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Abstract

Within the framework of Classical Electrodynamics (CED) it is common

practice to choose freely an arbitrary gauge condition with respect to a

gauge transformation of the electromagnetic potentials. The Lorenz gauge

condition allows for the derivation of the inhomogeneous potential wave

equations (IPWE), but this also means that scalar derivatives of the elec-

tromagnetic potentials are considered to be unphysical. However, these

scalar expressions might have the meaning of a new physical field, S. If this

is the case, then a generalised CED is required such that scalar field effects

are predicted and such that experiments can be performed in order to ver-

ify or falsify this generalised CED. The IPWE are viewed as a generalised

Gauss law and a generalised Amper̀e law, that also contain derivatives of

S, after reformulating the IPWE in terms of fields.

Since charge is conserved, scalar field S satisfies the homogeneous wave

equation, thus one should expect primarily sources of dynamic scalar fields,

and not sources of static scalar fields. The collective tunneling of charges

might be an exception to this, since quantum tunneling is the quantum

equivalent of a classical local violation of charge continuity. Generalised

power/force theorems are derived that are useful in order to review historical

experiments since the beginning of electrical engineering, for instance Nikola

Tesla’s high voltage high frequency experiments. Longitudinal electro-scalar

vacuum waves, longitudinal forces that act on current elements, and applied

power by means of static charge and the S field, are predicted by this theory.

The energy density and field stress terms of scalar field S are defined.

Some recent experiment show positive results that are in qualitative

agreement with the presented predictions of scalar field effects, but further

quantitative tests are required in order to verify or falsify the presented

theory. The importance of Nikola Tesla’s pioneering research, with respect

to the predicted effects, cannot be overstated.
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I. INTRODUCTION

In general, the Maxwell/Heaviside equations, completed by the Lorentz force law, are

considered to be a complete theory for classical electrodynamics [9]. In differential form

these quations are:

~∇·~E =
ρ

ǫ0

Gauss law (1)

~∇×~B − ǫ0µ0

∂~E

∂t
= µ0

~J Ampère law (2)

~∇×~E +
∂~B

∂t
= ~0 Faraday law (3)

~∇·~B = 0 (4)

The electromagnetic fields ~E and ~B, and an extra scalar expression S, can be defined in

terms of the electromagnetic potentials, Φ and ~A:

~B = ~∇×~A (5)

~E = −~∇Φ −
∂~A

∂t
(6)

S = −ǫ0µ0

∂Φ

∂t
− ~∇·~A (7)

In terms of the potentials and expressions S, the Gauss law and the Ampère law are:
(

ǫ0µ0

∂2
Φ

∂t2
− ~∇2

Φ

)

+
∂S

∂t
=

ρ

ǫ0

(8)



ǫ0µ0

∂2~A

∂t2
− ~∇2~A



 − ~∇S = µ0
~J (9)

The Maxwell/Heaviside equations are invariant with respect to a gauge transformation,

defined by a scalar function χ:

Φ −→ Φ
′ = Φ +

∂χ

∂t
(10)

~A −→ ~A′ = ~A − ~∇χ (11)

~B −→ ~B′ = ~B (12)

~E −→ ~E′ = ~E (13)

S −→ S
′ = S −

(

ǫ0µ0

∂2χ

∂t2
− ~∇2χ

)

(14)
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because the electromagnetic fields ~E and ~B are invariant with respect to this transforma-

tion, and the Maxwell/Heaviside equations do not contain partial derivatives of S. This

means that for each physical situation there is not a unique solution for the potentials

Φ and ~A, because a particular solution for Φ and ~A can be transformed into many other

solutions via an arbitrary scalar function χ. From the set of all equivalent electromagnetic

potential functions, one can choose freely a particular subset such that these potentials

satisfy an extra gauge condition, such as

S = 0 (15)

which is known as the Lorenz condition [8]. For potentials that satisfy S = 0, equations

(8) and (9) become:

ǫ0µ0

∂2Φ

∂t2
− ~∇2

Φ =
ρ

ǫ0

(16)

ǫ0µ0

∂2~A

∂t2
− ~∇2~A = µ0

~J (17)

which are the inhomogeneous potential wave equations (IPWE). Well known solutions

of these differential equations are the retarded potentials, and in particular the Liénard-

Wiechert potentials [7] [21]. These solutions can be further evaluated and phenomena

like cyclotron radiation and synchrotron radiation can be explained by these evaluations

of the IPWE. It is necessary to prove that the retarded potentials satisfy the Lorenz con-

dition [19], and this is this case. However, other solutions than the retarded or advanced

potentials exist.

