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Contemporary Mathematics

A Proof That Measured Data and

Equations of Quantum Mechanics Can Be

Linked Only by Guesswork

John M. Myers and F. Hadi Madjid

Abstract. The design and operation of a quantum-mechanical
device as a laboratory instrument puts models written in equations
of quantum mechanics in contact with instruments. In designing a
quantum-mechanical device of high precision, such as a quantum
computer, a scientist faces choices of models and of instruments,
and the scientist must choose which model to link to which ar-
rangement of instruments. This contact is recordable in files of
a Classical Digital Process-control Computer (CPC) used both to
calculate with the equations and to manage the instruments. By
noticing that equations and instruments make contact in a CPC,
we rewrite equations of quantum mechanics to explicitly include
functions of CPC-commands to the instruments. This sets up a
proof that a scientist’s choice in linking mathematical models to
instruments is unresolvable without guesswork to narrow the set
of models from which one is to be chosen.

The proof presents the challenge of pursuing its implications.
Scientists in any investigative endeavor inherit choices from the
past and frame choices for the future, choices open to guesswork
and visible in CPC files. To picture the framing of choices and
relations among them, we adapt colored Petri nets. Constraining
the events of the nets to produce output colors defined by definite
functions of input colors excludes guesswork from the firing of net
events, and by contrast highlights guesses entering a net fragment
as colored tokens placed by a scientist or by instruments on input
conditions. The availability of these net fragments makes choice
and guesswork part and parcel of physics.

Net fragments as a means of expressing guess-demanding choic-
es are applied to portray guesswork needed in testing and calibrat-
ing a quantum computer. The sample size required to test a quan-
tum gate in a quantum computer is shown to grow as the inverse
square of the error allowed in implementing the gate.
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1. Introduction

This paper stems from earlier work [1] and a proof presented here
showing that inquiry in quantum physics continually presents a sci-
entist with choices of equations and of instruments, unresolvable by
calculation and measurement. Something else is demanded of the sci-
entist, which may as well be called a guess.1 Challenged by the proof
to look at its implications, we noticed that people in investigative en-
deavors inherit and frame choices open to guesswork, some of which
show up clearly in the computers used in the endeavors.

Section 2 introduces the Classical Process-control Computer (CPC)
with its special capacity to manipulate abstractions expressed as equa-
tions without contaminating them with its own physics.2 A scientist
can use a CPC not only to calculate with equations, but also to medi-
ate the command of laboratory instruments via digital/analog (D/A)
converters and to record experimental results returned from the in-
struments via analog/digital (A/D) converters. By noticing that both
equations and instruments make contact in a CPC, we rewrite equa-
tions of quantum mechanics to explicitly include functions of CPC-
commands to the instruments. This sets up the proof that the scien-
tist’s choice in linking equations to instruments is unresolvable without
guesswork to narrow the set of models. A lattice of sets of models is de-
fined, two widely used guesses that narrow the set of models are noted,
and the concept of statistical distance between probability distributions
is applied to quantum-mechanical models.

Section 3 provides language for displaying and analyzing guess-
demanding choices visible in CPC files. To this end Turing machines
are introduced and adapted to formalize the definition of a CPC. This
allows fragments of colored Petri-nets, opened to exogenous influences,
to portray the programming and running of programs in a network of
CPC’s operated by collaborating scientists. Many of these programs in-
corporate guesses. This general picture of process-control computation
shows programs and other guesses as colors on tokens that a scientist
enters on a Petri net that acts as a game board. Mechanisms for one
scientist to judge programs (and hence guesses) made by another are

1Other words are hypothesis, Ansatz, assumption, axiom, postulate, and some-
times principle.

2This capacity stems from regenerative amplifiers and clock-gated memory reg-
isters, two inventions used to make all computer hardware insensitive to manufac-
turing variations, so that, like the placing of a chess piece not quite in the center of
a square, deviations in performance, within limits, do not matter. Its independence
from its own physics distinguishes a classical computer from a quantum computer.
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sketched, leading to the first of many needs for concurrently operating
CPC’s.

Section 4 describes some examples in which guessing, quantum me-
chanics and CPC structures must interact in the building of a quantum
computer as a laboratory instrument specified by equations of quan-
tum mechanics. We show the need for guesses to link equations and
instruments brings with it a need to test the quantum computing in-
struments and to calibrate them, guided by test results and guesses.
Quantum mechanics imposes a peculiar structure on this testing, re-
lated to the statistical distance between models. For the measure of
precision conventionally used in quantum computing, the sample size
needed for testing a quantum gate is shown to increase as the inverse
square of the tolerated imprecision. While many questions are left
open to future work, the example demonstrates a frame for analysis
and experiment broader than any quantum model alone, a frame that
includes the testing of the mathematical models by results of the use
of instruments, and so distinguishes what the model says from what
the instruments do, allowing provision for guesswork as an ingredient
in advancing both models and instruments.

2. Quantum-mechanical models and their links to

instruments

Proving the necessity of guesses demands language to describe the
linking of numbers in mathematical models to numbers pertaining to
laboratory instruments, starting with mathematical language to de-
scribe a scientist’s choosing one arrangement of laboratory instruments
rather than another. We shall describe a situation in which a scien-
tist chooses instruments by using a CPC keyboard to type strings of
characters, much as Gödel, in mathematical logic, described equations
as strings of characters. The scientist at the CPC keyboard writes
and executes programs to command the operation of laboratory instru-
ments and record their results. These programs make use of quantum-
mechanical equations, which the scientist also writes into the CPC.

Quantum mechanics as a mathematical language expresses different
measuring instruments by different operators, and thus has built into it
a recognition that phenomena to be described cannot be independent
of the instruments used to study them [2]. Still, this dependence is em-
phasized more some times than others. Some modeling merely assumes
that instruments can be found, without saying how, to implement var-
ious combinations of state vectors and operators. Such models appear
in theories of quantum computing to relate the multiplication of uni-
tary operators to the solving of problems of interest. To see the need
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for another kind of model, suppose a scientist has computer-controlled
instruments (such as lasers) with the potential to implement a quan-
tum computer, and faces the question of what commands the CPC
should transmit to the instruments and when it should transmit them
in order implement one or another quantum gate. Determining the
commands and their timing to implement a quantum gate expressed as
a unitary matrix Uj takes a model that expresses the gates as unitary
transformations in terms of commands that a process-control computer
can transmit to the instruments. Curiously, models of this kind have
not been much stressed in physics, and it is a merit of efforts to build
quantum computers to make the importance of such models apparent.

