NCS system. More importantly, as shown in Theorem 2.1
in [Z5], we have the following important theorem on the NCS system
(NSym,Π).

Theorem 2.3. Let A be a K-algebra and Ω a NCS system over A.

Then,

(a) There exists a unique K-algebra homomorphism S : NSym→ A

such that S×5(Π) = Ω.

(b) If A is further a K-bialgebra (resp. K-Hopf algebra) and one of

the equivalent statements in Proposition 2.2 holds for the NCS sys-

tem Ω, then S : NSym → A is also a homomorphism of K-bialgebras

(resp. K-Hopf algebras).
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Remark 2.4. By applying the similar arguments as in the proof of

Theorem 2.3, or simply taking the quotient over the two-sided ideal

generated by the commutators of Λm’s, it is easy to see that, over the

category of commutative K-algebras, the universal NCS system is given

by the generating functions of the corresponding classical (commutative)
symmetric functions [Ma].

2.2. NCS Systems over Differential Operator Algebras. In this
subsection, we briefly recall the NCS systems constructed in [Z6] over
the differential operator algebras in commutative or noncommutative
free variables. The construction of this NCS is mainly motivated by
the studies in [Z3] and [Z4] on the deformations of formal analytic maps
and their applications to the inversion problem ([BCW], [E4], [Z7]).

First, let us fix the following notation.
Let K be any unital commutative Q-algebra as before and z =

(z1, z2, ..., zn) commutative or noncommutative free variables.1 Let t
be a formal central parameter, i.e. it commutes with z and elements
of K. We denote by K〈〈z〉〉 and K[[t]]〈〈z〉〉 the K-algebras of for-
mal power series in z over K and K[[t]], respectively. We denote by
DerK〈〈z〉〉 or Der〈〈z〉〉, when the base algebra K is clear from the con-
text, the set of all K-derivations of K〈〈z〉〉. The unital subalgebra of
Endk(K〈〈z〉〉) generated by all K-derivations of K〈〈z〉〉 will be denoted
by DK〈〈z〉〉 or D〈〈z〉〉. Elements of DK〈〈z〉〉 will be called (formal) dif-

ferential operators in the commutative and noncommutative variables
z.

For any α ≥ 1, we denote by Der[α]〈〈z〉〉 the set of the K-derivations
of K〈〈z〉〉 which increase the degree in z by at least α − 1. The uni-
tal subalgebra of D〈〈z〉〉 generated by elements of Der[α]〈〈z〉〉 will be
denoted by D[α]〈〈z〉〉. Note that, by the definitions above, the opera-
tors of scalar multiplications are also in D〈〈z〉〉 and D[α]〈〈z〉〉. When
the base algebra is K[[t]] instead of K itself, the notation Der〈〈z〉〉,
D〈〈z〉〉, Der[α]〈〈z〉〉 and D[α]〈〈z〉〉 will be denoted by Dert〈〈z〉〉, Dt〈〈z〉〉,

Der
[α]
t 〈〈z〉〉 and D

[α]
t 〈〈z〉〉, respectively. For example, Der

[α]
t 〈〈z〉〉 stands

for the set of all K[[t]]-derivations of K[[t]]〈〈z〉〉 which increase the de-

gree in z by at least α − 1. Note that, Der
[α]
t 〈〈z〉〉 = Der[α]〈〈z〉〉[[t]]

and D
[α]
t 〈〈z〉〉 = D[α]〈〈z〉〉[[t]].

1Since most of the results as well as their proofs in this paper do not depend on
the commutativity of the free variables z, we will not distinguish the commutative
and the noncommutative case, unless stated otherwise, and adapt the notations for
noncommutative variables uniformly for the both cases.
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For any 1 ≤ i ≤ n and u(z) ∈ K〈〈z〉〉, we denote by
[
u(z) ∂

∂zi

]
the

K-derivation which maps zi to u(z) and zj to 0 for any j 6= i. For any

~u = (u1, u2, · · · , un) ∈ K〈〈z〉〉
×n, we set

[~u
∂

∂z
] :=

n∑

i=1

[ui

∂

∂zi

].(2.16)

Note that, in the noncommutative case, we in general do not have[
u(z) ∂

∂zi

]
g(z) = u(z) ∂g

∂zi
for all u(z), g(z) ∈ K〈〈z〉〉. This is the reason

that we put a bracket [·] in the notation above for the K-derivations.
With the notation above, it is easy to see that any K-derivations δ of

K〈〈z〉〉 can be written uniquely as
∑n

i=1

[
fi(z)

∂
∂zi

]
with fi(z) = δzi ∈

K〈〈z〉〉 (1 ≤ i ≤ n).
Note that, the differential operator algebra D[α]〈〈z〉〉 (α ≥ 1), as the

universal enveloping algebra of Lie algebra Der[α]〈〈z〉〉 with the com-
mutator bracket, has a Hopf algebra structure as all other enveloping
algebras of Lie algebras do. In particular, Its coproduct ∆, antipode S
and co-unit ǫ are uniquely determined respectively by the properties

∆(δ) = 1⊗ δ + δ ⊗ 1,(2.17)

S(δ) = −δ,(2.18)

ǫ(δ) = δ · 1,(2.19)

for any δ ∈ Der〈〈z〉〉.

For any α ≥ 1, let A
[α]
t 〈〈z〉〉 be the set of all the automorphism Ft(z)

ofK[[t]]〈〈z〉〉 over K[[t]], which have the form F (z) = z−Ht(z) for some
Ht(z) ∈ K[[t]]〈〈z〉〉×n with o(Ht(z)) ≥ α and Ht=0(z) = 0. Note that,

for any Ft ∈ A
[α]
t 〈〈z〉〉 as above, its inverse mapGt := F−1

t can always be
written uniquely as Gt(z) = z +Mt(z) for some Mt(z) ∈ K[[t]]〈〈z〉〉×n

with o(Mt(z)) ≥ α and Mt=0(z) = 0.
Now we recall the NCS systems constructed in [Z6] over the differ-

ential operator algebras D[α]〈〈z〉〉 (α ≥ 1).

We fix an α ≥ 1 and an arbitrary Ft ∈ A
[α]
t 〈〈z〉〉. We will always let

Ht(z), Gt(z) and Mt(z) be determined as above. The NCS system

ΩFt
= (f(t), g(t), d(t), h(t), m(t)) ∈ D[α]〈〈z〉〉[[t]]×5.(2.20)

are determined as follows.
The last two components are given directly as

h(t) :=

[
∂Mt

∂t
(Ft)

∂

∂z

]
,(2.21)
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m(t) :=

[
∂Ht

∂t
(Gt)

∂

∂z

]
.(2.22)

The first three components are given by the following proposition
which was proved in Section 3.2 in [Z6].

Proposition 2.5. There exist unique f(t), g(t), d(t) ∈ D[α]〈〈z〉〉[[t]]
with f(0) = 1 and d(0) = 0 such that, for any ut(z) ∈ K[[t]]〈〈z〉〉, we

have

f(−t) ut(z) = ut(Ft),(2.23)

g(t) ut(z) = ut(Gt),(2.24)

ed(t) ut(z) = ut(Gt),(2.25)

where, as usual, the exponential in Eq. (2.25) is given by

ed(t) =
∑

m≥0

d(t)m

m!
.(2.26)

Note that, when we write d(t) above as d(t) = −
[
at(z)

∂
∂z

]
for some

at(z) ∈ tK[[t]]〈〈z〉〉, then we get the so-called D-Log at(z) of the auto-

morphism Ft(z) ∈ A
[α]
t 〈〈z〉〉, which has been studied in [E1]-[E3], [Z1]

and [WZ] for the commutative case.