A very different philosophy is to regard the IPWE as generalised Gauss and Ampère

laws. In the spirit of J.C. Maxwell, who added the famous displacement term to the

Ampère law, one can add derivatives of expression S to the Maxwell/Heaviside equations:

~∇·~E −
∂S

∂t
=

ρ

ǫ0

(18)

~∇×~B + ~∇S − ǫ0µ0

∂~E

∂t
= µ0

~J (19)

~∇×~E +
∂~B

∂t
= ~0 (20)

~∇·~B = 0 (21)
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When these extra derivatives of S are likewise added to equations (8) and (9), this yield au-

tomatically the IPWE without the need of an extra gauge condition. These field equations

are a generalisation of classical electrodynamics, since the special case S = 0 results into

the usual Maxwell/Heaviside equations, and they are variant with respect to an arbitrary

scalar gauge transformation χ, see Eq. (14), unless χ is a solution of the homogeneous

wave equation. The expression S now has the meaning of a physical and observable scalar

field. This scalar field interacts with the vector fields ~E and ~B, as described by the gen-

eralised field equations. The question: ”Is classical electrodynamics a complete classical

field theory, with respect to scalar expression S?”, can not be answered within the context

of the standard classical electrodynamics, since this theory treats S as a non-observable

non-physical function, and this is premature. The usual gauge freedom and gauge condi-

tion S = 0 are based on the presumption that partial derivatives of S are not part of the

standard Maxwell field equations in the first place, which implies that S is disregarded as

a physical field even before the theoretical development of the gauge transformation. In

other words, the assumed gauge freedom and free choice of gauge conditions are part of

a sequence of circular arguments, that seem to ”prove” that S has no physical relevance.

Oliver Heaviside did not like the abstract electromagnetic potentials and he preferred the

concept of observable fields. Therefore it is also in the spirit of Heaviside to assume that

S can cause observable field effects as required by a testable theory, and such that the

Lorenz condition has only meaning as a special physical condition similar to: ’the electric

field is zero’.

Next, the induction of scalar fields is discussed, followed by the derivation of gener-

alised force/power theorems in order to predict the type of observable phenomena at-

tributable to the presence of scalar fields.

II. THE INDUCTION OF SCALAR FIELDS

Considering the definition of S (S = −ǫ0µ0
∂Φ

∂t
− ~∇·~A), one might design an electrical

device such that factor ∂Φ/∂t or factor ~∇·~A is optimised, and such that these two scalar

factors do not cancel each other. With ∂Φ/∂t we can associate systems of high voltage

and high frequency, such as pulsed power systems. With ~∇·~A we can associate a source

of divergent/convergent currents, which is similar to the induction of a magnetic field
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by rotating currents, ~B = ~∇×~A. For instance, a spherical or cylindrical capacitor can

show currents with non-zero divergence/convergence. If the capacity is high, then we can

expect a high ~∇·~A, since strong currents need to charge/discharge the capacitor. If the

capacity is low, then a higher factor ∂Φ/∂t can be expected, since then it takes less time

to charge and discharge the capacitor to high voltages.

Electromagnetic fields are of static or dynamic type. Considering the inhomogeneous

field wave equations:

ǫ0µ0

∂2~E

∂t2
− ~∇2~E = µ0



−
∂~J

∂t
−

~∇ρ

ǫ0µ0



 (22)

ǫ0µ0

∂2~B

∂t2
− ~∇2~B = µ0(~∇×~J) (23)

ǫ0µ0

∂2S

∂t2
− ~∇2

S = µ0

(

−~∇·~J −
∂ρ

∂t

)

(24)

that are deduced from the generalised Maxwell/Heaviside field equations, we can expect

primarily dynamic scalar fields, because of the conservation of charge. This is the reason

why the discovery of scalar field S is not as easy as the discovery of the electromagnetic

fields via simple static field type experiments. Quantum tunneling of electrons can be

understood on the classical level as a local violation of charge conservation, for instance

at Josephson junctions. Hence, collective quantum tunneling devices might induce a

new type of classical field: a static scalar field. A dynamic scalar field is induced by a

charge/current density wave: set ~E = ~0 and ~B = ~0, then Eq.(18) and Eq.(19) become:

−
∂S

∂t
=

ρ

ǫ0

(25)

~∇S = µ0
~J (26)

Since S satisfies wave Eq.(24), also the charge density ρ and current density ~J are wave

solutions, however these wave solutions also have speed c. There are also wave solutions

of charge/current density with speed less than c, in case the electric field (and/or the

magnetic field) and scalar field are not zero. Conclusion, a scalar field S can be induced

by a dynamic charge/current distribution.
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III. GENERALISED POWER/FORCE LAWS

First, a source transformation is defined in order to generalise the standard electrodynamic

force and power theorems:

ρ −→ ρ′ = ρ + ǫ0

∂S

∂t
(27)

~J −→ ~J′ = ~J −
1

µ0

~∇S (28)

This source transformation transforms the Maxwell equations into the generalised Maxwell

equations. The electrodynamic power theorem and force theorem are given by:

µ0

(

~J·~E
)

= −
∂ (ǫ0µ0E

2 + B
2)

2 ∂t
− ~∇·

(

~E×~B
)

(29)

µ0

(

ρ~E +~J×~B
)

= ǫ0µ0

(

(~∇·~E)~E + (~∇×~E)×~E
)

+ (~∇×~B)×~B − ǫ0µ0

∂(~E×~B)

∂t
(30)

Next, the left hand side of these theorems is transformed:

µ0

(

~J·~E
)

−→ µ0

(

~J −
1

µ0

~∇S

)

·~E = (31)

µ0

(

~J·~E
)

− (~∇S)·~E =

µ0

(

~J·~E
)

− ~∇·(~ES) + S~∇·~E =

µ0

(

~J·~E
)

− ~∇·(~ES) + S

(

ρ

ǫ0

+
∂S

∂t

)

=

µ0
~J·~E +

ρ

ǫ0

S − ~∇·(~ES) +
∂(S2)

2∂t

µ0

(

ρ~E +~J×~B
)

−→ µ0

(

(ρ + ǫ0

∂S

∂t
)~E + (~J −

1

µ0

~∇S)×~B

)

= (32)

µ0

(

ρ~E +~J×~B
)

+ ǫ0µ0

∂S

∂t

~E − (~∇S)×~B =

µ0

(

ρ~E +~J×~B
)

+ ǫ0µ0

∂(S~E)

∂t
− ~∇×(S~B) + S



−ǫ0µ0

∂~E

∂t
+ ~∇×~B



 =

µ0

(

ρ~E +~J×~B
)

+ ǫ0µ0

∂(S~E)

∂t
− ~∇×(S~B) + S(µ0

~J − ~∇S) =

µ0

(

ρ~E +~J×~B +~JS
)

+ ǫ0µ0

∂(S~E)

∂t
− ~∇×(S~B) − S~∇S

The power theorem and force theorem are transformed into:
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µ0
~J·~E +

ρ

ǫ0

S = −
∂ (ǫ0µ0E

2 + B2 + S2)

2 ∂t
− ~∇·

(

~E×~B − ~ES

)

(33)

µ0

(

ρ~E +~J×~B +~JS
)

= ǫ0µ0

(

(~∇·~E)~E + (~∇×~E)×~E
)

(34)

+ (~∇×~B + ~∇S)S + (~∇×~B + ~∇S)×~B

− ǫ0µ0

∂(~E×~B + ~ES)

∂t

The new terms in these theorems need to be interpreted. The generalised Poynting vector

is: ~P = ~E×~B − ~ES. The power flow vector ~ES belongs to a new type of vacuum wave,

and by setting ~B = ~0 we can deduce the following wave equations from the generalised

Maxwell/Heaviside equations:

ǫ0µ0

∂2S

∂t2
− ~∇·~∇S = 0 (35)

ǫ0µ0

∂2~E

∂t2
− ~∇~∇·~E = 0 (36)

The solution of these wave equations is a longitudinal electro-scalar wave, or LES wave.

