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Contemporary Mathematics

Geometric Algebra in Quantum Information Processing

Timothy F. Havel and Chris J. L. Doran

Abstract. This paper develops a geometric model for coupled two-state quan-
tum systems (qubits) using geometric (aka Clifford) algebra. It begins by
showing how Euclidean spinors can be interpreted as entities in the geometric
algebra of a Euclidean vector space. This algebra is then lifted to Minkowski
space-time and its associated geometric algebra, and the insights this provides
into how density operators and entanglement behave under Lorentz transfor-
mations are discussed. The direct sum of multiple copies of space-time induces
a tensor product structure on the associated algebra, in which a suitable quo-
tient is isomorphic to the matrix algebra conventionally used in multi-qubit
quantum mechanics. Finally, the utility of geometric algebra in understanding
both unitary and nonunitary quantum operations is demonstrated on several
examples of interest in quantum information processing.

1. Introduction

Quantum mechanics attaches physical significance to representations of the ro-
tation group which differ substantially from those studied in classical geometry.
Much of the mystery surrounding it is due to this fact. The enormous interest re-
cently generated by proposals to build a quantum computer [Llo95, EJ96, Ste98,

WC98, Bro99, BD00] has focussed attention on the simplest possible quantum
system: a two-state system or qubit. Our understanding of qubits is based on two
distinct geometric models of their states and transformations:

• A complex projective line under the action of SU(2).
• A Euclidean unit 2-sphere under the action of SO(3).

The first is used almost exclusively in fundamental quantum physics, while the
second (“classical”) model is used extensively in certain applications, e.g. nuclear
magnetic resonance (NMR) spectroscopy [HSTC00]. In particular, in quantum
computing a qubit represents a binary 0 or 1 as its state corresponds to one of a pair
of conjugate (orthogonal) projective points | 0 〉 or | 1 〉. These in turn correspond
to a pair of diametrical points on the unit sphere, which determine the alignment
of the qubit with or against the corresponding axis of quantization.
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Formally, these two models are related by stereographic projection of the Rie-
mann (unit) sphere onto the Argand plane, the points of which are the ratios of the
homogeneous coordinates of points on the projective line (see e.g. [Alt86, FH81]).
While this elegant construction describes the mapping between the two representa-
tions in a geometric fashion, it does not unite them in a single mathematical struc-
ture. This paper provides an informal account of how this is done by geometric (aka
Clifford) algebra; in addition, it describes an extension of this formalism to multi-
qubit systems, and shows that it provides a concise and lucid means of describing the
operations of quantum information processing [SCH98, HSTC00]. Significantly,
this extension is most naturally derived via the geometric algebra of Minkowski
space-time [DLG93], which has also been shown to be an efficient formalism within
which to study a very wide range of problems in classical [Hes99, Jan89], relativis-
tic [Hes66, Bay96] and fundamental quantum [DLG+96] physics. More complete
and rigorous accounts may be found in these references, and in [HCST00, Hav01].

2. Euclidean Geometry and Spinors

Let R3 be a three-dimensional Euclidean vector space whose inner product is
denoted by (a, b) 7→ a ·b. The Clifford or geometric algebra of R3 is the associative
algebra generated by R3 over R such that a2 = ‖a‖2 ≡ a · a for all a ∈ R3. This
algebra will be referred to in the following as the Pauli algebra, and denoted by G3.
The interesting thing about this algebra is its geometric interpretation, which will
now be described.

To begin, note that every nonzero vector a ∈ R3 has an inverse a/‖a‖2. In
addition, a simple application of the law of cosines shows that the inner product
of a with any other vector b ∈ R3 is given by the symmetric part of the geometric
product:

1
2 (ab+ ba) = 1

2 ((a+ b)2 − a2 − b2)
= 1

2 (‖a+ b‖2 − ‖a‖2 − ‖b‖2) = a · b
(2.1)

The antisymmetric part, by way of contrast, is called the outer product, and denoted
by (a, b) 7→ a ∧ b ≡ (ab − ba)/2. Since the outer product of two vectors a ∧ b
is invariant under inversion in the origin, it cannot itself be a vector. The space
〈a∧b |a, b ∈ R3〉 therefore carries an inequivalent representation of the orthogonal
group O(3), and its elements are accordingly called bivectors. These are most
naturally interpreted as oriented plane segments, instead of oriented line segments
like vectors in R3 . If we similarly define the outer product of a vector with a
bivector and require it to be associative, i.e.

(2.2) a ∧ (b ∧ c) ≡ 1
2 (abc− cba) ≡ (a ∧ b) ∧ c

(a, b, c ∈ R3), then it can be shown via straightforward though somewhat lengthy
calculations that this product of three vectors is totally antisymmetric, meaning
that the outer product generates the well-known exterior algebra

∧

R3 (cf. [Hes99,

Rie58]). The outer product of three vectors is called a trivector, and (since it
changes sign under inversion) is most appropriately interpreted as an oriented space
segment or volume element.