2.1. Models and instruments make contact in a CPC. Part
of a scientist’s control of instruments can work through the use of a
process-control computer that transmits commands to the (computer-
controlled) instruments and records results produced by them. We con-
fine our analysis to this part, excluding from consideration here (but
by no means denigrating) hand work beyond the reach of a process-
control computer. We shall portray cases in which a scientist chooses
arrangements of instruments, chooses models, and puts the two in con-
tact, linking models to instruments, during a CPC session starting after
the instruments have been set up and put under control of a CPC and
ending before the scientist has to tinker with the instruments in ways
unreachable by the CPC. Within the CPC, laboratory instruments and
mathematical models make contact when:

1. a model resident in a CPC file is used to derive commands for
the CPC to transmit to the instruments;

2. instrumental results collected by a CPC are used to narrow down
a set of models. (We shall later see feedback as an example of
this.)

Such contact does not spring from nothing, but is brought about by
design and depends on choices made by a scientist, including choices
of what set of models to start with, what model to choose for use
by a CPC in generating commands, and what experiments to run. To
picture the design and operation of contact between models and instru-
ments, imagine eavesdropping on CPC’s used in various investigations.
Commands sent to the instruments by the CPC and the results received
from them, both numerical, are amenable to analysis, as is the scien-
tist’s writing of equations, programs, calls for program execution, etc.;
we also eavesdrop on displays produced by the CPC for the scientist.

Although the CPC puts instruments in contact with equations in-
volving quantum superposition, the CPC itself is a classical machine,
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Figure 1. Computer mediating contact between scien-
tist and instruments.

free of quantum superposition, for it needs no quantum behavior within
itself, neither to manipulate equations of quantum mechanics nor to
manage laboratory instruments. For example, the writing of an ex-
pression |0〉 + |1〉 for a superposition of quantum states makes use
of written characters that themselves exhibit no superposition. And
any command to instruments is likewise a character string, including
a command to rotate a polarizing filter by 45 degrees to implement
the superposed state |0〉 + |1〉. Similarly, results of the use of instru-
ments interpreted as demonstrating superposition arrive as bit strings,
themselves devoid of superposition.

The CPC is situated between a scientist to its left and laboratory
instruments to its right, as shown in figure 1. Working at the CPC,
a scientist is limited in action at any moment to the resolution of the
choice presented by the CPC at that moment, a choice defined by the
files stored in its memory and the state of its processor, and exemplified
by a menu displayed by the CPC. Our analysis of the CPC cannot reach
beyond its buffers: neither to its left into the scientist, nor to its right
where, invisible to eavesdropping, reside digital-to-analog (D/A) and
analog-to-digital (A/D) converters and beyond them the laboratory
instruments.

2.2. Quantum-mechanical models that recognize com-

mands sent to instruments. For equations of quantum mechan-
ics to model effects of a scientist’s choices in arranging instruments,
these choices must show up in the equations. To see how this can
work, recall that quantum mechanics parses the functioning of instru-
ments into state preparation, transformation, and measurement, three
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coordinated activities that generate outcomes, supposed visible in ex-
perimental results by some means unspecified. The three activities are
described, respectively, by a state (as a unit vector representing a ray
in a Hilbert space), a unitary operator, and a hermitian operator. The
only way to make the scientist’s choices in arranging instruments show
up in quantum-mechanical equations is to make the state vector |v〉,
the transformation operator U , or the measurement operator M , or
some combination of them, depend on how these choices are resolved.

A simple and yet, so far as we know, original way to analyze a
scientist’s choice of arrangements of instruments is to suppose that
during a CPC-mediated session the instruments are controlled by CPC-
transmitted commands from a set B of possible commands, where B ⊂
B and B is the set of all finite binary strings. We formulate a core set of
quantum mechanical models that express the probability of an outcome
of instruments in response to a command b ∈ B sent to the instruments
by the CPC, as follows. Let VB, UB, and MB be the sets of all functions
|v〉, U , and M , respectively, with

|v〉 : B → H,
U : B → {unitary operators on H}, and
M : B → {hermitian operators on H}.

The core models exhibit discrete spectra for all M ∈ M:

Property 1.

(∀b ∈ B)M(b) =
∑

j

mj(b)Mj(b),(2.1)

where mj : B → R (with R denoting the real numbers) is the j-th
eigenvalue of M , and Mj is the projection onto the j-th eigenspace (so
MjMk = δj,kMj).

Let Pr(j|b) denote the probability of obtaining the j-th outcome,
given transmission by the CPC of a command b. Although not com-
monly seen in texts, this probability of an outcome given a command
is the hinge pin for focusing on quantum mechanical modeling of uses
of instruments. Quantum mechanics constrains the models to satisfy:

Property 2.

Pr(j|b) = 〈v(b)|U †(b)Mj(b)U(b)|v(b)〉,(2.2)

where the † denotes the hermitian adjoint.

(Within this modeling scheme, the Schrödinger equation relates a
model at a later time to a model at an earlier time by a certain trans-
formation operator U , dependent on the situation.)
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Any choice from the sets B, VB, UB, and MB produces some
quantum-mechanical model (|v〉, U, M)B. Two models (|v〉, U, M)B and
(|v′〉, U ′, M ′)B generate the same probabilities Pr(j|b) if they are unitar-
ily equivalent, meaning there exists a Q : B → {unitary operators on
H} such that (∀b ∈ B)|v′(b)〉 = Q(b)|v(b)〉, U ′(b) = Q(b)U(b)Q†(b)
and M ′(b) = Q(b)M(b)Q†(b). For this reason, any model (|v〉, U, M)B

can be reduced to (|v′〉, 1, M)B, where |v′〉 = U |v〉 and M ′ = M or,
alternatively to (|v〉, 1, M ′)B where M ′ = U †MU .

More models are available in more general formulations. When we
show that guesswork is necessary even to resolve choices among models
of the core set, it follow that guesswork is necessary also to resolve the
choices of among a larger set of models involving positive-operator-
valued measures, superoperators, etc.

2.3. From results to quantum-mechanical outcomes. Before
stating and proving the proposition that calculations and measure-
ments cannot by themselves link models to outcomes obtained from in-
struments, we call to the reader’s attention that outcomes themselves,
in the sense of quantum mechanics, are produced by instruments only
with the help of interpretive guesswork.

Claim 1. To speak of actual instruments in the language of quan-
tum mechanics one needs to associate results of the use of the instru-
ments, recorded in a CPC, with outcomes in the sense of quantum
mechanics or with averages of outcomes.