Theorem 2.6. ([Z6]) For any α ≥ 1 and Ft(z) ∈ A
[α]
t 〈〈z〉〉, we have,

(a) the 5-tuple ΩFt
defined in Eq. (2.20) forms a NCS system over

the K-algebra D[α]〈〈z〉〉.
(b) there exists a unique homomorphism SFt

: NSym→ D[α]〈〈z〉〉 of

K-Hopf algebras such that S×5
Ft

(Π) = ΩFt
.

2.3. A NCS System over the Grossman-Larson Hopf Algebra

of Labeled Rooted Trees. In this subsection, we recall the NCS
system (HW

GL,Ω
W
T

) constructed in [Z8] over the Grossman-Larson Hopf
algebra HW

GL of rooted trees labeled by positive integers of an non-
empty W ⊆ N+. First, let us fix the following notation which will be
used throughout the rest of this paper.

Notation:

By a rooted tree we mean a finite 1-connected graph with one vertex
designated as its root. For convenience, we also view the empty set ∅
as a rooted tree and call it the emptyset rooted tree. The rooted tree
with a single vertex is called the singleton and denoted by ◦. There
are natural ancestral relations between vertices. We say a vertex w is a
child of vertex v if the two are connected by an edge and w lies further
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from the root than v. In the same situation, we say v is the parent of
w. A vertex is called a leaf if it has no children.

Let W ⊆ N+ be a non-empty subset of positive integers. A W -

labeled rooted tree is a rooted tree with each vertex labeled by an ele-
ment of W . If an element m ∈ W is assigned to a vertex v, then m

is called the weight of the vertex v. When we speak of isomorphisms
between unlabeled (resp. W -labeled) rooted trees, we will always mean
isomorphisms which also preserve the root (resp. the root and also the
labels of vertices). We will denote by T (resp. TW ) the set of isomor-
phism classes of all unlabeled (resp. W -labeled) rooted trees. A disjoint
union of any finitely many rooted trees (resp. W -labeled rooted trees)
is called a rooted forest (resp. W -labeled rooted forest). We denote by
F (resp. FW ) the set of unlabeled (resp. W -labeled) rooted forests.

With these notions in mind, we establish the following notation.

(1) For any rooted tree T ∈ TW , we set the following notation:
• rtT denotes the root vertex of T and O(T ) the set of all

the children of rtT . We set o(T ) = |O(T )| (the cardinal
number of the set O(T )).
• E(T ) denotes the set of edges of T .
• V (T ) denotes the set of vertices of T and v(T ) = |V (T )|.
• L(T ) denotes the set of leaves of T and l(T ) = |L(T )|
• For any v ∈ V (T ) define the height of v to be the number

of edges in the (unique) geodesic connecting v to rtT . The
height of T is defined to be the maximum of the heights of
its vertices.
• For any T ∈ TW and T 6= ∅, |T | denotes the sum of the

weights of all vertices of T . When T = ∅, we set |T | = 0.
• For any T ∈ TW , we denote by Aut(T ) the automorphism

group of T and α(T ) the cardinal number of Aut(T ).

(2) Any subset of E(T ) is called a cut of T . A cut C ⊆ E(T ) is
said to be admissible if no two different edges of C lie in the
path connecting the root and a leaf. We denote by C(T ) the
set of all admissible cuts of T . Note that, the empty subset ∅
of E(T ) and C = {e} for any e ∈ E(T ) are always admissible
cuts. We will identify any edge e ∈ E(T ) with the admissible
cut C := {e} and simply say the edge e itself is an admissible
cut of T .

(3) For any T ∈ TW with T 6= ◦, let C ∈ C(T ) be an admissible cut
of T with |C| = m ≥ 1. Note that, after deleting the edges in
C from T , we get a disjoint union of m+1 rooted trees, say T0,
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T1, ..., Tm with rt(T ) ∈ V (T0). We define RC(T ) = T0 ∈ TW

and PC(T ) ∈ FW the rooted forest formed by T1, ..., Tm.

(4) For any disjoint admissible cuts C1 and C2, we say “C1 lies above
C2”, and write C1 ≻ C2, if C2 ⊆ E(RC1

(T )). This merely says
that all edges of C2 remain when we remove all edges of C1

and PC1
(T ). Note that this relation is not transitive. When we

write C1 ≻ · · · ≻ Cr for C1, . . . , Cr ∈ C(T ), we will mean that
Ci ≻ Cj whenever i < j.

(5) For any T ∈ TW , we say T is a chain if its underlying rooted
tree is a rooted tree with a single leaf. We say T is a shrub if
its underlying rooted tree is a rooted tree of height 1. We say
T is primitive if its root has only one child. For any m ≥ 1,
we set Hm, Sm and Pm to be the sets of the chains, shrubs and
primitive rooted trees T of weight |T | = m, respectively. H, S

and P are set to be the unions of Hm, Sm and Pm, respectively,
for all m ≥ 1.

Let K be any unital commutative Q-algebra and W a non-empty
subset of positive integers. First, let us recall the Connes-Kreimer
Hopf algebras HW

CK of labeled rooted forests.
As a K-algebra, the Connes-Kreimer Hopf algebra HW

CK is the free
commutative algebra generated by formal variables {XT | T ∈ TW}.
Here, for convenience, we will still use T to denote the variable XT

in HW
CK . The K-algebra product is given by the disjoint union. The

identity element of this algebra, denoted by 1, is the free variable X∅

corresponding to the emptyset rooted tree. The coproduct ∆ : HW
CK →

HW
CK ⊗HW

CK is uniquely determined by setting

∆(1) = 1⊗ 1,(2.27)

∆(T ) = T ⊗ 1 +
∑

C∈C(T )

PC(T )⊗ RC(T ).(2.28)

The co-unit ǫ : HW
CK → K is the K-algebra homomorphism which

sends 1 ∈ HW
CK to 1 ∈ K and T to 0 for any T ∈ TW with T 6= ∅. With

the operations defined above and the grading given by the weight, the
vector space HW

CK forms a graded commutative bi-algebra, hence there
is a unique antipode S : HW

CK → HW
CK that makes HW

CK a Hopf algebra.
Next we recall the Grossman-Larson Hopf algebra of labeled rooted

trees. First we need define the following operations for labeled rooted
forests. For any labeled rooted forest F which is disjoint union of la-
beled rooted trees T1, T2, ... , Tm, we set B+(T1, T2, · · · , Tm) the rooted
tree obtained by connecting roots of Ti (1 ≤ i ≤ m) to a newly added
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root. We will keep the labels for the vertices of B+(T1, T2, · · · , Tm)
from Ti’s, but for the root, we label it by 0.

Furthermore, we fix the following convention for the operation B+.
First, for any Ti ∈ TW (1 ≤ i ≤ m) and ji ≥ 1, the notation
B+(T j1

1 , T
j2
2 , · · · , T

jm
m ) denotes the rooted tree obtained by applying

the operation B+ to j1-copies of T1; j2-copies of T2; and so on. Sec-
ondly, for any m ≥ 1, we will extend the operation B+ multi-linearly

to a linear map B+ from
(
HW

CK

)×m
to the vector spaces spanned by

the resulted rooted trees.
Now, we set T̄W := {B+(F ) |F ∈ FW}. Then, B+ : FW → T̄W

becomes a bijection. We denote by B− : T̄W → FW the inverse map
of B+. More precisely, for any T ∈ T̄W , B−(T ) is the W -labeled
rooted forest obtained by cutting off the root of T as well as all edges
connecting to the root in T .

Note that, precisely speaking, elements of T̄W are not W -labeled
trees for 0 6∈ W . But, if we set W̄ = W ∪ {0}, then we can view T̄W

as a subset of W̄ -labeled rooted trees T with the root rtT labeled by 0
and all other vertices labeled by non-zero elements of W̄ . We extend
the definition of the weight for elements of FW to elements of T̄W by
simply counting the weight of roots by zero. We set S̄W

m := B+(SW
m )

(m ≥ 1) and S̄W := B+(SW ). We also define H̄W
m , P̄W

m , H̄W and P̄W in
the similar way.