The general properties of inner and outer products in the geometric algebras of
arbitrary metric vector spaces can be worked out along these lines in a coordinate-
free fashion [HS84]. The remainder of this section will focus on how the Pauli
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algebra is used to describe the quantum mechanics of qubits. In this application it
is more common to work with a fixed orthonormal basis σx,σy,σz ∈ R3. Quantum
mechanics, however, views these basis vectors in a very different way from that
taken above, in that they are regarded as operators on a two-dimensional Hilbert
space H ≈ C

2 (see e.g. [Sak94]). These operators, in turn, are usually identified
with the Pauli matrices

(2.3) σx ↔ σx ≡
[

0 1
1 0

]

, σy ↔ σy ≡
[

0 −ı
ı 0

]

, σz ↔ σz ≡
[

1 0
0 −1

]

,

where ı is an imaginary unit (ı2 = −1), the underline signifies that the associated
symbol is a matrix, and throughout this paper the symbol “↔” should be read as “is
represented by” or “is equivalent to”. The connection between the two viewpoints
lies the fact that these matrices satisfy the defining relations of the abstract Pauli
algebra G3, namely

(2.4) (σµ)2 = 1 ↔ 1 , σµσν = −σνσµ (µ, ν ∈ {x, y, z}, µ 6= ν) ,

and hence constitute a faithful matrix representation of it. This shows, in particular,
that G3 is 8-dimensional as a real linear space.1

In most physical situations, these operators (times ~) represent measurements
of the intrinsic angular momentum of the qubits, and hence are regarded as genera-
tors of rotations in the Lie algebra so(3) over C satisfying the commutator relation

(2.5) 1
2 [σx,σy ] = ıσz ,

and its cyclic permutations. In terms of geometric algebra, the left-hand side is
just the outer product of the vectors. The right-hand side is somewhat harder to
interpret, because the Pauli algebra is defined over the real numbers. The trick
is to observe that, in terms of the matrix representation, σxσyσz = ı1. Thus by
interpreting the abstract imaginary ı as the trivector ι ≡ σxσyσz = σx ∧ σy ∧ σz ,
the angular momentum relations become a triviality:

(2.6) σx ∧ σy = σxσy = σxσy(σz)
2

= ισz

More generally, the vector cross product is related to the outer product by

(2.7) a× b = − ι
2 (ab− ba) = −ι(a ∧ b) ,

from which it may be seen that multiplication by the unit trivector ι maps vectors
to orthogonal bivectors and vice versa. Since they span a one-dimensional space but
change sign under inversion in the origin, trivectors can also be regarded as pseudo-

scalars. Perhaps the most important thing which geometric algebra contributes
to physics are geometric interpretations for the imaginary units which it otherwise
uses blindly.

If we denote the induced bivector basis by

(2.8) I ≡ σy ∧ σz , J ≡ σz ∧ σx , K ≡ σx ∧ σy ,

1 In the quantum mechanics literature, the notation a·~σ is often used for
∑

µ aµσµ . Because

a is geometrically just a vector in R3 (not a matrix for it in a basis-dependent representation
of G3 ), this is an abuse of the dot-notation for the Euclidean inner product, which is otherwise
perhaps the most consistently used notation in all of science. This abuse of notation will not be
perpetrated in this paper.
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it is readily seen that these basis bivectors likewise square to −1. On multiplying
the angular momentum generating relations through by −1 = ι2, we obtain

(2.9) JI = K , IK = J , KJ = I , and KJI = −1 .

This shows that these basis bivectors generate a subalgebra of G3 isomorphic to
Hamilton’s quaternions [Alt86, Alt89], which is also known as the even subalgebra

G+
3 (since it is generated by the products of even numbers of vectors). It is well-

known that the quaternions’ multiplicative group is R∗⊕SU(2), which implies that
the even subalgebra should be closely related to rotations. This relationship will
now be worked out explicitly.

Consider the result of conjugating a vector x by a vector a, i.e.

(2.10) axa−1 = a(xq + x⊥)a−1 = aa−1xq− aa−1x⊥ ,

where we have split x = (x ·a−1 +x∧a−1)a ≡ xq +x⊥ into its parts parallel and
perpendicular to a. This shows that −axa−1 is the reflection of x in the plane
orthogonal to a. From the well-known fact that the composition of two reflections
is a rotation by twice the lessor angle between their planes and about these planes’
line of intersection, it follows that conjugating a vector by an element of the even
subalgebra just rotates it accordingly:

(2.11) (ba)x (ba)
−1

= baxa−1b−1 =
baxab

‖a‖2‖b‖2
Let u ≡ a/‖a‖, v ≡ b/‖b‖ and R ≡ vu be the corresponding unit quaternion.
Then R = cos(θ/2)− ιr sin(θ/2) where cos(θ/2) = u · v and ιr ≡ u ∧ v/‖u ∧ v‖.
Moreover, the inverse (vu)

−1
is now simply the reverse uv ≡ (vu)

†
, which in

turn corresponds to the conjugate quaternion R† ≡ cos(θ/2) + ιr sin(θ/2). This
reversal operation on G+

3 extends to a well-defined anti-automorphism of G3 , which
corresponds to Hermitian conjugation in its representation by Pauli matrices. On
splitting x into its parts parallel xq and perpendicular x⊥ to r as above, the rotation

may now be written as RxR† = R(xq + x⊥)R† = xq + x⊥(R†)2

= xq + x⊥(cos2(θ/2)− sin2(θ/2) + 2ιr cos(θ/2) sin(θ/2))

= xq + x⊥(cos(θ) + ιr sin(θ)) ,
(2.12)

and so may be viewed as multiplication of x⊥ by the “complex number” cos(θ) +
ιr sin(θ) in the Argand plane defined by the bivector ιr.

By collecting even and odd powers in its Taylor series, it may be seen that any
unit quaternion can be written as the exponential of a bivector orthogonal to the
axis of rotation r:

(2.13) e−ιrθ/2 = 1− ιr θ
2 − 1

2

(

θ
2

)2
+ · · · = cos(θ/2)− ιr sin(θ/2)

This is formally analogous to a complex exponential, and is also in accord with
our previous observation that the space of bivectors is isomorphic to the Lie alge-
bra su(2) ≈ so(3) under the commutator product. The pair [cos(θ/2); sin(θ/2)r]
are known as Euler-Rodrigues parameters for the rotation group SO(3); since
[− cos(θ/2);− sin(θ/2)r] determines the same rotation, this parametrization is two-
to-one. A one-to-one parametrization is obtained from the outer exponential, i.e.