Experimental results of the use of instruments become quantum-
mechanical outcomes only by a scientist’s act of interpreting the results
as outcomes. The interpretation involves judgment and guesswork, not
only to sidestep imperfections in the instruments, but as a matter of
principle, even for the limiting case of instruments supposed free of im-
perfections. For example, light detectors used in experiments described
by models of quantum optics generate experimental results; typically,
each of L detectors reports to the CPC at each of a succession of K
time intervals a detection result, consisting of 0 (for no detection) or 1
(for detection), so a record contains LK bits. Depending on judgments
made about correlations from time interval to time interval and detec-
tor to detector, these LK bits may constitute LK quantum outcomes,
or one quantum outcome, or some number in between. The number of
outcomes in LK bits is determined neither by the experimental results
(which in this case are just these bits) nor by general principles of quan-
tum mechanics; yet the parsing of results into outcomes must occur, at
least provisionally, before any comparison between equations and mea-
sured outcomes can be made. Henceforth, when we speak of outcomes,
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we presuppose that this piece of guesswork has been accomplished and
a decision made to define the parsing of results into outcomes.

2.4. Calculation and measurement by themselves cannot

link quantum models to recorded outcomes. Could it be that
the general properties 1 and 2 suffice to determine a model (up to
unitary equivalence) if only one collects enough measured results inter-
preted as outcomes? The answer is: “no; unless some special properties
restrict the model more tightly than the form established by properties
1 and 2 alone, one can always find many unitarily inequivalent models
(|v〉, U, M)B, all of which produce probabilities that match perfectly
the relative frequencies of outcomes.”

To prove this we define some things to pose the issue more sharply.
Let B denote the set of commands used to generate some set of out-
comes interpreted from measured results.3 For any b ∈ B, let N(b) be
the number of times that an outcome has been entered in the record for
a run of the experiment for command b, and let J(b) be the number of
distinct outcomes for command b. For j = 1, . . . , J(b), let λj(b) be the
j-th distinct outcome obtained for command b, and let n(j, b) be the
number of times this j-th distinct outcome λj is recorded in response
to command b. For all j > J(b) let µj(b) be arbitrary real numbers,
and for all j ≥ 1 let φ(j, b) be arbitrary real numbers.

Proposition 2.1. Given any set of recorded outcomes associated
with any set B of commands, the set of models satisfying properties 1
and 2 contains many unitarily inequivalent models (|v〉, U, M)B, each
of which has a perfect fit with the set of outcomes, in the sense that

(∀b)(∀1 ≤ j ≤ J(b)) Pr(j|b) = n(j, b)/N(b).(2.3)

Proof. It is instructive to start with the special case in which for
some b ∈ B, there exist two or more distinct values of j for which
n(j) > 0. For this case let the set {|j〉} be an orthonormal basis
of a separable Hilbert space. Define a subset S of models satisfying

3Practically speaking, B must be a finite set, but the proof holds also for B

denumerably infinite.
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properties 1 and 2 as all models of the form (|v〉, U, M)B, where

|v(b)〉
def
=

J(b)∑

j=1

[n(j, b)/N(b)]1/2 exp(iφ(j, b)|j〉),(2.4)

U(b)
def
= 1,(2.5)

M(b)
def
=

J(b)∑

j=1

λj(b)|j〉〈j| +
∞∑

j=J(b)+1

µj(b)|j〉〈j|,(2.6)

with µj and φ arbitrary real-valued functions. By invoking property 2,
one checks that any such model has the claimed perfect fit; yet the set
contains many unitarily inequivalent models, which predict conflicting
statistics for some possible quantum measurement.4 This proves the
special case.

For the general case, modify the definitions above to

|v(b)〉
def
=

J(b)∑

j=1

[n(j, b)/N(b)]1/2|wj〉,(2.7)

U(b)
def
= 1,(2.8)

M(b)
def
=

J(b)∑

j=1

λj(b)Pj +

∞∑

j=J(b)+1

µj(b)Pj,(2.9)

where PjPk = δj,kPj , for all j the projection Pj has dimension greater
than 1, and |wj〉 ranges over all unit vectors of the eigenspace defined by
Pj|wj〉 = |wj〉. In particular, for any j, dim(Pj) can be as large as one
pleases. Then even if there is only one outcome that is ever recorded,
there are still many unitarily inequivalent models that perfectly fit the
data.

Proposition 2.1 implies that the density matrix, often supposed
to be determined from measured data [3], is undetermined without
assuming special properties shortly to be discussed; this follows by
expressing the density matrix as |v〉〈v| and noticing that the phases of
the off-diagonal elements are undetermined. We leave to the future the
demonstration of additional ambiguity in the link between any set of
recorded outcomes and models expressed in the mathematical language
of quantum mechanics.

4This happens e.g. for primed and unprimed models if for any b, n(1, b) 6= 0 6=
n(2, b) and φ(1, b) − φ(2, b) 6= φ′(1, b) − φ′(2, b).
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2.5. Statistically significant differences between models. In
practice, a scientist has little interest in a model chosen so that its prob-
abilities exactly fit measured relative frequencies. Rather, the scientist
wants a simpler model with some appealing structure that comes rea-
sonably close to fitting. Quantum mechanics encourages this predilec-
tion, because on account of statistical variation in the sample mean,
functions that perfectly fit outcomes on hand at one time are not apt
to fit perfectly outcomes acquired subsequently. We show here that ac-
cepting statistics no way takes away from the proof that measurements
and equations by themselves cannot link models to instruments.

One needs a criterion for the statistical significance of a difference
between two quantum-mechanical models (or between a model and
measured relative frequencies). Here we limit our attention to models
α and β which have a set B of commands in common and for which
the spectra of Mα and Mβ are the same. For a single command b, the
question is whether the difference between the probability distributions
Prα(·|b) and Prβ(·|b) is bigger than typical fluctuations expected in
N(B) trials. An answer is that two distributions are indistinguishable
statistically in N(b) trials unless

N(b)1/2d(Prα(·|b), Prβ(·|b)) > 1,(2.10)

where d is the statistical distance defined by Wooters in Eq. (10) of [4].
Furthermore, Wooters’s Eq. (12) shows for two models α and β that
differ only in the function |v〉,

d(Prα(·|b), Prβ(·|b)) ≤ cos−1 |〈vα(b)|vβ(b)〉|.(2.11)

To judge the significance of the difference between two models with
respect to a set B of commands common to them, a scientist who
chooses some weighting of different commands can define a weighted
average of d(Prα(·|b), Prβ(·|b)) over all b ∈ B. The same holds if model
β is replaced by relative frequencies of outcomes interpreted from mea-
sured results.

It is noteworthy that the set of models statistically indistinguishable
from a given model can be much larger than would be the case if the
“≤” of (2.11) were an equality, as follows.