The Grossman-Larson Hopf algebra HW
GL as a vector space is the

vector space spanned by elements of T̄W over K. For any T ∈ T̄W ,
we will still denote by T the vector in HW

GL that is corresponding to
T . The algebra product is defined as follows. For any T, S ∈ T̄W with
T = B+(T1, T2, · · · , Tm), we set T · S to be the sum of the rooted trees
obtained by connecting the roots of Ti (1 ≤ i ≤ m) to vertices of S in
all possible mv(S) different ways. Note that, the identity element with
respect to this algebra product is given by the singleton ◦ = B+(∅).
But we will denote it by 1.

To define the co-product ∆ : HW
GL → HW

GL ⊗HW
GL, we first set

∆(◦) = ◦ ⊗ ◦.(2.29)

Now let T ∈ T̄W with T 6= ◦, say T = B+(T1, T2, · · · , Tm) with
m ≥ 1 and Ti ∈ TW (1 ≤ i ≤ m). For any non-empty subset
I ⊆ {1, 2, · · · , m}, we denote by B+(TI) the rooted tree obtained by
applying the B+ operation to the rooted trees Ti with i ∈ I. For con-
venience, when I = ∅, we set B+(TI) = 1. With these notation fixed,
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the co-product for T is given by

∆(T ) =
∑

I⊔J={1,2,··· ,m}

B+(TI)⊗B+(TJ).(2.30)

Note that, a rooted tree in T̄W is a primitive element of the Hopf
algebra HW

GL iff it is a primitive rooted tree in the sense that we defined
before, namely the root of T has one and only one child.

Remark 2.7. Note that, for any S ∈ T̄W and T ∈ FW , we also can

define a “product” still denoted by S · T in the exact same way as we

define the product of elements of T̄W . By the linear extention, this

“product” makes HW
CK a K-algebra module of HW

GL.

The following results later will be very useful in our later arguments.

Theorem 2.8. (a) The Hopf algebras HW
GL and HW

CK are graded dual

to each other. The pairing is given by, for any T ∈ T̄W and S ∈ FW ,

< T, F >=

{
0, if T 6≃ B+(F ),

α(T ), if T ≃ B+(F ).
(2.31)

(b) HW
GL as a Hopf algebra is isomorphic to the universal enveloping

algebra of the Lie algebra formed by its primitive elements, which are

exactly linear combinations of the primitive rooted trees. In particular,

HW
GL as an K-algebra is generated by the primitive rooted trees.

For a proof of (a), see [H] and [F2]. (b) follows directly from the
well-known Milnor-Moore’s Theorem ([MM]), since HW

GL is a connected
graded and cocommutative Hopf algebra.

Next, let us recall the following lemma proved in [Z8] that will be
crucial for our later arguments.

Let ~C = (C1, . . . , Cr) ∈ C(T )×r be a sequence of admissible cuts
with C1 ≻ · · · ≻ Cr. We define a sequence of T ~C,1, . . . , T ~C,r+1 ∈ T̄W as

follows: we first set T ~C,1 = B+(PC1
(T )) and let S1 = RC1

(T ). Note that

C2, . . . , Cr ∈ C(S1). We then set T ~C,2 = B+(PC2
(S1)) and S2 = RC2

(S1)

and repeat this procedure until we get Sr = RCr
(Sr−1) and then set

T ~C,r+1 = Sr. In the case that, each Ci (1 ≤ i ≤ r) consists of a single

edge, say ei ∈ E(T ), we simply denote T ~C,i by Tei
.

Lemma 2.9. For any r ≥ 1, y = {y(i)
T | 1 ≤ i ≤ r; , T ∈ T̄W} be a

collection of commutative formal variables. Then, we have,
∑

(T1,...,Tr)∈(T̄W )r

[
y

(1)
T1

VT1

]
· · ·
[
y

(r)
Tr

VTr

]
(2.32)
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=
∑

T∈T̄W

∑

~C=(C1,...,Cr)∈C(T )r

C1≻···≻Cr

y
(1)
T~C,1
· · · y

(r)
T~C,r

VT .

Now we recall the NCS system ΩW
T

constructed in [Z8] over the
Grossman-Larson Hopf algebra HW

GL.
First, let us define the following constants for the rooted trees in T̄W :

• We set βT to be the weight of the unique leaf of T if T ∈ H̄W

and 0 otherwise.
• We set γT to be the weight of the unique child of the root of T

if T ∈ P̄W and 0 otherwise.
• We set θT to be the coefficient of s of the order polynomial

Ω(B−(T ), s) of the underlying unlabeled rooted forest of B−(T ).

For general studies on the order polynomials Ω(P, s) of finite posets
P , see [St1]. For an interpretation of the constant φT = (−1)v(T )−1ϕT =
(−1)v(T )−1θB+(T ) in terms of the numbers of chains with fixed lengths
in the lattice of the ideals of the poset T , see Lemma 2.8 in [SWZ].

The following results2 on θT (T ∈ T̄W ) proved in Section 5 in [Z8]
will be needed later.

Proposition 2.10. (1) For the singleton ◦ and any non-primitive

rooted tree T ∈ T, i.e. o(T ) > 1, we set θ◦ = θT = 0.
(2) For T = B+(◦), we set θT = 1.
(3) For any primitive T ∈ P with v(T ) ≥ 3, we define θT inductively

by

θT = 1−
∑

m≥2

1

m!

∑

~e=(e1,...,em−1)∈E(T )m−1

e1≻···≻em−1

θTe1
θTe2
· · · θTem

.(2.33)

We will also need the following proposition proved in [Z8] for the
constants θT (T ∈ T).

Proposition 2.11. For any T ∈ P, we have

∇Ω(T, s) = θT s+

v(T )∑

k=2

sk

k!

∑

~e=(e1,...,ek−1)∈E(T )k−1

e1≻···≻ek−1

θB−(T~e,1) · · · θB−(T~e,k−1)θT~e,k
,

(2.34)

where ∇ : K[s]→ K[s] is the linear operator that maps any f(s) ∈ K[s]
to f(s)− f(s− 1).

2Note that, the approach to θT ’s in [Z8] is different from the one we adapt
here. But it was shown there that the constants determined by the properties in
Proposition 2.10 are same as the θT ’s we defined here.
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Now we consider the following generating functions of T ∈ T̄W .

f̃(t) : =
∑

T∈S̄W

(−1)o(T )t|T |VT = 1 +
∑

T∈S̄W

T 6=◦

(−1)o(T )t|T |VT ,(2.35)

g̃(t) : =
∑

T∈T̄W

t|T |VT = 1 +
∑

T∈T̄W

T 6=◦

t|T |VT ,(2.36)

d̃(t) : =
∑

T∈P̄W

t|T |θT VT .(2.37)

h̃(t) : =
∑

T∈H̄W

t|T |−1βT VT ,(2.38)

m̃(t) : =
∑

T∈P̄W

t|T |−1γT VT ,(2.39)

where, for any T ∈ T̄W , VT := 1
α(T )

T. We further set

ΩW
T

:= ( f̃(t), g̃(t), d̃ (t), h̃(t), m̃(t) ).(2.40)

Theorem 2.12. ([Z8]) For any non-empty set W ⊆ N+, we have

(a) the 5-tuple Ω̃Ft
defined in Eq. (2.40) forms a NCS system over

the Grossman-Larson Hopf algebra HW
GL.

(b) there exists a unique homomorphism TW : NSym → HW
GL of

graded K-Hopf algebras such that T×5
W (Π) = Ω̃Ft

.