(2.14) ∧−ιrτ = 1− ιrτ − 1
2r ∧ rτ2 + · · · = 1− ιrτ (since r ∧ r = 0) .

The squared norm of this outer exponential is 1 + τ2, so that the normalized outer
exponential equals the usual exponential if we set τ = tan(θ/2). Because t ≡
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tan(θ/2)r is the four-dimensional stereographic projection of [cos(θ); sin(θ)r] from
θ = π, it has been called the stereographic parameter for SO(3). Note, however,
that this parametrization does not include rotations by π.

Another two-to-one parametrization of rotations is given by the Cayley-Klein

parameters [ψ1;ψ2] ∈ C
2, where

ψ1 ≡ cos(θ/2)− ı sin(θ/2)(r · σz) ,

ψ2 ≡ sin(θ/2)(r · σx) + ı sin(θ/2)(r · σy) .
(2.15)

The corresponding SU(2) matrix is simply

(2.16) Ψ =

[

ψ1 −ψ∗
2

ψ2 ψ∗
1

]

.

It follows that the complex column vector |ψ 〉 ≡ [ψ1;ψ2] itself transforms under
left-multiplication with matrices in SU(2), which is commonly described in quantum
mechanics by calling it a spinor. In particular, the spinors | 0 〉 ≡ [1; 0] and | 1 〉 ≡
[0; 1] are those commonly used in quantum computing to store binary information.
Since the Cayley-Klein parameters uniquely determine the SU(2) matrix, however,
we can just as well regard spinors as entities in SU(2), e.g. | 0 〉 ↔ 1 and | 1 〉 ↔ −ıσy.
The usual action of SU(2) on spinors then becomes the left-regular action of SU(2)
on itself.

The representation of SU(2) used above depends upon the choice of coordinate
system: Changing to a different the coordinate system gives a different (though
equivalent) representation. Recalling that SU(2) is isomorphic to the multiplicative
group of unit elements (quaternions) in the even subalgebra G+

3 , a coordinate-free or
geometric interpretation of spinors is obtained by regarding them as elements of G+

3

itself. This interpretation of spinors as entities in ordinary Euclidean geometry was
first pointed out by Hestenes over thirty years ago [Hes66], but physicists persist
in putting operators and operands into separate spaces, and in working with a
matrix representation instead of directly with the geometric entities themselves.
The perceived nonintuitive nature of quantum mechanics is due in large part to the
resulting confusion over the geometric meaning of the objects with which it deals,
which is spelled out explicitly in geometric algebra.

As another example, consider how the density operator of an “ensemble” of
qubits can be interpreted in geometric algebra. This operator ρ is usually defined
via a matrix representation as ρ ≡ |ψ 〉〈ψ |, where the overline denotes the average
over the ensemble. As first observed by von Neumann, this matrix contains all
the information needed to compute the ensemble average expectation values of the
qubit observables, since

(2.17) 〈ψ |σµ|ψ 〉 = tr(σµ|ψ 〉〈ψ |) = tr(σµ|ψ 〉〈ψ |) = tr(σµρ)

(µ ∈ {x, y, z}). To translate this into geometric algebra, we set the second column
of Ψ to zero by right-multiplying it by the idempotent matrix E + ≡ (1 + σz)/2,
i.e.

(2.18) ΨE + ≡
[

ψ1 −ψ∗
2

ψ2 ψ∗
1

] [

1 0
0 0

]

=

[

ψ1 0
ψ2 0

]

.
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This corresponds to projecting Ψ ∈ G+
3 onto a left-ideal in G3 , and allows the

dyadic product |ψ 〉〈ψ | in Eq. (2.17) to be written as:

(2.19) |ψ 〉〈ψ | =

[

ψ1 0
ψ2 0

] [

ψ∗
1 ψ∗

2

0 0

]

≡ (ΨE +)(ΨE +)
†

Thus the interpretation of the density operator in geometric algebra is

(2.20) ρ = (ΨE+)(ΨE+)
†

= ΨE+Ψ† = 1
2

(

1 + ΨσzΨ
†
)

(cf. [SLD99]). The vector part p ≡ 〈ρ〉1 = ΨσzΨ
† is called the polarization

vector (in optics, its components are known as the Stokes parameters [BBDH93],
while in NMR it is known as the Bloch vector after the pioneer of NMR who
rediscovered it [Blo46]). Its length is ‖p‖ ≤ 1 with equality if and only if all
members of the ensemble are in the same state Ψ. In this case the ensemble is said
to be in a pure state, and the density operator is itself an idempotent (1 + p)/2,

where p ≡ ΨσzΨ
†. For an ensemble in a general mixed state, the length of the

ensemble-average polarization vector measures the degree of alignment among the
(unit length) polarization vectors of the individual members of the ensemble, and
is called the polarization of the ensemble.

In many physical situations there is a natural reference direction; for example,
in NMR computing the qubits are spin 1/2 atomic nuclei whose intrinsic magnetic
dipoles have been polarized by the application of a strong magnetic field [HCST00].
From a geometric perspective, however, the density operator is just the sum of a
scalar and a vector, which for a pure state is related to the corresponding “spinor”
by rotation of a fixed reference vector (conventionally taken to be σz as above)
by Ψ. Since the trace in the standard matrix representation is simply twice the
scalar part 〈 〉0 of the corresponding expression in geometric algebra, the ensemble-
average expectation value

(2.21) 1
2 tr(σµ ρ) ↔ 〈σµ ρ〉0 = 〈σµΨσzΨ

†〉0 = σµ · (ΨσzΨ
†) = σµ · p

is just the component of the polarization vector along the µ-th axis. Unlike the
strong measurements usually considered in quantum texts, where measurement of
σµ yields one of the random outcomes ±1 with probabilities (1±σµ ·p)/2 and leaves
the system in the corresponding state p = ±σµ , weak measurements of ensemble-
average expectation values can be made with only negligible perturbations to the
ensemble as a whole [Per93]. This is in fact how quantum mechanical systems are
usually manifest at the macroscopic level!