The term S2 represents the energy density of scalar field S. The interesting term ρ
ǫ0

S can

be interpreted as the applied power by means of static charge ρ and a dynamic scalar field

S. The new force term ~JS is a longitudinal force that acts on a current element ~J. Also

new magneto-scalar stress terms appeared in the force theorem. The scalar field is like a

scalar form of magnetism: it acts on current elements and it interacts with the electric

field in vacuum. The derivation of these theorems was already published in [19], by means

of the biquaternion calculus [4].

IV. EXPERIMENTAL EVIDENCE

A. Longitudinal vacuum waves

Nikola Tesla was one of the first scientist who mentioned the existence of longitudinal

electric vacuum waves. Initially he did not believe that the wireless signals discovered by

Hertz were the transversal electromagnetic (TEM) waves as predicted by Maxwell. Later

Tesla acknowledged TEM waves, but he also insisted on the existence of energy efficient

longitudinal electric waves, applicable for the wireless transport of energy and wireless

communication. Longitudinal vacuum waves were (and still are) not accepted by the
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physics community as a physical reality, because this type of wave vacuum wave is not

predicted by the standard theory of electrodynamics. This should be reconsidered. Tesla’s

patents describe wireless energy systems [18] based on Tesla’s resonant transformer [16]

and ball-shaped antennas. Tesla optimised [17] the voltage and frequency of the signal

in the secondary circuit of his resonant transformer by using a secondary pancake coil

[15] with low self-induction and a secondary spherical capacitor with low capacity. The

secondary circuit voltage was about a million volt or higher. In order to prevent discharges

from the secondary capacitor and secondary coil, Tesla placed the spherical capacitor in

a vacuum tube, and he electrically isolated the secondary coil by submerging the coil in

an oil reservoir. The capacitor could be made smaller with reduced capacity, because of

the reduced risk of discharge, which further enabled Tesla to apply higher frequencies and

higher voltages. Obviously Tesla optimised scalar factor ∂Φ/∂t , and not scalar factor ~∇·~A.

Ignatiev’s experiment of longitudinal electric wave transmission, by means of a large

spherical antenna, confirmed the existence of longitudinal electric vacuum waves without

magnetic component [6]. Ignatiev discovered that the transmitted energy was unusually

high. In order to explain the result of longitudinal electric wave transmission Ignatiev

concluded that a modification of the Gauss law is necessary. A possible modification of

Gauss’ law is presented in this paper, see Eq. (18). According to Ignatiev the measured

propagation speed was about 1.2c, in fact faster than light. Factor 1.2, is still subject of

debate, and the error margin in the measurement data produced by Ignatiev is reviewed.

Ignatiev excluded the existence of the magnetic field component in the transmitted wave,

and this is enough reason to refer to his experiment.

Recently, Wesley and Monstein published a paper [10] on the wireless transmission

of longitudinal electric waves, also by means of a spherical antenna, and again the au-

thors confirmed the existence of such a wave. According to Wesley and Monstein the

transmitted energy flux is proportional to:

~P = −~∇Φ
∂Φ

∂t
(37)

and the field energy density is:

D =
1

2
(~∇Φ)2 +

1

2

(

∂Φ

c∂t

)2

(38)
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which is in agreement with the defined power flow ~ES and the energy density of the electric

and scalar fields, 1

2
E2 and 1

2
S2 (except for a factor ǫ0µ0), in case we ignore the magnetic

potential ~A. Wesley and Monstein determined the polarisation of the received signal,

which was indeed longitudinal. However, they did not present a background theory for

the presented laws for energy flux and energy density. Wesley and Monstein claim Eq. (37)

and Eq. (38) can be derived from Eq. (16). This is not true. Only after the introduction

of a physical scalar field ∂Φ/c∂t and after the deduction of the power theorem Eq. (33),

is it possible to deduce Eq. (37) and Eq. (38). Since the generalised power theorem (33)

was published already in year 2001 [19], it is fair to assume Wesley and Monstein reduced

power theorem (33) to the restricted form of Eq. (37) and Eq. (38), without any reference

to [19].