3. A Hopf Algebra Homomorphisms from HW
GL to D[α]〈〈z〉〉

In this section, for any non-empty W ⊆ N+, α ≥ 1 and Ft ∈ A
[α]
t 〈〈z〉〉

satisfying Eq. (3.5) below, we construct a K-Hopf algebra homomor-
phism A : HW

GL → D[α]〈〈z〉〉 such that A×5 maps the NCS system ΩW
T

in Theorem 2.12 to the NCS system ΩFt
in Theorem 2.6.

Let K, z and t be as given in Subsection 2.2. We will also use the
notation fixed in Sections 3 freely throughout this section.

Let us start with the introducing of the following two operations for
the K-derivations of K〈〈z〉〉.

First, for any φ, δ ∈ Der〈〈z〉〉 with δ =
[
f(z) ∂

∂z

]
, we set

φ ⊲ δ :=

[
(φf)(z)

∂

∂z

]
.(3.1)

To define the second operation, let w = (w1, w2, · · · , wn) be another
n free variables which are independent with the free variables z. For
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any K-derivations δi =
[
~vi(z)

∂
∂z

]
(1 ≤ i ≤ m) with ~vi(z) ∈ K〈〈z〉〉

×n,
we define B+(δ1, δ2, · · · , δm) by setting, for any u(z) ∈ K〈〈z〉〉,

B+(δ1, δ2, · · · , δm)u(z) :=(3.2)
[
~v1(w)

∂

∂z

] [
~v2(w)

∂

∂z

]
· · ·

[
~vm(w)

∂

∂z

]
u(z)

∣∣∣∣
w=z

.

Furthermore, for any ki ≥ 0 (1 ≤ i ≤ m), we let B+(δk1

1 , δ
k2

2 , · · · , δ
km
m )

denote the operator obtained by applying B+ to the multi-set of j1-
copies of δ1; j2-copies of δ2, ..., jm-copies of δm.

Note that B+(δ1, δ2, · · · , δm) is multi-linear and symmetric on δi (1 ≤
i ≤ m). When m = 1, B+(δ1) = δ1.

The following two lemmas have been proved in Section 3 in [Z6].

Lemma 3.1. (a) Let δi ∈ Der〈〈z〉〉 (1 ≤ i ≤ m). Then, for any

φ ∈ D〈〈z〉〉, we have

φ · B+(δ1, δ2, · · · , δm) = B+(φ, δ1, δ2, · · · , δm)(3.3)

+

m∑

i=1

B+(δ1, · · · , φ ⊲ δi, · · · δm).

(b) For any δi ∈ Der〈〈z〉〉 (1 ≤ i ≤ m), B+(δ1, δ2, · · · , δm) ∈ D〈〈z〉〉.

Lemma 3.2. In terms of the B+ operation defined above, f(t) ∈
D[α]〈〈z〉〉 defined in Proposition (2.5) is given by

f(t) =
∑

k≥0

(−1)k

k!
B+

([
Ht(z)

∂

∂z

]k
)
.(3.4)

Now, we fix a non-empty subset W ⊆ N+ and α ≥ 1. Let Ft(z) =

z −Ht(z) ∈ A
[α]
t 〈〈z〉〉 such that

Ht(z) =
∑

m∈W

tmH[m](z),(3.5)

for some H[m](z) ∈ K〈〈z〉〉
×n (m ∈W ).

First, we assign PT (z) ∈ K〈〈z〉〉×n for each T ∈ TW inductively as
follows.

(1) For the singleton ◦ labeled by m ∈ W , denoted by ◦m, we set
P◦m

(z) := H[m](z).
(2) For any non-singleton T ∈ TW with rtT labeled by m ∈ W ,

write T = B+(T1, T2, ..., Td) with Ti ∈ TW (1 ≤ i ≤ d) and

PT (z) := B+

([
PT1

(z)
∂

∂z

]
, ...,

[
PTm

(z)
∂

∂z

])
H[m](z).(3.6)
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Let HW
CK [1] be the vector subspace of HW

CK spanned by T ∈ TW . We
define a linear map UFt

: HW
C [1]→ D[α]〈〈z〉〉 by setting

UFt
: HW

CK [1]→ K〈〈z〉〉×n(3.7)

T → PT (z).

Next we assign DT (z) ∈ D[α]〈〈z〉〉 for each T ∈ T̄W = B+(TW ) as
follows.

(1) For the singleton T = ◦, we set DT = id.
(2) For any rooted tree T = B+(T1, T2, · · · , Tm) with Ti ∈ TW , we

set

DT (z) := B+

([
PT1

(z)
∂

∂z

]
,

[
PT2

(z)
∂

∂z

]
, ...,

[
PTm

(z)
∂

∂z

])
.(3.8)

Note that, from the definition of PT (z)’s above, it is easy to see
inductively that, for any T ∈ TW , o(PT (z)) ≥ α. Hence we do have
DT ∈ D[α]〈〈z〉〉 for any T ∈ T̄W .

Now we define a linear map AFt
: HW

GL → D[α]〈〈z〉〉 by setting

AFt
: HW

GL → D[α]〈〈z〉〉(3.9)

T → DT (z).

When Ft ∈ A
[α]
t 〈〈z〉〉 is clear in the context, UFt

and AFt
will also be

simply written as U and A, respectively.
From the definitions above, the following lemma follows immediately.

Lemma 3.3. (a) For any T ∈ TW with the root labeled by m ∈W , we

have

A(B+(T ))H[m](z) = DT .(3.10)

(b) For any m ≥ 1, we have

A ◦B+ = B+ ◦A×m ◦B×m
+ ,(3.11)

as maps from (TW )×m to D[α]〈〈z〉〉.

Now let us prove the following technic lemma.

Lemma 3.4. For any S ∈ P̄W and T ∈ TW , we have

DS · PT = U(S · T ),(3.12)

where S · T is the “product” of S and T as in Remark (2.7).

Proof: We use the induction on the number v(T ) of vertices of T .
First, when v(T ) = 1, then T is the singleton labeled by some m ∈

W . Then, by Eqs. (3.6) and (3.8), it is easy to see that both sides of
Eq. (3.11) in this case are PS(z).
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Now, assume v(T ) ≥ 2. We write S = B+(S ′) and T = (T1, · · · , Td)
with S, Ti ∈ TW (1 ≤ i ≤ d). Let m ∈ W be the label of the root of T .
Set φ := DS and δi := DTi

(1 ≤ i ≤ d). Note that, by our conditions,
φ and δi = DTi

(1 ≤ i ≤ d) are all K-derivations. Now by Eqs. (3.6)
and (3.3), we have

DS · PT = φ · B+(δ1, δ2, · · · δd)H[m](z)

= B+(φ, δ1, δ2, · · · δd)H[m](z)

+
∑

1≤i≤d

B+(δ1, · · · , φ ⊲ δi, · · · , δd)H[m](z)

Applying Eq. (3.1) and the induction assumption :

= B+(φ, δ1, δ2, · · · δd)H[m](z)

+
∑

1≤i≤d

B+(δ1, · · · ,

[
PS′·Ti

(z)
∂

∂z

]
, · · · , δd)H[m](z)

Applying Eq. (3.11):

= A (B+(S ′, T1, · · · , T2))H[m](z)

+
∑

1≤i≤d

A (B+(T1, · · · , S
′ · Ti, · · · , Td) H[m](z)

Applying Eq. (3.10):

= U (B+(S ′, T1, · · · , T2))

+
∑

1≤i≤d

U (B+(T1, · · · , S
′ · Ti, · · · , Td))

Note that, by the definition of S · T (see Remark 2.7), we have

S · T = S ·B+(T1, T2, · · · , T2)

(3.13)

= B+(S ′, T1, · · · , T2) +
∑

1≤i≤d

B+(T1, · · · , S
′ · Ti, · · · , Td).