To see how all this relates to conventional wisdom, observe that the polarization
vector of a pure state may be written in terms of the Cayley-Klein parameters as

(2.22) p = 2ℜ(ψ∗
1ψ2)σx + 2ℑ(ψ∗

1ψ2)σy + (|ψ1|2 − |ψ2|2)σz .

Its stereographic projection from −σz onto the σxσy plane is therefore

(2.23)
2ℜ(ψ∗

1ψ2)σx + 2ℑ(ψ∗
1ψ2)σy

1 + |ψ1|2 − |ψ2|2
.

Multiplying by σx and simplifying the denominator using |ψ1|2 + |ψ2|2 = 1 yields

(2.24)
ℜ(ψ∗

1ψ2) + ℑ(ψ∗
1ψ2)K

|ψ1|2
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where K = σxσy is a square-root of −1. This is the same as the ratio ψ2/ψ1 save
for the use of ı instead of K as the imaginary unit, which explains formally why
SO(3) acts on the polarization vector in the same way that SU(2) acts on the ratio
of the Cayley-Klein parameters [Alt86, FH81].

3. Space-Time Geometry and Multiparticle Spinors

The above interpretations apply only to single qubits (or to ensembles consist-
ing of noninteracting and identical qubits). Extending them to systems of interact-
ing and distinguishable qubits may be done in a physically significant fashion by
considering the geometric algebra of space-time (or Minkowski space) R1,3 . This
algebra, known as the Dirac algebra and denoted by G1,3, may be defined by the
generating relations among an orthonormal basis analogous to Eq. (2.4):

γ2
t = 1 , γ2

µ = −1 (µ ∈ {x, y, z}) ,
γµγν = −γνγµ (µ, ν ∈ {t, x, y, z}, µ 6= ν)

(3.1)

The corresponding geometric algebra separates into five inequivalent representa-
tions under the action of the full Lorentz group O(1, 3), i.e.

〈1〉 (scalars, 1-dimensional)

〈γµ〉 (vectors, 4-dimensional)

〈γµγν〉 (bivectors, 6-dimensional)

〈γµγνγη〉 (trivectors, 4-dimensional)

〈γtγxγyγz〉 (pseudo-scalars, 1-dimensional) ,

(3.2)

where µ, ν, η ∈ {t, x, y, z} with µ 6= ν 6= η 6= µ, for a total dimension of 16.
The important point for our purposes is that the even subalgebra of the Dirac

algebra G+
1,3 is isomorphic to the Pauli algebra G3 [Hes66]. This isomorphism may

be constructed by choosing bases γµ ∈ G1,3 and σµ ∈ G3, and defining an invertible
linear mapping by

(3.3) σµ ∈ G3 ↔ γµγt ∈ G+
1,3 (µ ∈ {x, y, z}) .

These so-called relative spatial vectors γµγt satisfy the relations in Eq. (2.4), since

(σµ)2 ↔ (γµγt)
2 = −γµ(γt)

2γµ = −(γµ)2 = 1

σµσν ↔ (γµγt)(γνγt) = γν(γµγt)γt = −(γνγt)(γµγt)

↔ − σνσµ (µ, ν ∈ {x, y, z}, µ 6= ν) ,

(3.4)

and hence generate an algebra isomorphic to G3. As bivectors in G1,3, however,

they also generate G+
1,3, since

(3.5) γµγν = γµ(γt)
2γν = −(γµγt)(γνγt) ↔ −σµσν

(µ, ν ∈ {x, y, z}, µ 6= ν), and similarly

(3.6) ι ≡ γtγxγyγz = (γxγt)(γyγt)(γzγt) ↔ σxσyσz .

Thus γµγt ↔ σµ (µ ∈ {x, y, z}) induces an algebra isomorphism as claimed, and
when the bases are understood we may identify σµ ≡ γµγt.
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The choice of time-like vector γt ∈ R1,3 in fact determines an inertial frame up
to spatial rotation, in which the time t and place s of an event e in that frame are
given by

(3.7) t + s = e · γt + e ∧ γt = eγt

(note that upright case is used for the space-time vector e ∈ R1,3). Thus the
invariant interval between events separated by the space-time vector e is e2 =
eγ2

t e = (t+ s)(t− s) = t2− s2 as usual, while the relative velocity between events
whose space-time velocities are γt and v ≡ ∂e/∂τ is

(3.8) v =
∂s

∂t
=

∂s

∂τ

∂τ

∂t
≡

(

∂e

∂τ
∧ γt

) (

∂e

∂τ
· γt

)−1

=
v ∧ γt

v · γt

,

so that v · γt lies on an affine hyperplane in space-time.
A great deal of physics can be done in a manifestly Lorentz covariant fashion

using the Dirac algebra. For example, the electromagnetic field at a given point in
space-time corresponds to an arbitrary bivector F ∈

∧

2 R1,3, called the Faraday

bivector, and the covariant form of the Lorentz force equation is

(3.9) m v̇ = qF · v ,

where m is the rest mass, q the charge and v the space-time velocity. (This is
another example of the general rule that, in geometric algebra, the generators of
motion are bivectors [DHSvA93].) The usual frame-dependent form is recovered
by splitting the quantities in this equation by γt as above [Jan89]; in particular,
the Faraday bivector splits into an electric and a magnetic field as F ≡ E + ιB,
where

(3.10) E = (F · γt)γt and ιB = (F ∧ γt)γt .