In [14] a so called Coulomb wave is described by Tzontchev, Chubykalo and Rivera-

Juárez: a longitudinal electric wave. According to their measurements the Coulomb

interaction is not instantaneous, but it has a finite speed which is approximately c. A

Coulomb potential can be decomposed into an integral sum of electric potential waves [20]

that all have speed c. The gradient of one such an electric potential wave is a longitudinal

electric wave. The integral sum of all longitudinal waves constitutes the Coulomb electric

field. As a consequence, a variation in Coulomb potential spreads with velocity c, for

instance during a discharge. Since the differential with respect to time of one such an

electric potential wave is a scalar field wave, there is a possibility of a hidden energy flow

connected with the charge in the form of longitudinal electro-scalar waves.

B. Longitudinal electrodynamic forces

Longitudinal electrodynamic forces have been observed in several experiments, for exam-

ple exploding wire experiments by Jan Nasilowski [12] and Peter Graneau [3]. According

to Graneau, the pressure due to longitudinal forces would be substantially greater than

the pinch pressure. Assis and Bueno [1] showed that Ampère’s force law cannot be dis-

criminated from Grassmann’s force law for current elements, for any closed current circuit.

They conclude both laws do not describe longitudinal forces, therefore a new theory is

necessary in order to explain such forces. The standard field stress tensor does not de-

scribe longitudinal forces either, see Eq. (30), because a longitudinal force term at the
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right hand site would not be balanced by a longitudinal force term at the left hand site,

and that would render the force theorem false. Longitudinal forces can be explained by

the presence of a scalar field and by the generalised force theorem (35), expressed by the

term ~JS. This force is always parallel to the direction of current density ~J. Then one

should verify that a scalar field is involved, that is induced by a source of high frequency

high voltage, or by divergent/convergent currents in a conductor or plasma. Periodic lon-

gitudinal forces give rise to charge density waves and stress [11] [13] waves, and vice verse:

a non-zero current divergence is the source of a scalar field that acts longitudinally on

nearby current elements, such that another area of non-zero current divergence is created,

etc... Setting ~E = ~B = ~0 in the generalised Maxwell equations, leads to charge density

and current density waves; in this case −
∂S

∂t
= ρ

ǫ0
and ~∇S = µ0

~J, and since S is a wave

solution, also ρ and ~J are waves. The fraction pattern of an exploded wire is very similar

to a wave, perhaps as the direct consequence of a charge/current density wave and the

breaking of the metal bond between metal atoms in areas with very low or very high

electron density. Also Ampère’s [2] hairpin experiment shows areas with divergent and

convergent currents: at the exact location where currents enter and leave the hairpin [5].

C. Applied power from static charge and a scalar field

Usually power theorem (29) describes that an applied power source with density ~E ·~J is

converted into a radiated energy flow with density ~∇· (~E×~B) and the change in field

energy 1

2
E2 and 1

2
B2. The expression ”applied power” should be ” converted power”,

because a conversion of electric power is not necessarily applied power. According to the

generalised power theorem (31), a scalar field S can turn an object with charge density ρ

into an electrical power source, and this is expressed by term ρ
ǫ0

S. This static charge power

source is a remarkable prediction by the theory. One should look for power conversion

that involves static charge rather than dynamic currents, for instance charged objects that

radiate LES waves or that show changing electric field energy. Although rumours exist

that this actually has been achieved, the author is not aware of any published scientific

experiments with respect to this effect.
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V. CONCLUSIONS

The introduction of gauge conditions in CED implies that scalar derivatives of the elec-

tromagnetic potentials are non-physical. This negative hypothesis cannot be tested, and

it should be reversed into the testable and positive hypothesis of measurable scalar field

effects, such as longitudinal electric vacuum waves, longitudinal electrodynamic forces,

and energy conversions by means of static charge and a scalar field. If these effects can-

not be detected in general, then finally a physical justification for gauge conditions has

been obtained. However, there are indications that positive results have been achieved.

Further quantitative tests are needed in order to obtain scientific proof for the existence of

a physical scalar field S, as defined in this paper. A positive quantitative verification will

have enormous consequences for the science of physics. The qualifications ”unphysical”

scalar photons and ”unphysical” longitudinal photons are incorrect, since these qualifica-

tions require experimental proof and the usual arguments that seem to prove them are

circular. This neglect of Galileo Galilei’s philosophy of physics by the physics community,

with respect to gauge conditions, had serious consequences for one of the most brilliant

minds in history, Nikola Tesla. There are urgent reasons to review Tesla’s scientific legacy,

such as the need for new forms of energy and new energy technologies.
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