Combining the two equations above and using the linearity of U, we
get Eq. (3.12). ✷

Now, we can formulate and prove the first main result of this section.

Theorem 3.5. The linear map AFt
: HW

GL → D[α]〈〈z〉〉 is a homomor-

phisms of K-Hopf algebras.
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Proof: Let us first show the linear map A is a homomorphism of
K-algebras. By the definition of DT ’s and A, A maps the identity
element ◦ ∈ HW

GL to the identity element D◦ = 1 of D[α]〈〈z〉〉. So we
only need show, for any S, T ∈ T̄W , we have

DS ·DT = DS·T ,(3.14)

where · denotes the both algebra product of HW
GL and D[α]〈〈z〉〉.

By the fact pointed in (b) of Theorem 2.8, we may assume that S
is primitive, in which case DS is a derivation. Now, assume v(T ) ≥ 2.
(When v(T ) = 1, Eq.(3.14) is trivial). We write S = B+(S ′) and
T = (T1, · · · , Td) with S, Ti ∈ TW (1 ≤ i ≤ d). Let m ∈ W be the
label of the root of T . Set φ := DS and δi := DTi

(1 ≤ i ≤ d). Now by
Eqs. (3.8) and (3.3), we have

DS ·DT = φ ·B+(δ1, δ2, · · · δd)

= B+(φ, δ1, δ2, · · · δd) +
∑

1≤i≤d

B+(δ1, · · · , φ ⊲ δi, · · · , δd)

Applying Eqs. (3.1) and (3.12):

= B+(φ, δ1, δ2, · · · δd) +
∑

1≤i≤d

B+(δ1, · · · ,

[
PS′·Ti

(z)
∂

∂z

]
, · · · , δd)

Applying Eq. (3.11) and the linearity of A:

= A

(
B+(S ′, T1, · · · , T2) +

∑

1≤i≤d

B+(T1, · · · , S
′ · Ti, · · · , Td

)

Applying Eq. (3.13):

= A(S · T )

= DS·T .

Hence, we have proved that A is a K-algebra homomorphism. To
see that it is also a homomorphism of Hopf algebras, note that, again,
by the fact in (b) of Theorem 2.8, we know that HW

GL as a Hopf algebra
is isomorphic to the universal enveloping algebra of the Lie sub-algebra
P(HW

GL) generated by the primitive rooted trees. On the other hand,
the Hopf algebra structure of D[α]〈〈z〉〉 is also obtained by viewing it as
the universal enveloping algebra of the Lie algebra Der〈〈z〉〉. Since the
Lie brackets of P(HW

GL) and Der〈〈z〉〉 are both given respectively by
the commutator brackets of the algebra products of HW

GL and D[α]〈〈z〉〉,
the restriction of A : P(HW

GL) → Der〈〈z〉〉 is a homomorphism of Lie
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algebras. Consequently, A also preserves the Hopf algebras of the cor-
responding enveloping algebras, which are HW

GL and D[α]〈〈z〉〉. ✷

Our second main result of this section is the following theorem.

Theorem 3.6. Let ΩFt
and ΩW the NCS systems in Theorems 2.6 and

2.12, respectively, and AFt
: HW

GL → D[α]〈〈z〉〉 be the K-Hopf algebras

homomorphism in Theorem 3.5. Then we have A×5
Ft

(ΩW
T

) = ΩFt
.

Before we prove the theorem above, we need the following lemma
proved in [Z8], which gives a different way to look at the generating

function f̃(t) defined in Eq. (2.35).

Lemma 3.7. For any m ∈ W , let κm denote the singleton labeled by

m and set

κ(t) :=
∑

m∈W

tmκm.(3.15)

Then, we have

f̃(t) = 1 +
∑

d≥1

(−1)d

d!
B+( κ(t)d ),(3.16)

where B+( κ(t)d ) denotes the term obtained by applying B+ to d-copies

of κ(t).

Proof of Theorem 3.6: By Corollary 2.8 in [Z5], it will be enough to
show that A maps one component of ΩW

T
to the component of ΩFt

at

the same location. Below we will show A(f̃(t)) = f(t).
First, for any m ∈ W , let κm denote the singleton labeled by m and

set κ(t) :=
∑

m∈W tmκm.

By Eq. (3.5) and the definition of A in Eq. (3.9), we have

AB+(κ(t))) =
∑

m∈W

tmA(B+(κ(t)))(3.17)

=
∑

m∈W

tm
[
H[m](z)

∂

∂z

]

=

[
Ht(z)

∂

∂z

]

By Eq. (3.11) and the equation above, we have for any d ≥ 1,

(A ◦B+)(κ(t))d) = (B+ ◦Ad ◦Bd
+)(κ(t)d)(3.18)

= B+(

[
Ht(z)

∂

∂z

]d

).
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Therefore, by Eq. (3.16) in Lemma 3.7 and the equation above, we
have

A

(
f̃(t)

)
= 1 +

∑

d≥1

(−1)d

d!
A
(
B+( κ(t)d )

)

= 1 +
∑

d≥1

(−1)d

d!
B+(

[
Ht(z)

∂

∂z

]d

)

By Eq. (3.4) in Lemma 3.2:

= f(t).

✷

By applying Lemma 3.4 and Theorem 3.5, it is easy to see the fol-
lowing proposition also holds.

Proposition 3.8. Let L̃ : HW
GL × HW

CK [1] → HW
CK [1] be the action

induced by the natural action of elements S ∈ T̄W on elements T ∈ TW

(see Remark 2.7) and L : D[α]〈〈z〉〉 ×K〈〈z〉〉 → K〈〈z〉〉×n
the natural

action of D[α]〈〈z〉〉 on K〈〈z〉〉×n
. With W and Ft ∈ A

[α]
t 〈〈z〉〉 as before,

the following diagram commutes.

HW
GL ×HW

CK [1]
L̃
−−−→ HW

CK [1]

AFt
×UFt

y UFt

y

D[α]〈〈z〉〉 ×K〈〈z〉〉×n L
−−−→ K〈〈z〉〉×n

(3.19)

Combining Theorems 2.6, 2.12 and 3.5, we have the following propo-
sition.

Proposition 3.9. For any α ≥ 1, let W ⊆ N+ and Ft ∈ A
[α]
t 〈〈z〉〉

fixed as before, we have the following commutative diagrams of K-Hopf

algebra homomorphisms.

NSym
TW−−−→ HW

GL

SFt

y AFt

y

D[α]〈〈z〉〉 D[α]〈〈z〉〉

(3.20)

Proof: By Theorems 2.6, 2.12 and 3.6, it is easy to see that

(AFt
◦ TW )×5 (Π) = S×5

Ft
(Π) = ΩFt

.(3.21)
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In particular, we have AFt
◦TW (λ(t)) = SFt

(λ(t)) = f(t). Hence, for
any m ≥ 1, we have AFt

◦ TW (Λm) = SFt
(Λm). Since NSym is the free

K-algebra generated by Λm (m ≥ 1), we have AFt
◦ TW = SFt

. ✷

Next, let us consider the question when we can dualize the commu-
tative diagram in the proposition above. First, we have to know when
the Hopf algebra homomorphism SFt

: NSym→ D[α]〈〈z〉〉 preserves the
gradings of SFt

and D[α]〈〈z〉〉. Note that, precisely speaking, D[α]〈〈z〉〉
is not graded in the usual sense, for some infinite sums are allowed
in D[α]〈〈z〉〉. But we can consider the following graded subalgebras of
D[α]〈〈z〉〉.