The space-time reverse will be denoted by a tilde, e.g. in the present case F̃ = −F.
This is related to the spatial (or Pauli) reverse by F† = E − ιB = γt F̃ γt. Both
operations agree on the Pauli-even subalgebra, but the spatial reverse not Lorentz
coveriant since it depends on a particular γt .

Returning to our previous discussion of the density operator, we observe that
the space-time form of the density operator of a single qubit polarized along z can
be written as

(3.11) ρ = 1
2 (1 + ασz) = 1

2 (γt + αγz)γt ≡ ̺γt ,

where −1 ≤ α ≤ 1 is the polarization and γt determines the local inertial frame. It
follows that the Lorentz covariant form of the density operator is a time-like vector
̺ ∈ R1,3. Under a Lorentz boost L = exp(−λσz/2) ∈ SO(1, 3) along σz , therefore,

the relativistic density operator ̺ transforms to ̺′ ≡ 1
2L(γt + αγz)L̃ =

(3.12) 1
2 (cosh(λ)γt − sinh(λ)γz + α(cosh(λ)γz − sinh(λ)γt)) .

This implies that in the unaccelerated frame (with renormalization by ̺′ · γt),

ρ′ =
̺′ γt

̺′ · γt

=
̺′ · γt + ̺′ ∧ γt

̺′ · γt

=
1

2

(

1 +
α cosh(λ) − sinh(λ)

cosh(λ)− α sinh(λ)
σz

)

.

(3.13)
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It follows that the polarization itself transforms as

(3.14) α′ =
α cosh(λ)− sinh(λ)

cosh(λ) − α sinh(λ)
.

If we assume the qubit is at equilibrium with a heat bath, statistical mechanics
tells us that α = tanh(−βǫ/2) where β = 1/(kBT ) is the inverse temperature and
ǫ ∈ R is the energy difference between the | 0 〉 and | 1 〉 states [Tol38]. Then the
addition formulae for cosh and sinh give

(3.15) α′ = tanh(−βǫ/2− λ) ,
so the apparent equilibrium polarization depends on velocity. These results are not
to be found in the classic treatise on relativistic thermodynamics [Tol34].

We will now construct a Lorentz covariant multiparticle theory of qubit systems
in the simplest possible way, by taking a direct sum of copies of space-time (regarded
as a vector space, rather than an algebra), one for each of the N qubits, i.e.

(3.16)
⊕N

q=1

〈

γ
q
t ,γ

q
x ,γ

q
y ,γ

q
z

〉

,

and considering the associated geometric algebra GN,3N . Then the even subalgebras
of different particle spaces p 6= q commute, since (in any given bases)

(3.17) σp
µσ

q
ν = γp

µ(γq
νγ

q
t )γ

p
t = σq

νσ
p
µ

for all µ, ν ∈ {x, y, z}, so that the algebra generated by the even subalgebras is
isomorphic to a tensor product of these algebras, written as

(3.18) (G+
1,3)

⊗N ≈ G⊗N
3 ≡ (G3)

⊗N
.

This construction of the tensor product was first used by Clifford as a means of
studying the tensor products of quaternion algebras [Cli78]; van der Waerden has
in fact called it a Clifford algebra of the second kind [vdW85]. As a means of
justifying the tensor product of nonrelativistic quantum mechanics in terms of the
underlying geometry of space-time, however, it is a much more recent development
[DLG93].

A key feature of quantum mechanics, which is needed for quantum computers
to be able to solve problems more efficiently than their classical counterparts, is an
exponential growth in the dimension of the Hilbert space of a multi-qubit system
with the number of particles involved. The complex dimension of the Hilbert space
(H)⊗N of an N -qubit system is in fact 2N , and the space of operators (linear trans-
formations) on (H)⊗N therefore has real dimension 22N+1. The above construction

yields a space of “operators” G⊗N
3 whose real dimension also grows exponentially,

but as 23N . The extra degrees of freedom are due to the presence of a different unit
pseudo-scalar ιq in every particle space. They can easily be removed by multiplying
through by an idempotent element called the correlator :

(3.19) C ≡ 1
2 (1− ι1ι2) 1

2 (1− ι1ι3) · · · 1
2 (1− ι1ιN)

This commutes with everything in G⊗N
3 and satisfies ιpιqC = −C for 1 ≤ p, q ≤ N ,

so that multiplication by it homomorphically maps G⊗N
3 onto an ideal G⊗N

3 /C
wherein all the unit pseudo-scalars have been identified,2 and which therefore has

2The notation G⊗N
3 /C is justified by the fact that the two-sided principle ideal G⊗N

3 (C)

generated by C is isomorphic to the quotient algebra G⊗N
3 / ker(C), where ker(C) ≡ {g ∈ G⊗N

3 |

gC = 0}.
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the correct dimension over R. As a subalgebra, this ideal is in fact isomorphic to
the algebra of 2N × 2N complex matrices, and hence capable of describing all the
states and transformations of (ensembles of) N qubit systems. In the following,
we shall generally omit C from our expressions altogether, and use a single unit
imaginary ι as in conventional quantum mechanics.

On the “even” subalgebra (G+
3 )

⊗N
, multiplication by the correlator turns out

to be an algebra automorphism; this algebra can thus be written as

(3.20) (G+
3 )

⊗N ≈ (G+
3 )

⊗N
/C ≈ (G⊗N

3 /C)
+ ≈ SU(2)

⊗N
,

where the “+” refers throughout to the subalgebra generated by expressions which
are invariant under inversion in the origin, and SU(2)⊗N to the algebra generated
over R by the Kronecker products of matrices in the group SU(2). This subalgebra
has real dimension 22N , but is mapped onto a left-ideal of dimension 2N+1 by
right-multiplication with another idempotent which is given by the tensor product
of those considered earlier, namely

(3.21) E+ ≡ E1
+E

2
+ · · ·EN

+ ,

where E q
± ≡ (1±σq

z )/2 for q = 1, . . . , N . Henceforth, the term “even subalgebra”

will refer to (G+
3 )⊗N (suitably correlated) unless otherwise stated.