Proposition 2.2. For any set of outcomes, two models α and β
of the form (|v〉, 1, M)B can perfectly fit the relative frequencies of the
outcomes (Proposition 2.1) and yet be mutually orthogonal in the sense
that 〈vα|vβ〉 = 0

Proof. For any set of measured outcomes, there exists a perfectly
fitting model α of the form in the proof of Proposition 2.1 for the general
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case, for which (∀j, b)dim(|wj(b)〉) > 1), and a corresponding perfectly
fitting model β such that (∀j, b)〈wα,j(b)|wβ,j(b)〉 = 0. For these two
models, 〈v(b)α(b)|vβ(b)〉 =

∑
j[n(j, b)/N(b)]〈wα,j(b)|wβ,j(b)〉 = 0 .

Wooters extended the definition of statistical difference to unit vec-
tors. While for any two unit vectors, there exist measurement operators
that maximize the statistical distance between them, for any such op-
erator there exist other vectors, mutually orthogonal, that have zero
statistical distance relative to this operator. For this reason, among
others, statistics still leaves the scientist needing something beyond cal-
culation and measurement to determine a model, for the set of models
closer than ǫ in weighted statistical distance to certain measured results
certainly includes all the models that exactly fit the data and, without
special restrictions dependent on guesses, this set includes models that
are mutually orthogonal. Models close to given measured data are not
necessarily close to each other in the predictions they make.

2.6. Lattices of models. Properties 1 and 2 set up a big set of
models (|v〉, U, M)B, B ⊆ B, |v〉 ∈ V, U ∈ U , M ∈ M. Subsets of
models of this set are a lattice under set intersection and union. Each
command set B establishes a smaller lattice of sets of models, and these
lattices will play a part in the testing and calibrating of quantum com-
puters, discussed in section 4, where a scientist encountering problems
with a model chooses a set of possible alternatives, and then tries to
narrow it. Often this narrowing is seen as choosing values of param-
eters within a form of model in order to obtain a best fit, say with a
criterion of minimizing statistical distance between frequencies of out-
comes interpreted from measured results and probabilities calculated
from the model. One is free to think of the estimating of parameters
in the language of a lattice of models as the using of measured results
to select a model from a set of models.

From Proposition 2.1 that showed that the whole set of models
defined by properties 1 and 2 is too big to permit measured results to
select a model, we have:

Proposition 2.3. For measured data to uniquely decide to within
unitary equivalence which quantum-mechanical model of a set of mod-
els best fits experimental results interpreted as outcomes by a criterion
of least statistical distance (or any other plausible criterion), the set of
models must first be sufficiently narrowed, and this narrowing is un-
derivable from the results and the basic properties 1 and 2 of quantum
mechanics.
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Something beyond measured results and calculations from equa-
tions is required to narrow a set of models so that measured results
can select a model that is “best” by some criterion. Such an act of
choosing undefined by calculation and results of observation is what
we have called a guess.

2.7. Hidden guesswork in conventional quantum mechani-

cal models. The proof casts in a clear light maneuvers conventionally
made to narrow down the set of models. Sometimes a community of
physicists is in mutual agreement about guesses deemed appropriate,
and this agreement obscures from notice the fact that a guess is in-
voked. As an example of a widely invoked guess, most modeling in
quantum physics supposes that the scientist can vary b so as to vary
U(b) while holding v(b) and M(b) constant. Indeed, most models used
in quantum physics are restricted to the subset of models having the
special

Property 3. The command b is the concatenation of separate com-
mands for the three types of operations, so that

b = bv ‖ bU ‖ bM ,(2.12)

where here the ‖ denotes concatenation of commands.

According to these models, one can vary any one of the three while
holding the other two fixed. This specializes (2.1) to the more restric-
tive form:

Pr(j|b) = 〈v(bv)|U
†(bU)Mj(bM)U(bU )|v(bv)〉.(2.13)

An additional constraining guess characterizes models widely used
in the analysis of quantum computers, a guess prompted by the de-
sire to generate a unitary transformation as a product of other unitary
transformations that serve as “elementary quantum gates.” For ex-
ample, one may want to generate the unitary transformation U(bU,1)
U(bU,2). To generate it one causes the CPC to transmit some bU . For
quantum computing to have an advantage over classical computing, the
determination of this bU in terms of bU,1 and bU,2 must be of polynomial
complexity [5]. It is usually assumed that bU is the simplest possible
function of bU,1 and bU,2, as follows.

Let BU ⊂ B be a set of instrument-controlling commands, thought
of as strings that can be concatenated. Suppose the function U has
the form U(b1 ‖ b2) = U(b2)U(b1) for all b1 ‖ b2 ∈ BU (note reversal of
order). Then we say the function U respects concatenation.

Property 4. Quantum computation employs a subset of models
in which U respects concatenation.
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Remark 2.1. We present properties 1 through 4 not as properties
of laboratory instruments, but as properties that a scientist can choose
to demand of models. Whether the instruments act that way is another
question. There are reasons, relaxation and other forms of decoherence
among them, to expect limits to the precision with which instruments
can behave in accord with properties 3 and 4. All four properties are
used often enough to be conventions, in the sense that a convention is
a guess endorsed by a community.

3. Petri nets to show choices open to guesswork

In orchestrating contact between mathematical models and labo-
ratory instruments, scientists set up chains of cause and effect, ex-
pressed in computer programs with their “if-then” structure, not as
static propositions but as designs for action. Such designs are imple-
mented in experiments; an example is a feedback loop that adjusts the
orientation of a filter according to a rule that tells what adjustment to
make in immediate response to a result recorded by a light detector.
On a more relaxed time scale, physicists make other connections by
analyzing outcomes of one generation of experiment, using the equa-
tions of a model, to set up design instruments for a next generation. As
remarked above, contact between equations and instruments depends
on choices made by scientists, including choices of what set of models
to start with, what model to choose for use by a CPC in generating
commands, and what experiments to run. If these choices could be re-
solved by some combination of calculation and measurement, one could
argue that they are irrelevant to physics. But the propositions of the
preceding section show this is not the case, so the design and operation
of contact between equations and instruments, with its ineradicable
dependence on guesswork, cries out for attention as part and parcel of
physics.

Although widespread in practice, the design of contact between
equations and instruments is in its infancy as a topic for theoretical at-
tention. A beginning can be seen in Benioff’s analysis of sequences of
measurements (described quantum mechanically) in which subsequent
measurements are functions of outcomes of preceding measurements
[6]. Called decision procedures, these involve classical feedback control
equations to control instruments described quantum mechanically, in
some cases with proved advantages [7]. These efforts dealt with mea-
surements occurring at a single location. Designs that put equations
and instruments in contact over a network of cooperating investigators
are wide open for future attention.
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Logic in experiments, in feedback loops at many time scales, is logic
in action. This is the logic of models that relate instrument commands
to quantum vectors and operators. Here we adapt Petri nets to pro-
vide mathematical language by which to express and analyze designs
for contact between equations and instruments, designs that include
sequencing of effects, decision rules, and interactions among sequences
of effects that scientists implement in their instruments. The nets will
highlight choices resolvable only by resort to guesswork; they serve as
a language with which one can express formally how guessing works in
physics, case by case, within CPC-mediated investigations.