Let D〈z〉 be the differential operator algebra of the polynomial alge-
bra K〈z〉, i.e. D〈z〉 is the unital subalgebra of EndK(K〈z〉) generated
by all K-derivations of K〈z〉. For any m ≥ 0, let D[m]〈z〉 be the set of
all differential operators U such that, for any homogeneous polynomial
h(z) ∈ K〈z〉 of degree d ≥ 0, Uh(z) either is zero or is homogeneous
of degree m+ d. For any α ≥ 1, set D[α]〈z〉 := D〈z〉 ∩D[α]〈〈z〉〉. Then,
we have the grading

D[α]〈z〉 =
⊕

m≥α−1

D[m]〈z〉,(3.22)

with respect to which D[α]〈z〉 becomes a graded K-Hopf algebra.

Now, for any α ≥ 2, we let G
[α]
t 〈〈z〉〉 be the set of all automorphisms

Ft ∈ A
[α]
t 〈〈z〉〉 such that Ft(z) = t−1F (tz) for some automorphism F (z)

of K〈〈z〉〉. It is easy to check that G
[α]
t 〈〈z〉〉 is a subgroup of A

[α]
t 〈〈z〉〉.

Then we have the following proposition proved in [Z6].

Proposition 3.10. For any α ≥ 2 and Ft ∈ A
[α]
t 〈〈z〉〉, the differential

operator specialization SFt
is a graded K-Hopf algebra homomorphism

SFt
: NSym→ D[α]〈z〉 ⊂ D[α]〈〈z〉〉 iff Ft ∈ G

[α]
t 〈〈z〉〉.

Now, for any Ft ∈ G
[α]
t 〈〈z〉〉 (α ≥ 2), by the proposition above, we

can take the graded dual of the graded K-Hopf algebra homomorphism
SFt

: NSym→ D[α]〈z〉 and get the following corollary.

Corollary 3.11. For any α ≥ 2 and Ft ∈ G
[α]
t 〈〈z〉〉, let D[α]〈z〉

∗
be the

graded dual of the graded K-Hopf algebra D[α]〈z〉. Then,

S∗
Ft

: D[α]〈z〉
∗
→ QSym

is a homomorphism of graded K-Hopf algebras.

By combining Proposition 3.11 and Proposition 3.9 above, we have
the following proposition.
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Proposition 3.12. For any α ≥ 2 and Ft ∈ G
[α]
t 〈〈z〉〉, we have the

following commutative diagrams of graded K-Hopf algebra homomor-

phisms.

QSym
T∗

←−−− HW
CK

S∗

Ft

x A∗

Ft

x

D[α]〈z〉
∗

D[α]〈z〉
∗

(3.23)

4. Tree Expansion Formulas for D-Log’s and Formal Flows

In this section, we apply the K-Hopf algebra homomorphisms AFt
:

HW
GL → D[α]〈〈z〉〉 (Ft ∈ A

[α]
t 〈〈z〉〉) constructed in Section 3 to derive

tree expansion formulas for the D-Log, the formal flow and the inverse
map of Ft. Note that, for the commutative case, the tree expansion
formula Eq. (4.22) for the inverse map was first given in [BCW] and
[Wr]. Later, it was generalized in [WZ] to the D-Log’s and the formal
flows (see Eqs. (4.20) and (4.21)). The proofs given here do not depend
on the commutativity of the free variables. It not only generalizes the
tree expansion formulas in [BCW], [Wr] and [WZ] for the inverse maps,
the D-Log’s and the formal flows to the noncommutative case, but also
provides some new understandings to these formulas from the NCS
system point view.

First, we let K, z and t as before and fix an automorphism Ft(z) ∈

A
[α]
t 〈〈z〉〉 (α ≥ 1). As before, we fix the following notation for Ft and

its inverse map Gt := F−1
t :

Ft(z) = z −Ht(z),(4.1)

Gt(z) = z + tNt(z),(4.2)

with Ht(z), Nt(z) ∈ K[t]〈〈z〉〉×n.
Note that, in terms of the notation in Section 3, we have Mt(z) =

tNt(z). Recall that, the D-Log of Ft by definition is the unique at(z) ∈
K[[t]]〈〈z〉〉 such that, for any ut(z) ∈ K[[t]]〈〈z〉〉,

e[at(z) ∂
∂z ] · ut(z) = ut(Ft).(4.3)

By the comments after Eq. (2.25), the relation of the D-Log at(z) of
Ft with the third component d(t) of the NCS system ΩFt

in Section 2.2
is given by

d(t) = −

[
at(z)

∂

∂z

]
.(4.4)
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Now let s be another central parameter, i.e. it commutes with z and
t. We define

Ft(z, s) := es[at(z) ∂
∂z ] z = e−s d(t) z.(4.5)

Note that, since d(0) = 0, the exponential above is always well-
defined. Actually it is easy to see Ft(z, s) ∈ (K[s][[t]])〈〈z〉〉×n. There-
fore, for any s0 ∈ K, Ft(z, s0) makes sense.

Following its analog in [E1]-[E3] and [WZ] in the commutative case,
we call Ft(z, s) the formal flow generated by Ft(z).

Two remarks on the formal flow defined above are as follows.
First, it is well-known that the exponential of a derivation of any

K-algebra A, when it makes sense, is always an automorphism of the

algebra, so in our case, for any s0 ∈ K, es0[at(z) ∂
∂z ] is also an auto-

morphism of K[[t]]〈〈z〉〉 over K[[t]] which maps z to Ft(z, s0). From

Eq. (4.5), it is clear that this automorphism also lies in A
[α]
t 〈〈z〉〉 since

o(at(z)) ≥ α.
Secondly, by Eq. (4.5) and the remark above, the formal flow Ft(z, s)

has the following properties:

Ft(z, 0) = z,(4.6)

Ft(z, 1) = Ft(z),(4.7)

Ft(Ft(z, s2), s1) = Ft(z, s1 + s2),(4.8)

for any s1, s2 ∈ K.
In other words, Ft(z, s) forms an one-parameter subgroup of the

group A
[α]
t 〈〈z〉〉. Therefore, for any integer m ∈ Z, Ft(z,m) gives the

mth (composing) power of Ft as an element of the group A
[α]
t 〈〈z〉〉. In

particular, by setting m = −1, we get the inverse map Gt of Ft, i.e.
Ft(z,−1) = Gt(z).

Now we consider the tree expansion formulas for the D-Log and

formal flow of Ft ∈ A
[α]
t 〈〈z〉〉. For convenience, we first introduce the

following short notations. For any labeled rooted trees T ∈ TW and
T ′ ∈ T̄W , we set

PT (z) = U(VT ′) =
1

α(T )
PT (z),(4.9)

DT ′(z) = A(VT ′) =
1

α(T ′)
DT ′(z).(4.10)

By Eqs. (3.6) and (3.8), it is easy to see that, for any primitive T ∈
T̄W , we have

DT · z = PB−(T )(z).(4.11)
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The main results of this subsection is the following theorem.

Theorem 4.1. For any α ≥ 1 and Ft ∈ A
[α]
t 〈〈z〉〉, let W be the set of

positive integers such that Ft can be written as in Eq. (3.5). Then

(a) The D-Log of Ft(z) is given by

at(z) =
∑

T∈TW

t|T |−1ϕT PT (z),(4.12)

where, for any T ∈ TW , ϕT is the coefficient of s in the order polyno-

mial Ω(T, s) of T as an unlabeled rooted tree.

(b) The formal flow Ft(z, s) generated by Ft(z) is given by

Ft(z, s) = z +
∑

T∈TW

t|T | Ω(T,−s) PT (z)(4.13)

= z +
∑

T∈TW

(−1)v(T )t|T | Ω̄(T, s) PT (z),

where Ω̄(T, s) is the strict order polynomial of T as an unlabeled rooted

tree.

Note that, by the definition of θT (T ∈ T̄W ) (see page 15), we have

ϕT = θB+(T ).(4.14)

For some discussions on the order polynomials Ω(T, s) and the strict
order polynomials Ω̄(T, s), see [St1] or Section 5 in [Z8]. We will need
the following results on the (strict) order polynomials in the proof of
the theorem above.