In terms of the usual matrix representation, right-multiplication of an element
of the even subalgebra Ψ by E + likewise sets all but the first column to zero, so

that ΨE+ transforms like a “spinor” in H⊗N under left-multiplication by single
particle rotations Rq ∈ (G+

3 )⊗N . Unlike the single particle case, however, this one

column does not uniquely determine an element of the even subalgebra (G+
3 )⊗N/C.

What has been proposed instead [DLG93] is to use the fact that E+ “absorbs”
σz’s to distribute copies of the latter across the correlator, converting it to what
will here be called the directional correlator D, i.e.

(3.22) ΨCE+ = ΨC
(

(σ1
z )

N−1
σ2

z · · ·σN
z

)

E+ = ΨDE+ ,

where

(3.23) D ≡ 1
2 (1− ι1σ1

z ι
2σ2

z ) 1
2 (1− ι1σ1

z ι
3σ3

z ) · · · 1
2 (1− ι1σ1

z ι
NσN

z ) .

It can be shown that right-multiplication by D, unlike C, reduces the dimen-
sionality to 2N+1, thereby permitting the objects in this reduced even subalgebra
(G+

3 )⊗N/D to be regarded as spinors, analogous to G+
3 for a single qubit. In the cor-

responding left-ideal, K ≡ ι1σ1
z D ↔ · · · ↔ ιNσN

z D serves as the unit imaginary,
since K2 = −D, but is required to always operate from the right. Henceforth, un-
less otherwise mentioned, we will regard spinors (G+

3 )⊗N/D = ((G+
3 )⊗N/C)/(CD)

as a left-ideal in the C-correlated even subalgebra, drop both C and the super-
scripts on the ι’s as above, and use D as a short-hand for CD =DC.

In the case of two qubits, for example, the identifications are induced by D are

| 00 〉 −1
D←→ ισ1

z ισ
2
z ισ1

z

D←→ ισ2
z

| 01 〉 ισ2
y

D←→ ισ1
z ισ

2
x −ισ2

x

D←→ ισ1
z ισ

2
y(3.24)

| 10 〉 ισ1
y

D←→ ισ1
x ισ

2
z −ισ1

x

D←→ ισ1
y ισ

2
z

| 11 〉 −ισ1
y ισ

2
y

D←→ ισ1
x ισ

2
x ισ1

x ισ
2
y

D←→ ισ1
y ισ

2
x
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(where the two columns differ by operation with K). From this it may be seen that
any “spinor” in (G+

3 )⊗2/D can be written as

Ψ =
(

(α0 + β0K)− ισ2
y (α1 + β1K)−

ισ1
y (α2 + β2K) + ισ1

y ισ
2
y (α3 + β3K)

)

D
(3.25)

(cf. [SLD99]). Alternatively, again using Eq. (3.24), a unit norm spinor may be
factorized into a product of entities in the correlated and reduced even subalgebra,
namely Ψ = R1 S2 TPDC, where

(3.26)
R1 ≡ e−ιφσ1

z /2 e−ιθσ1

y /2 ,

S2 ≡ e−ιϕσ2

z /2 e−ιϑσ2

y /2 ,

T ≡ cos(ς/2) − sin(ς/2)σ1
y σ

2
yK ,

P ≡ e−τK/2 .

Thus when ς = π, the factor T becomes

(3.27) − σ1
y σ

2
y K = (−ισ1

y )(−ισ2
y )K = e−(π/2)ισ1

y e−(π/2)ισ2

y K ,

so that the arguments of the exponentials involving ισ1
y and ισ2

y in the first two
factors are shifted by π/2 while the total phase is shifted by τ = π. It follows
that T rotates the first two factors in the planes defined by their conjugate spinors
[−r∗2 ; r∗1 ], [−s∗2; s∗1]. Thus on right-multiplying by E+ and expanding in the usual
basis, we obtain (up to an overall phase)

Ψ = cos( ς
2 ) eıτ/2





cos( θ
2 )eıφ/2

sin( θ
2 )e−ıφ/2



⊗





cos(ϑ
2 )eıϕ/2

sin(ϑ
2 )e−ıϕ/2



 +

sin( ς
2 ) e−ıτ/2





sin( θ
2 )eıφ/2

− cos( θ
2 )e−ıφ/2



⊗





sin(ϑ
2 )eıϕ/2

− cos(ϑ
2 )e−ıϕ/2





(3.28)

This is known as the Schmidt decomposition [EK95]. It is useful in studying the
entanglement of bipartite quantum systems, which (in conventional terms) means
that |ψ 〉 ∈ H⊗2 cannot be written as a product |ψ1 〉⊗|ψ2 〉 ≡ |ψ1 〉|ψ2 〉 ≡ |ψ1 ψ2 〉
for any one-particle spinors |ψ1 〉, |ψ2 〉 ∈ H. In fact it is just the singular value
decomposition in disguise, since (for example) on arranging the entries of a two-
qubit spinor |ψ 〉 = [ψ1; · · · ;ψ4] in a 2× 2 matrix, we can write

(3.29) Ψ ≡
[

ψ1 ψ3

ψ2 ψ4

]

= UVW † = u1v11(w1)
†
+ u2v22(w2)

†
,

where V is a 2×2 diagonal matrix containing the singular values v11 ≥ v22 ≥ 0 and
U , W are unitary matrices with columns uk, wk, respectively. Since the entries
of the dyadic products u1(w1)

†
, u2(w2)

†
are exactly the same as the Kronecker

matrix products u1 ⊗ w1, u2 ⊗ w2, the equivalence with Eq. (3.28) follows with
v11 ≡ cos(ς/2), v22 ≡ sin(ς/2), and the Kronecker products of the columns of U
and W identified with conjugate pairs of single qubit spinors whose relative phases
are given by exp(±ıτ/2).