3.1. Requirements CPC’s. In order to adapt Petri nets to show-
ing guess-demanding choices visible in CPC’s, we start by clarifying
how a CPC differs from a Turing machine, on the way to adapting
the Turing machine to process control and to use in a network of col-
laborating scientists. This lays the groundwork for introducing Petri
nets.

3.1.1. Timing in the execution of commands. The first thing that
makes process-control computing special is timing. In the context of
quantum-mechanical models, each unitary transformation maps states
possible in one situation to states possible in another situation; for
quantum computing this means mapping states possible at an earlier
time to states possible at a later time. Thus a unitary transformation
is implemented not all at once, but over a time duration. In practice,
that duration depends on how the instruments implement the trans-
formation. A written command bU acts as a musical score. Like sight
reading at a piano, executing a program containing the command bU

requires converting the character string bU—the score—into precisely
timed actions—the music. The piano keys, in this analogy, include the
output buffers that control the amplitude, phase, frequency, and polar-
ization of lasers of an ion-trap quantum computer or of radio-frequency
transmitters for a nuclear-magnetic-resonance (NMR) quantum com-
puter.

For this reason executing a command bU requires parsing it into
pieces (signals) and implementing each signal at a time, the speci-
fication of which is contained in the string bU . Either the CPC that
executes a program in which bU is written parses the command into sig-
nals and transmits each signal at its appointed time, or the instruments
receiving the command bU , unparsed, contain programmable counters
operating in conjunction with a clock that do this timed parsing. Such
programmable counters themselves constitute a special-purpose CPC.
So either the scientist’s CPC must execute commands by issuing an
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appropriately timed sequence of signals, or some other CPC attached
to the instruments must do this. Either way, the capacity to execute
programmed motion in step with a clock is a requirement for a CPC,
distinct from and in addition to requirements to act as a Turing ma-
chine.

3.1.2. Firewalls in a network of computers. Just as axioms set up
branches of mathematics, guesses set up rules for the conduct of ex-
periments and the interpretation of their results, rules often embedded
in CPC’s. Collaborating scientists accept guesses from each other, at
least provisionally, use these in experimenting and modeling; they eval-
uate some of them, sometimes refining or replacing them. This poses a
problem for CPC-mediated inquiry, where guesses engender computer
programs, for a scientist’s guess can reprogram a CPC, often for better
but sometimes, by malice or accident, for worse. Scientists in a collab-
oration need to test each other’s programs and to limit the influence
of any program, making the scope of influence of a CPC program a
matter for negotiation among the collaborators.

An easy but narrow case is that of a computer running Gödel’s test
for validity of a claimed derivation [8]. To think about such testing,
one models the computer by a Turing machine designed to start from
a tape on which the claimed derivation is written and to halt leaving a
“yes” or “no” on the tape, according to whether the claim is or is not
valid. Such a Turing machine can be emulated by a universal Turing
machine executing a testing program to check a passive (non-executed)
file containing the claimed derivation.

Not just derivations, but also programs need to be tested with re-
spect to what they do when they are executed. But what is to keep
an executing program under test from infecting the program that tests
it? Hardware walls of some kind are needed. By limiting our analysis
to exclude remote login and insisting on computers that distinguish
physically one interface from another, we can see a basic structure for
testing programs and for limiting the reach of guesses of any one sci-
entist in a network of CPC’s, based on operating two or more CPC’s
concurrently with controlled interfaces between them, so the testing
program and the program under test execute on separate CPC’s, with
an interface controlled by the testing CPC. By virtue of concurrent
operation of CPC’s with controlled interfaces, guesses made by collab-
orators can set up programs that frame choices open to guessing by any
one scientist, and that test the performance of the scientist’s programs
within that frame of choice, allowing freedom to a scientist to program
one part of the investigation while insulating other parts. Hardware
walls that limit the reach of one person’s guesses at any moment are
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one many motivations for stressing a network of concurrently operation
CPC’s.

3.2. Turing machines and Petri nets. Here we provide lan-
guage for displaying and analyzing guess-demanding choices visible in
files of CPC’s used by collaborating scientists who on occasion repro-
gram those choices. As a model of a CPC, we assume that each CPC
of a network is a Turing Machine adapted for Process-control (TMP),
to be defined. Making sense of networks of TMP’s handling equations
and controlling instruments calls for a descriptive capacity that allows
for various viewpoints at various levels of detail. We introduce a spe-
cialized use of fragments of colored Petri-nets, opened to exogenous
influences, to portray the programming and running of programs in a
network of TMP’s operated by collaborating scientists.5

Different viewpoints and levels of detail are accommodated by mor-
phisms in the category of nets. Isomorphisms between Petri nets trade
net detail for color detail [9]. These will be combined with coarsening
maps that suppress detail, for example by mapping colored tokens to
black tokens. We will show how the programming of a universal TMP
(UTMP) portrayable as a single Petri net can produce any number of
patterns of use of instruments and equations, portrayable by a host
of different Petri nets. This general picture of process-control compu-
tation will show programs and other guesses as colors on tokens that
a scientist enters on a game board defined by a fragment of a Petri
net, and equations of quantum mechanics written as guesses by a sci-
entist will be seen as colors on tokens that take part in directing and
interpreting the use of laboratory instruments.

3.2.1. Writing vs. executing a program. Computers rest on the writ-
ing of motionless characters on a page to describe something moving,
a puzzle solved in music by writing notes on staves, to be read in
step with a swinging pendulum that chops time into moments, so that
written notes that portray a still picture for each moment direct the
motion of the playing of a musical instruments [10]. The logical ma-
chinery of a computer moves in response to triggering signals, “tick”
and “tock”, synchronized to distinct phases of the swinging of a pendu-
lum. Computer designers employ truth tables, each of which specifies
the response of a clocked circuit at a tock to a stimulus present as an
input at a preceding tick. A row of a truth-table can be drawn as a
transition in a Finite State Machine (FSM). By coupling an FSM to a
memory of unlimited capacity, one arrives at the theoretical concept of

5Our use of Petri nets is impressionistic and a more technical presentation will
doubtless be rewarded by exposing issues here overlooked.
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a Turing machine, various special cases of which perform various spe-
cial tasks [11, 12, 13]. And here is the crux of programming: because
a state machine is describable by still writing—a table—a Turing ma-
chine can be designed to be universal. By coding into its memory the
table that describes any given special Turing machine, one causes the
universal Turing machine to emulate the given special Turing machine.
So, apart from speed and memory requirements, the single universal
Turing machine can be put to doing any of the things that any of the
special Turing machines can do, making it potentially convenient, once
adapted to process control, to designing and implementing contact be-
tween equations and instruments. (But demands for quick response
require in some cases devices streamlined to a special task better mod-
eled by a special Turing machine than by a universal one.) The next
tasks are to adapt the Turing machines, special and universal, to pro-
cess control, and after that to express them formally by use of colored
Petri net fragments.