Proposition 4.2. For any rooted tree T , we have

Ω̄(T, s) = (−1)v(T )Ω(T,−s),(4.15)

∇Ω(T, s) = Ω(B−(T ), s),(4.16)

where ∇ : K[s]→ K[s] is the linear operator that maps any f(s) ∈ K[s]
to f(s)− f(s− 1).

Eq. (4.15) is a special case of the well-known Reciprocity Relation of
the strict order polynomials and order polynomials of finite posets. For
a proof of this remarkable result, see Corollary 4.5.15 in [St1]. Eq. (4.16)
was first proved by J. Shareshian (unpublished). It can be proved by
using the definition of the strict order polynomials. For a proof of a
similar property of the order polynomials, see Theorem 4.5 in [WZ].
Eq. (4.16) can be proved by a similar argument as the proof there. For
more studies on these properties of the (strict) order polynomials, see
[Z2] and [SWZ].
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Proof of Theorem 4.1: (a) By Eq. (4.4) and Theorem (3.6) and
(2.37), we have

−

[
at(z)

∂

∂z

]
= d(t)

= A(d̃(t))

=
∑

T∈P̄W

t|T |θT DT .

Therefore, by the equation above and Eq. (4.11), we have

at(z) =
∑

T∈P̄W

t|T |−1θT DT · z

=
∑

T∈P̄W

t|T |−1θT PB−(T )(z)

Replacing the summation index T ∈ P̄W by B+(T ) with T ∈ TW and
noting that |T | = |B−(T )| for any T ∈ P̄W :

=
∑

T∈TW

t|T |−1θB+(T )PT (z)

Applying Eq. (4.14):

=
∑

T∈TW

t|T |−1ϕT PT (z) .

Hence, we get Eq. (4.12).

(b) First, let us consider the exponential esd̃(t) ∈ HW
GL[[t]].

esd̃(t) =
∑

m≥0

sm

m!
d̃(t)m

= 1 +
∑

m≥1

sm

m!

(
∑

T∈P̄W

t|T |θT VT

)m

Applying Lemma 2.9:

= 1 +
∑

m≥1

sm

m!

∑

T∈T̄W

t|T |
∑

~e=(e1,...,em−1)∈E(T )m−1

e1≻···≻em−1

θT~e,1
· · · θT~e,m

VT
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= 1 +
∑

T∈T̄W




v(T )∑

m=1

sm

m!

∑

~e=(e1,...,em−1)∈E(T )m−1

e1≻···≻em−1

θT~e,1
· · · θT~e,m


 t|T |VT .

Now we apply A to the equation above. Note that A maps exp(sd̃(t))
to exp(sd(t)) since, by Theorem 3.5, A : HW

GL → D[α]〈〈z〉〉 is a K-
algebra homomorphism. So we have

esd(t) = 1 +
∑

T∈T̄W




v(T )∑

m=1

sm

m!

∑

~e=(e1,...,em−1)∈E(T )m−1

e1≻···≻em−1

θT~e,1
· · · θT~e,m


 t|T |DT .

Applying the equation above to z and noting that DT ·z = PB−(T )(z)
if T ∈ P̄W and 0 otherwise, we get

esd(t)z = 1 +
∑

T∈P̄W




v(T )∑

m=1

sm

m!

∑

e1≻···≻em−1

ei∈E(T )

θT~e,1
· · · θT~e,m


 t|T |PT (z)

Applying Eq. (2.34) in Proposition 2.11:

= 1 +
∑

T∈P̄W

∇Ω(T, s)PT (z).

Now, replacing s by −s in equation above, by Eq. (4.5), we get

Ft(z, s) = z +
∑

T∈P̄W

∇Ω(T,−s) t|T |PT (z)

Applying Eq. (4.16):

= z +
∑

T∈PW

Ω(B−(T ),−s)t|T |PB−(T ) (z).

Changing the summation index T ∈ P̄W by B+(T ) with T ∈ TW :

= z +
∑

T∈TW

Ω(T,−s)t|T |PT (z)

Applying Eq. (4.15):

= z +
∑

T∈TW

(−1)v(T )t|T |Ω(T, s)PT (z).(4.17)
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Hence, we get Eq. (4.13). ✷

As we mentioned early (see page 25), for any m ∈ Z, Ft(z,m) is the

mth (composing) power denoted by F
[m]
t of the automorphism Ft(z) ∈

A
[α]
t 〈〈z〉〉. Hence, by plugging in m for s in Eq. (4.13), we get the

following formulas.

Corollary 4.3. For any α ≥ 1, m ∈ Z and Ft(z) ∈ A
[α]
t 〈〈z〉〉, we have

F
[m]
t (z) =

∑

T∈TW

t|T | Ω(T,−m) PT (z),(4.18)

In particular, by letting m = −1, we get the following tree expansion

formula for the inverse map Gt(z) of Ft(z).

Gt(z) =
∑

T∈TW

t|T | PT (z),(4.19)

Proof: Note that, we only need prove Eq. (4.19). But it follows
from Eq. (4.19) and the well-known fact that Ω(P, 1) = 1 for any finite
posets. ✷

One remark on the tree expansion formulas derived in Theorem 4.1
and Corollary 4.3 is as follows. Note that, one of the conditions we
have required on Ft(z) = z − Ht(z) is that Ht=0(z) = 0. But for the
automorphisms F (z) of K〈〈z〉〉 of the form F (z) = z − H(z) with
H(z) ∈ K〈〈z〉〉×n and o(H(z)) ≥ α, all formulas derived can still be
applied to F (z) as follows.

First, we consider the deformation Ft(z) = z−tH(z) which does lie in

A
[α]
t 〈〈z〉〉. Actually, it can be viewed as an automorphism of K[t]〈〈z〉〉,

instead of K[[t]]〈〈z〉〉, over the polynomial algebra K[t]. Therefore, all
the formulas above with W = {1} still apply to Ft(z). Secondly, by the
fact that Ht(z) ∈ K[t]〈〈z〉〉×n, it is easy to check that, for any t0 ∈ K,
the D-Log at=t0(z) of Ft=t0(z) and the inverse map Gt=t0(z) all make
sense. In particular, by setting t = 1, we recover the D-Log and the
formal flow of the original automorphism F (z). Thirdly, in the case
W = {1}, the weight |T | (T ∈ TW ) of T is same as the number v(T )
of the vertices of T , and the set TW of W -labeled trees can be identify
with the set of unlabeled rooted trees T.

By the discussions above, it is easy to see that we have the following
tree expansion formulas for the automorphisms of K〈〈z〉〉.

Corollary 4.4. For any automorphism F (z) of the form F (z) = z −
H(z) with o(H(z)) ≥ 2, we have
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(a) The D-Log a(z) of F (z) is given by

a(z) =
∑

T∈T

ϕT PT (z),(4.20)

where, ϕT is the coefficient of s in the order polynomial Ω(T, s) of the

rooted tree T .

(b) The formal flow F (z, s) generated by F (z) is given by

F (z, s) = z +
∑

T∈T

(−1)v(T ) Ω(T, s) PT (z)(4.21)

where Ω̄(T, s) is the strict order polynomial of T as an unlabeled rooted

tree.

In particular, we have the following tree expansion inversion formula:

G(z) := F−1(z) =
∑

T∈T

PT (z),(4.22)

5. More Properties of the Specializations S and T of NCSF’s

Let K, z, t, α ≥ 1 and W ⊆ N+ as before. In this subsection, we
study more properties of the specializations SFt

: NSym → D[α]〈〈z〉〉

(Ft ∈ A
[α]
t 〈〈z〉〉) in Theorem 2.6 and TW : NSym → HW

GL in Theorem
2.12. We first show in Theorem 5.1 that, when W = N+, the special-
ization T : NSym→ HW

GL of NCSF’s is actually an embedding. Then,
in Theorem 5.3, we use Theorem 4.6 in [Z6] and improve it to the fam-
ily of the specializations SFt

: NSym → D[α]〈〈z〉〉 with all n ≥ 1 and

Ft = z − Ht(z) ∈ A
[α]
t 〈〈z〉〉 such that Ht(z) is homogeneous and the

Jacobian matrix JH is strictly lower triangular.
Let us start with the following theorem.