Clearly a two-qubit spinor is unentangled if and only if v11 = 1, which is
equivalent to ς = 0 or T = 1. Thus T describes the entanglement of the qubits, and
is accordingly called the tangler. The geometric algebra approach clearly provides
deeper insight into the structure of entanglement than does one based on mechanical
matrix algebra. In particular, the fact that Ψ̃Ψ is even and reversion-symmetric
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in the Dirac as well as the Pauli algebra implies that it is the sum of a scalar and
a four-vector in the two-particle Dirac algebra G2,6 . Since Lorentz transformations
of the spinors cancel, this entity is in fact a Lorentz invariant, and dividing out the
total phase P as P (Ψ̃Ψ)P̃ yields the square of the tangler directly. The availability
of such powerful methods of manipulating entities in the multiparticle Dirac algebra
promises to be useful in finding analogs of the Schmidt decomposition for three or
more qubits.

4. Quantum Operations on Density Operators

Quantum computers operate on information stored in the states of quantum
systems. The systems are usually assumed to be arrays of distinguishable qubits
(two-state subsystems), whose basis states | 0 〉 and | 1 〉 correspond to the binary
digits 0 and 1, respectively, while the operations are usually taken to be unitary.
General unitary transformations of the qubits are built up from simpler ones that
affect only a few qubits at a time, which are called quantum logic gates. The
representation of these gates in suitable products of Clifford algebras has been
described in Refs. [SCH98, Vla01]. The goal here will be to show how gates act
upon spinors in the even subalgebra, and how they can be extended to a wider class
of nonunitary quantum operations on density operators.

Given the isomorphism between the algebra of 2N × 2N matrices over C and
G⊗N

3 /C relative to a choice of basis in each particle space, it is straightforward
to interpret matrices in the former as geometric entities in the latter. A matrix
U ∈ U(2N ), however, does not generally correspond to an entity U in the even sub-
algebra (G+

3 )⊗N/C, so that UΨ 6∈ (G+
3 )⊗N/D for a general spinor Ψ ∈ (G+

3 )⊗N/D.
Nevertheless, letting E− ≡

∏

q E
q
− be the idempotent “opposite” to E+, and not-

ing that this satisfies E+E− = 0, the product of UΨ with E+ may be written
as

(4.1) UΨE+ = (UΨE+ + ÛΨE−)E+ = 2 〈UΨE+〉+E+ ,

where the “hat” on Û denotes its image under inversion in the origin (so that

Ê+ = E−), and hence 〈 〉+ is a projection onto the even subalgebra. Because

(G+
3 )⊗N/C and U(2N) are both (22N )-dimensional, nothing is lost in this projection!

Thus we can drop the right-factor of E+ as usual, and define the action of U on
Ψ ∈ (G+

3 )⊗N/D as

(4.2) U ◦Ψ ≡ 2 〈UΨE+〉+ .

More generally, the usual action of the Pauli matrices on spinors corresponds to
the following action of the basis vectors on the reduced even subalgebra [DLG93]:

(4.3) σµ ◦Ψ ≡ σµΨσz , ι ◦Ψ ≡ ιΨσz

The simplest logic gate is the NOT of a single qubit, which operates on the
computational basis as follows:

(4.4) N | 0 〉 = | 1 〉 ↔ −ισy , N | 1 〉 = | 0 〉 ↔ 1

Thus it might appear reasonable to represent the NOT by N ≡ ισy ∈ SU(2), but

when ισy is applied a superposition (1 − ισy)/
√

2 ↔ (| 0 〉 + | 1 〉)/
√

2, we get (1 +

ισy)/
√

2↔ (| 0 〉−| 1 〉)/
√

2 instead of (| 0 〉+ | 1 〉)/
√

2 again. For a single qubit this
difference is just an overall rotation by π about σz, but a second qubit can be affected
by this phase difference between the first qubit’s states. Therefore the correct
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representation of the NOT gate in SU(2) is actually N ≡ ±ισx , which preserves

this superposition up to an irrelevant overall phase shift: ıσx(| 0 〉+ | 1 〉)/
√

2 ↔
(ισx) ◦ (1− ισy)/

√
2 = ι ◦ σx ◦ (1 − ισy)/

√
2

= ι ◦ (σx(1− ισy)σz/
√

2) = ι ◦ (−ισy + 1)/
√

2

= (−ισy + 1) ισz/
√

2 ↔ −ı(| 0 〉+ | 1 〉)/
√

2

(4.5)

More interesting logical operations on the qubits must be able to transform the
state of one conditional on that of another. The usual way in which this is done is
via the c-NOT or controlled-NOT gate. As a matrix in SU(4), this is represented
in the computational basis by

(4.6) N2|1 ≡
√
ı









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









,

which makes it clear that this operation NOT’s the second qubit whenever the first
is 1. The corresponding operator in geometric algebra is

(4.7) N2|1 ≡ (1 + ισ1
z )/
√

2
(

E 1
+ + E 1

− ισ
2
x

)

.

This may also be written in exponential form as

(4.8) e ιπσ1

z /4 e ιπE 1

−
σ2

x /2 = e−ιπ(E 1

−
(1−σ2

x )/2− 1/4) .