3.2.2. Turing machine for process control (TMP). To adapt a Tur-
ing machine as a model of a process-control computer, we leave the
coupling of the FSM to the memory unchanged but add input and out-
put buffers to the FSM. As for the FSM, at whatever level of detail
of description one chooses, the control structure of a program (with
its “if-then” statements) can be viewed as an FSM consisting of (clas-
sical) states drawn as circles, connected by directed arcs, with each
arc labeled by an input I that selects it and by an output O [12]; a
fragment of such a picture is shown in figure 2(a). An FSM serves as
a game board on which a single token can be placed to mark the “cur-
rent state.” Heading toward the hooking together of FSM’s to make
a Petri net, we suppose that each arc in the FSM is punctuated by a
tick event and a tock event, drawn as small boxes, enlarging the FSM
into a special case of a condition-event Petri net fragment, as shown
in figure 2(b). Once colors are introduced, states shown as dashed cir-
cles pointing into an event of the FSM from outside will become the
means to express the entrance of guesses. These states are assumed to
receive tokens put into them by scientists and instruments undescribed
by events of the net. Similarly, dashed states pointed to by arcs from
an event are assumed to have tokens taken from them by agents unde-
scribed by events of the net. Figure 2(c) streamlines the picture to the
form we shall use, in which more or less vertical arcs are understood to
point downward, the dashed states are left undrawn, as are all states
with one input and one output event. To emphasize the input and out-
put arcs with their extra tokens, we often call this an FSM fragment
to distinguish it from the FSM form of figure 2(a).
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Figure 2. Fragment of FSM.

To define a Turing machine for Process-control (TMP), we adapt
the FSM of a Turing machine to have for each of its states a cartesian
product of states of a set of clocked internal registers and, in addition,
input buffers and output buffers, which allow input/output transac-
tions with a scientist, with laboratory instruments, and with other
TMP’s.

3.2.3. Colored tokens. By replacing the black tokens of an FSM
fragment by a colored tokens and adjoining to each event a function
that defines colors on output tokens in terms of colors on input tokens,
any FSM fragment can be mapped one-to-one to the drastic form of
figure 3, in which color changes substitute for most of the moves of black
tokens on a bigger net. A “fork in the road” for black tokens, turns into
a choice between red and green, so to speak, so the descriptive burden
is taken up by the functions ftick and ftock; ftick defines the color of
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f tick

f tock

Figure 3. FSM with detail pushed to coloring.

a token placed on an internal state depending on a list of colors, one
for each input, while ftock defines a list of output colors depending on
the color of the token on the internal state. The vertical arc is to be
read as directed downward, and the big circles at the top and bottom
of a path signify that the path is wrapped around a cylinder, so the
top is a continuation of the bottom, i.e. a loop. An FSM fragment in
which the token carries a color will be called a colored FSM.

3.2.4. Other mappings. Less drastic mappings are also possible.
Any two states of a single FSM can be merged without breaking any
arcs by augmenting the color rules in the events that feed them and
the events fed by them. If a set of states connected to one another by
events is mapped into a single state, the single state then connects to
an event that loops back to it; this results in a place-transition Petri
net, but not a condition-event net. We restrict the mappings dealt with
here to ones that avoid pasting tick and tock events together, thereby
avoiding self loops. Two events of an FSM that link the same pair of
states can be merged by distinguishing external inputs and outputs by
color instead of by place.

The mappings discussed so far are net isomorphisms: they map
markings of one net bijectively to markings of the other and preserve
the one-step reachability of one marking from another (by the firing of
an event). Inverses of these bijections take more richly to less richly
colored nets. Going in this direction depends on each state of a colored
FSM having a set of possible colors associated with it [9]; then any col-
ored transition corresponds one-to-one to a set of transitions obtained
by partitioning sets of colors of input states, as illustrated in figure 4
for a two-in, two-out transition with color sets A, B, C, and D, each
partitioned into “+” and “−” subsets. For this to make sense, it must
be that an event which has tokens in all its inputs cannot fire unless
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f tock

f tick
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Figure 4. From color detail to net detail.

the colors of the tokens comprise an element of the domain of its color
function; we assume this firing rule.

One gets a coarser description by use of a surjective map that is
not an isomorphism by dropping the color distinction and dropping the
color functions from the transitions; this coarsening, however, preserves
a one-to-one correspondence between the number of firings in one net
and the number in another. All these maps are continuous in the net
topology [14], and, as emphasized by Petri [15], nets form a category
in which the morphisms are continuous maps, an idea that extends to
nets with colored tokens [9].

3.2.5. Disciplined coarsening of time. Some other kinds of continu-
ous coarsening maps bundle up multiple event firings into a single firing;
as when one describes e.g. “running a program” as a single event. This
brings us to the first of several areas open to future work, for, more
than other computing, process control benefits from well defined tim-
ing, and in particular from machine and software design that allows
systematic, well controlled mappings that take a certain number of fir-
ings in an FSM to a single firing, so that one can think at a coarser
level while still maintaining discipline in timing.

A striking example of the need to design programs that run in the
same time for all inputs from some set I occurs in quantum computing.
For example, suppose that U is the universal unitary operator defined
by Deutsch to operate on basis states of the form |s;n;m〉 where s is
the location of the scanned square, n is the state of the FSM-processor
(n = 0 is the starting state and n = 1 the halt state) and m is the tape
[16]. For this to work in a computation that takes advantage of quan-
tum superposition, one needs ∃r[(∀x ∈ I)Ur|0; 0; x, 0〉 = |0; 1; x, f(x)〉];
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Figure 5. From FSM to UTMP.

however, this is by no means implied for a program πf for which (as
is usual in borrowed classical programs) one can assure only (∀x ∈
I)(∃r(x))[Ur(x)|0; 0; x, 0〉 = |0; 1; x, f(x)〉] [17]. An interesting topic for
future study is the complexity of converting various classes of programs
with variable running time to programs running in a time independent
of the input for some set of inputs.