Theorem 5.1. When W = N+, the graded K-Hopf algebra homomor-

phism TW : NSym→ HW
GL in Theorem 2.12 is an embedding.

Proof: Let P ∈ NSym be any non-zero NCSF. By Theorem 4.6 in

[Z6], there exist Ft ∈ A
[α]
t 〈〈z〉〉 such that SFt

(P ) 6= 0. By Proposition
3.9, we have AFt

(TW (P )) = SFt
(P ) 6= 0. Hence TW (P ) 6= 0. ✷

Combining Corollary 3.11 and Theorem 5.1 above, we get the fol-
lowing corollary.

Corollary 5.2. For any non-empty W ⊆ N+, let T : NSym → HW
GL

be the specialization of NCSF in Theorem 2.12 and T∗ its graded dual

map. Then T∗ : HW
CK → Qsym is a homomorphism of graded K-Hopf

algebras. Furthermore, when W = N+, T∗ is also onto.
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To formulate next main theorem of this section. Let us first introduce
the following notations.

For any z and α ≥ 1 as before, we let B
[α]
t 〈z〉 be the set of automor-

phisms Ft = z−Ht(z) of the polynomial algebra K[t]〈z〉 over K[t] such
that the following conditions are satisfied.

• Ht=0(z) = 0.
• Ht(z) is homogeneous in z of degree d ≥ α.
• With a proper permutation of the free variables zi’s, the Jaco-

bian matrix JHt(z) becomes strictly lower triangular.

Our next main result of this section is the following theorem.

Theorem 5.3. In both commutative and noncommutative cases, the

following statement holds.

For any fixed α ≥ 1 and non-zero P ∈ NSym, there exist n ≥ 1

(the number of the free variable zi’s) and Ft(z) ∈ B
[α]
t 〈z〉 such that

SFt
(P ) 6= 0.

To prove the theorem above, we first need the following lemma, which
is also interesting in its own right.

Lemma 5.4. Let α ≥ 1 and W ⊆ N+ be fixed above. For any T ∈ TW ,

there exist n ≥ 1 and Ft(z) ∈ B
[α]
t 〈z〉 such that PT 6= 0 and PT ′(z) = 0

for any T ′ ∈ TW with |T ′| ≥ |T | but T ′ 6≃ T .

Note that, in the commutative case with W = {1}, the lemma is
essentially same as Theorem 2.4 in [WZ]. The proof given below is also
parallel to the proof there.

Proof: (a) For any fixed T ∈ TW , we construct automorphism Ft ∈

B
[α]
t 〈z〉 as follows. Let n = v(T ), the number of vertices of T , and d ≥ α

be a positive integer that is greater or equal to the number of children
of any vertex of T . Let z = (z1, z2, · · · , zn, zn+1) be free variables. We
first label the edges by e2, . . . , en in an order preserving way, i.e. for
any 2 ≤ i < j ≤ n, we have ej ≻ ei. We then assign the variable zi

(2 ≤ i ≤ n) to the edge ei and label the vertices as follows: let v1 = rtT ,
and for i = 2, . . . , n let vi be the vertex of ei which is further away from
the root. Finally, we define Ht(z) ∈ K〈z〉

×n as follows. First, for any
1 ≤ i ≤ n and m ∈ W , if vi is not a leaf of T , we set H̃[m],i(z) ∈ K〈z〉
be the product in any fixed order of all the free variables assigned to
the edges connecting vi with its m-labeled children, if there are any,
and 0 otherwise. Note that deg H̃[m],i(z) ≤ d. We set H[m],i(z) =

zk
n+1H̃[m],i(z) for some k ≥ 0 such that degH[m],i(z) = d. Now suppose
vi is a leaf of T , we simply set H[m],i(z) := zD

n+1 if m = minW and 0
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otherwise. Finally, we set H[m],n+1(z) := 0 for all m ∈ W . Next, we
set Ht,i(z) :=

∑
m∈W tmH[m],i(z) for any 1 ≤ i ≤ n + 1 and Ht(z) =

(Ht,1(z), Ht,2(z), · · · , Ht,n+1(z)). Then the wanted automorphism Ft

associated with the fixed T ∈ T̄W will be Ft(z) := z −Ht(z).
From the construction of Ht(z) above and the definition of PT (z) in

Eq. (3.6), it is easy to check the following facts:

• Ht=0(z) = 0 and Ht(z) is homogeneous in z of degree d ≥ α.
• For any 1 ≤ i ≤ n+1, Ht,i(z) only depends on the free variables
zj with j > i. Hence, the Jacobian matrix JHt(z) is strictly
lower triangular.
• For any T ′ ∈ TW , PT ′(z) 6= 0 only if either T ′ ≃ T or there

exists an admissible cut C ∈ C(T ) such that T ′ is isomorphic to
one of connected components obtained by cutting off the edges
of C from T .
• For the fixed T ∈ T̄W itself, PT (z) = c zb

n+1 for some c, b ∈ N+.

Actually, with a little bit more effect, one can show that the constants
c and b above are given by c = α(T ) and b = nd− (n− 1). But we do
not need these facts in our proof here.

From the discussions above, we only need show the polynomial map
Ft(z) defined above is indeed a polynomial automorphism of K[t]〈z〉
over K[t], i.e. its inverse is also a polynomial map. But, from the
third observation listed above and the tree expansion inversion for-
mula Eq. (4.19), it is easy to see that Gt(z) is also a polynomial map.
Note that, this also follows from the following well-known result in
the inversion problem, namely, any polynomial map Ft(z) with the
Jacobian matrix JFt lower triangular and invertible is a polynomial
automorphism. ✷

Now we can prove Theorem 5.3 as follows.
Proof Theorem 5.3: Let P ∈ NSym be any non-zero NCSF. We

choose W = N+ and let T : NSym → HW
GL be the specialization of

NCSF in Theorem 2.12, which we have shown in Theorem 5.1 is an
embedding. Therefore T(P ) 6= 0. We write T(P ) as

T(P ) =
∑

T∈T̄W

cT T,(5.1)

with cT ∈ K being all but finitely many zero.
Let k0 ≥ 1 be the least positive integer such that cT = 0 for any

T ∈ T̄W with |T | < k0. We choose and fix S ∈ T̄W such that cS 6= 0
and |S| = k0. We fix any m ∈ W and, for any T ∈ T̄W , denote by Tm

the W -labeled rooted trees in TW obtained by (re)labeling the root of
T by m. Note that, for any T, T ′ ∈ T̄W , T ≃ T ′ in T̄W iff Tm ≃ T ′

m in
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TW . Now we apply by Lemma 5.4 to Sm ∈ TW and choose Ft ∈ B such
that PSm

(z) 6= 0 but PTm
(z) = 0 for any T ∈ T̄W with |T | ≥ |S| = k0

and T 6≃ S. Now we apply AFt
to T(P ). Note that, by Eq. (3.10), we

have, DT ·H[m](z) = PTm
for any T ∈ T̄W . By using all the facts above

and Eq. (5.1), it is easy to see that, we have

AFt
(T(P )) ·H[m](z) =

∑

T∈T̄W

cT PTm
(z)

= PSm
(z) 6= 0.

Finally, by Theorem 3.9, we have SFt
(P ) = AFt

(T(P )) 6= 0. Hence,
we have proved Theorem 5.3. ✷
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