3.2.6. Cartoon of UTMP. Ignoring the laboratory instruments for
the moment, by connecting input- and output-signals from a suitable
FSM to a scientist and coupling the FSM to an unlimited memory, one
gets a Universal Turing Machine (UTM) that provides for continual
communication with a scientist, as shown in figure 5(a), in which boxes
connected by a horizontal line are read as a single event. We cartoon
the UTM in the condensed form of figure 5(b). By adding input- and
output-signals from the FSM to laboratory instruments and to other
FSM’s, one gets a Universal Turing Machine adapted for Process con-
trol (UTMP), as shown in figure 5(c); again almost all of the burden of
description is in the color functions, here called T1 and T2 (for Turing)
that define a finite state machine that operates a UTMP. We assume
that at some level of description, the ticks and tocks of the UTMP slice
time into moments not only for the UTMP but also for the scientist at
a keyboard and the instruments on the laboratory bench; we assume
that input tokens from the scientist and from the instruments arrive
at the UTMP synchronized with the UTMP pendulum. If the scientist
enters nothing at a given clock tick, then the token taken by the UTMP
from the input buffer for the scientist carries the color “empty,” and
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if the instruments enter nothing, the token from the input buffer for
the instruments carries the color “empty”; similarly the UTMP marks
output tokens with the color “empty” if it writes nothing else on them.

3.2.7. A scientist controls a UTMP. To see the structure imposed
on physics by the UTMP, one must think as if the UTMP were delivered
to a scientist in a bare condition: no installed software,6 the FSM
in a starting state, and the memory all blank. We assume that the
function T1 operating on empty input tokens, the starting state of the
FSM, and a blank memory produces empty output tokens and makes
no change in the FSM state or the memory or the memory location
scanned. Finally, we invoke the universality of a UTM to assume that
the functions T1 and T2 are fixed (by a manufacturer, so to speak)
independent of whatever laboratory instruments need to be considered
and independent of all action by the scientist. These assumptions imply

Proposition 3.1. Whatever a UTMP does besides staying in its
starting state and taking in and putting out empty tokens is in response
to input tokens.

We invoke this proposition to view the scientist as precluded from
defending questionable management of equations or instruments by
saying “the computer did it.” If a CPC does something, it executes a
program; we view the scientist as responsible for any program entered
(as a colored token) into the UTMP and for running the program on
any particular occasion.7

3.2.8. Reprogramming always an option. We assume the UTMP is
isomorphic to the net shown in figure 6, so that the scientist has a
recurring choice of letting the UTMP run as programmed or of inter-
rupting it to reprogram it. By programming a UTMP, a scientist can
simulate an arbitrary special Turing machine. At will, the scientist can
interrupt a program in execution to change to a program that simu-
lates a different special Turing machine, corresponding to a different
FSM and a different net. One can glimpse this in figure 4, where it is
apparent that if the colors are limited to the sets A+ and B+, then six
of the eight events are precluded from firing, and the net is in effect
reduced to the fragment defined by the selected colors. In this way
the part of the net that actually fires, corresponding to the event “Use
existing program” of figure 6, is variable in how it acts and in the net

6The scientist can borrow software and install it, but is responsible for it.
7This rules out taking for granted the operating system, instrument-managing

programs, a simulator, and whatever other programs come pre-installed in a com-
mercially available CPC.
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Figure 6. Alternative modes controlled by scientist.

by which one portrays it in more detail, according to the scientist’s
actions in providing and running programs.

3.2.9. Plug and play. To see how UTMP’s can be connected (as
well as the detail of how the FSM of a TM or TMP is connected to
the memory), we introduce a signal that is phased just opposite to an
FSM: the signal takes an input at a tock event and issues an output
at a tick event. Then FSM A can send a signal (which can convey
a message as a token color) to B (which can be either another FSM
or a memory), as shown in figure 7, provided the signal path is short
enough compared to the clock rate of the machines. This use of a signal
synchronizes A with B. For two-way communication, one adds a signal
going the other way. If communication over a distance long compared
to the clock period is called for, then a chain of communication over
intermediating UTMP’s, is necessary, with the result that more firings
of an event of A are required before a consequence of one firing can
propagate to B and return as a property of a color on a token at a later
firing of the A-event. The use of colored tokens sets up an area for
future investigation of replacing the awkward definition of synchronic
distance [18] with a measure of synchronization that counts firings in
circuits of color effects, without having to add artificial elements to a
net.
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3.3. Net fragments formalized. Portraying logic operating in
CPC’s calls for fragments of Petri nets, not complete nets, to allow for
guesses as token colors definable neither by results of experiments nor
by calculations. From among the standard definitions of a Petri net, the
one we use is (S, E, F ), where S is a set of states, E is a set of events,
and F ⊆ S × E ∪ E × S is the flow relation. In order to make room
for guesses from a scientist and results of instruments inexpressible in
the logic defined by a net but essential to setting it up, the nets used
are all net fragments, which we define as follows. A net fragment is
a structure (S, SI , SO, E, F ) where S is a set of states of CPC’s, and
SI is a set of states of input signals (e.g. from A/D converters to a
CPC input buffer), disjoint from S, allowing for input to the CPC
from a scientist and laboratory instruments. SO is a set of states of
output signals disjoint from both S and SI , allowing for output from
the CPC; the flow relation is expanded so F ⊆ [(S∪SI)×E]∪ [E×(S∪
SO)]. States of SI are assumed to have tokens placed in them by some
means beyond the net, and states of SO are assumed to have tokens
removed from them by means beyond the net. Our pictures show stubs
of arcs from states of SI to events and from events to states of SO while
omitting the circles for these states. Associated with a net fragment
is a “reduced net” obtained by omitting the states of SI and SO (and
dropping the arc stubs); using this reduced net, one can explore issues
of liveness and safety [19]. The events of E express computer logic
and nothing else. As an example of a guess used in designing contact
between equations and instruments, a mathematical model entered by
a scientist as a colored token in an SI state can assert whatever rules
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the scientist chooses to relate tokens received from instruments in SI

states to commands sent to them as colored tokens in SO states. In this
way the net fragment expresses the difference between such a model,
with its guesswork, as a color on a token and how the instruments
actually behave by producing colored tokens on their own.

4. Net-based portrait of guesswork needed to test and

calibrate a quantum computer

In section 2 choices of equations to link to instruments were shown
inescapably open to guesswork, bidding to make guesswork part and
parcel of physics. The availability of net fragments described in sec-
tion 3 brings within physics the study of contacts between equations
and instruments by making available to analysis relations of sequence,
concurrency and choice expressed in these contacts and in the guess-
dependent actions that set the contacts up. Here we turn from nets
themselves to attention to an example problem in which a net illus-
trates an important structure needed to link equations to instruments.
Besides the net explicitly shown in figure 8, the availability of nets pro-
vides a framework in which to view the main topic of this section, the
problem of resolving a choice of commands by which a CPC manages
a quantum computer. That framework can be used in the future to
ask other questions, to do with: how do the necessities of quantum-
mechanical models, classical process control, and guesswork interact;
how are FSM’s as program structures affected by use of models that
are quantum mechanical; how does the need for CPC’s to mediate
between quantum-mechanical equations and instruments change our
understanding of quantum mechanics?

Turning to the case at hand, some telling illustrations of guesswork
needed to link models to instruments arise in quantum computing. To
build a quantum computer, say to solve problems of factorizing [20] and
searching [21], a scientist must choose quantum-mechanical equations
and laboratory instruments to work in harmony. Quantum computa-
tional models call for quantum gates that are unitary transformations,
each a tensor product of an operator on a 1-bit or 2-bit subspace of
the Hilbert space H and identity operators for the other factors of the
tensor product. Note that each permutation of a non-identity factor
with an identity factor is a distinct gate, calling for a distinct command
to the instruments that implement it. For this reason, the number of
quantum gates for an n-bit quantum computer grows faster than n.
Call this number G(n) and let the set of gates be U1, . . . , UG. The
most commonly used models of quantum computers can be put in the
form [22]:
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• Prepare a starting state independent of the input (e.g. the integer
to be factorized).

• Transform the state by a product of quantum gates that depends
on the input.

• Make a measurement independent of the input.

For an example, suppose the scientist assumes properties of models
1 through 4 and looks for the model that gives the least mean-square
deviation between relative frequencies of outcomes and probabilities
calculated by (2.13). To factorize an integer I, a classical computer
program is converted to a product of K(I) quantum gates, a number
that rises faster than linearly with log I. To obtain the effect of mul-
tiplying the gate transformations, the scientist must first have solved
the model to determine the command bU,j for each gate Uj occurring
in the product. As in the portrait in section 3 of putting tokens into a
net fragment, the scientist programs a CPC to transmit a command bv

to prepare an initial state |v〉, commands bU,j for the gates needed, and
a command bM for a measurement. This endeavor is known to exhibit
the following four features:

1. The instruments are valuable as a quantum computer insofar
as their results substitute for a more costly classical calculation
defined by the model.

2. An inexpensive classical computation (e.g. with the CPC) tests
whether outcomes interpreted from results correctly solve the
problem.

3. Quantum indeterminacy imposes a positive probability that a
result fails to provide a correct answer, so multiple tries with the
instruments are the rule, and a wrong answer does not by itself
imply a fault in the instruments.

4. The tolerable imprecision of instruments implementing the cho-
sen model of a quantum gate diminishes as the inverse of the
number of gates K(I) in the sequence [23].

Because the number of gates required in the product rises with the
size of the integer to be factorized, feature 4 implies that passing the
test for smaller integers is no guarantee against failure of the instru-
ments to factorize larger integers, unless the model or the instruments
or both are refined. This requires, in turn, that a CPC intended for use
on progressively larger integers be organized to switch between a mode
of using the quantum computer and a mode of inquiring into its per-
formance, e.g. so as to determine commands that make it behave more
precisely in accord with the desired quantum gates. This calls for a



PROOF OF GUESSWORK NECESSARY TO QUANTUM PHYSICS 27

FailPass RUN OK
Not
OKCAL

Figure 8. Alternating between running and testing a QC.

program for the CPC that expands the events “Use existing program”
of figure 6 to that of figure 8.

4.1. Navigating the lattice of models to get better com-

mands. As an example of what goes on within the coarsely portrayed
event “Calibrate,” suppose a scientist who uses a model α of the form
(|v〉, U, M)B finds it works for small integers, but fails for bigger ones,
which require more precise gates, which in turn requires calibrating
(i.e. adjusting) the commands used to generate gates. This means giv-
ing up model α and choosing some alternative model β. A scientist
does not choose a model all at once, but starts with some set of models
and then narrows down on a smaller set, sometimes to a single model, a
process open to guesswork at various stages. At one stage, the scientist
may need to relax a constraint on models, leading to a bigger set of
models from which to choose; at another stage the scientist may guess
a new constraint, narrowing the set of models under consideration. By
such a back and forth procedure, the scientist gives up Uα and arrives
at a new function Uβ (and hence a new model) with the hope that
solving this function for a command bU,j,β for gates Uj , j = 1, 2 . . . ,
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that will succeed for factorizing larger integers than did the commands
obtained from Uα. (This makes a need for models adapted to homing
in on results, with some metric on B, so that a small change in the
command bU results in a small change in e.g. U(bU ); while properties
3 and 4 are a start, going beyond them is left to the future.)

To get a better model, the scientist guesses a set of models and
hopes to find within it a model that better fits measured results in-
terpreted as outcomes. If no model of the set adequately fits these
outcomes, the scientist can first broaden the set of models and next
try to guess a property that will narrow the set, not to the original
model, but to one that fits better. The recognition of guesswork as-
sures us that so long as progressively more ambitious goals of precision
keep being introduced, there is no end to the need for adjusting both
models and the laboratory instruments.

4.2. Sample sizes needed to choose between models of

gates. As discussed in section 2.5, the number of trials needed to sta-
tistically distinguish one model from another is bounded from below
by the inverse square of a weighted statistical distance between the
two models. Small numbers of experimental results can sometimes de-
cide between distant models, but never between models that are close.
In particular, distinguishing experimentally between two models for
quantum gates can demand large samples:

Proposition 4.1. Models α and β that differ only in U , with spec-
tral norm ‖ Uα(bU)−Uβ(bU) ‖= ǫ > 0, are statistically indistinguishable
for a command b unless

N(b) ≥ ǫ−2.(4.1)

Proof. The models α and β under the stated condition are unitar-
ily equivalent to a pair of models that differ only in |v〉 with cos |〈vα|vβ〉|
≤ ǫ. The proposition then follows from (2.10) and (2.11).

We argue elsewhere that this is a serious and heretofore unappreci-
ated challenge to bringing instruments into working order as quantum
computers, made visible by attention to the need for guesswork in link-
ing of laboratory instruments to equations of quantum mechanics [24].

5. Concluding remarks

Gödel proved that no one true structure could be generated by
sitting in a room with blinds drawn, writing down axioms. Quantum
mechanics tells us that with the blinds up and the world of physical
measurement available, the situation remains much the same. Just as
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the openings for new axioms are uncloseable in mathematical logic, so
in physics guesswork is part of the foundation.

The net formalism can be put to use both to address improving
the contacts between equations and instruments, fostering advances in
theory and in instrumentation, and, at a more abstract level, to pose
problems pertaining to universal Turing machines adapted to process
control. By formalizing commands to instruments, the techniques pre-
sented here extend the reach of set-based mathematics into the area of
contact between equations and instruments, and open to study within
physics of some of what physicist do in the course of doing physics.
This extends a parallel beachhead established already in mathematics
by Gödel’s study of what a mathematician does to prove a theorem
and Turing’s analysis of a mathematician who makes a note by which
to resume an interrupted computation.
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