Physical implementations of this operation by e.g. NMR typically expand the ex-
ponential into a product of relatively simple commuting factors which can be per-
formed sequentially [HSTC00].

Note that since (1 − σ2
x )/2 is also an idempotent, N2|1 differs from N 1|2 by

a swap of the x and z axes for both qubits. This self-inverse operation, called the
Hadamard transform H, is simply a rotation by π about the (σx + σz)/

√
2 axis.

Sandwiching N2|1 by Hadamards H 2 = ι(σ2
x + σ2

z )/
√

2 to just the second qubit
gives

(4.9) H 2N2|1H 2 = e−ιπ(E 1

−
H 2(1−σ2

x )H 2/2−1/4) = e−ιπ(E 1

−
E 2

−
− 1/4) ,

so the c-NOT can also be viewed as a rotated phase shift of the state | 11 〉 by π.
The Hadamard gate has the important feature of transforming basis states into
superpositions thereof; indeed, as an element of the even subalgebra, it actually
represents the spinor of a uniform superposition directly:

H | 0 〉 = ı(| 0 〉+ | 1 〉)/
√

2 ↔ (ισz + ισx)/
√

2D

H | 1 〉 = ı(| 0 〉 − | 1 〉)/
√

2 ↔ (ισz − ισx)/
√

2D
(4.10)

Thus, by using the relations (4.3), we can show that applying a Hadamard to one
of two qubits in the state | 11 〉 followed by a c-NOT gate to the other yields the

entangled singlet state: N2|1H1| 11 〉 ↔
1
2

(

(1 + ι)E1
+ + (1− ι)E1

− ισ
2
x

)

◦
(

(ισ1
z − ισ1

x )(−ισ2
y )

)

= 1
2

(

(

(1 + ι) ◦ (ισ1
z )

)

(−ισ2
y ) +

(

(1− ι) ◦ (−ισ1
x )

) (

(ισ2
x ) ◦ (−ισ2

y )
)

)

= 1
2 (1− ισ1

z )ισ2
y − 1

2 (ισ1
x − ισ1

y )ισ2
z

D←→ ι
2 (σ2

y + σ2
x − σ1

y − σ1
x )

(4.11)



14 TIMOTHY F. HAVEL AND CHRIS J. L. DORAN

↔
√
−ı (| 10 〉 − | 01 〉)/

√
2 ≡

√
−ı |ψ− 〉. “Quantum” gates like H are not, of

course, found in conventional boolean logic, and are an essential component of
all quantum algorithms that are more efficient than their classical counterparts
[EJ98, CEMM98]. Indeed, the c-NOT gate together with general single qubit
rotations are known to generate SU(2N ), and hence are universal for quantum
logic [BBC+95].

It turns out that unitary transformations are not the most general sort of
operation that can be applied to a quantum system. Most such quantum operations,
however, produce a statistical outcome, and the ensemble of possible outcomes
must be described by a density operator. The previous definition (Eq. (2.20)) of
the density operator of an ensemble of identical and noninteracting qubits may be
extended to an ensemble of multi-qubit systems as follows:

(4.12) ρ ≡ |ψ 〉〈ψ | ↔ ρ ≡ (ΨD)E+(ΨD)∼ = ΨE+Ψ̃C

Suppressing the correlator C as usual, ρ may also be expressed in diagonal form as

(4.13) ρ = R
(

∑2N

k=0 ρkE(k)

)

R† =
∑2N

k=0 ρkrkr
†
k .

where R ∈ G⊗N
3 /C corresponds to a unitary matrix R ∈ U(2N ) (in the usual σz

coordinate system), and 0 ≤ ρk ≤ 1 are the eigenvalues of ρ. The idempotents
E(k) are given by

∏

q E
q
ǫq

k
↔ |χ1

k · · ·χN
k 〉〈χ1

k · · ·χN
k |, where ǫqk ≡ 1 − 2χq

k with χq
k

equal to the q-th bit in the binary expansion of k ∈ {0, . . . , 2N − 1}. It follows that
| ρk 〉 ↔ rk ≡ RE(k) for ρk > 0 are the spinors of the (unique, if ρk 6= ρℓ ∀k 6= l)
minimal ensemble that realizes ρ, which therefore describes a pure state if and only
if it has rank 1 as an operator.

Note that by Eq. (4.2), the density operator transforms under unitary opera-
tions as

(4.14) ρ 7→ (U ◦Ψ)E+(U ◦Ψ)
∼

= U ΨE+Ψ̃U † = UρU † .

Similarly, the ensemble-average expectation value of any observable O = O† ∈
G⊗N

3 /C is

(4.15) 〈ψ |O |ψ 〉 ↔ 2N 〈E+Ψ̃OΨE+〉0 = 2N 〈OΨE+Ψ̃〉0 ≡ 2N 〈Oρ 〉0 ,
just as shown in Eq. (2.17) for single qubit ensembles. In contrast to the case of
a single qubit, however, the geometric interpretation of these observables is not
straightforward. While one can certainly express ρ as a finite ensemble average
∑

k pkΨkE+Ψ̃k (where the pk > 0 are probabilities with
∑

k pk = 1), this decom-
position is highly nonunique. The minimal ensemble obtained by diagonalization,
on the other hand, will generally include entangled spinors rk , for which the ex-

pectation value 〈Orkr
†
k〉0 cannot be expressed as a product of inner products of

the factors of O = O1 · · ·ON with the polarization vectors of the individual qubits
(indeed, O itself need not be factorizable!).

The best one can do is to expand ρ in the product operator basis consisting of
all 22N products of the basis vectors σq

µ , i.e.

(4.16) ρ =
∑

µ1,..., µN∈{0,x,y,z}

ρµ1···µN σ1
µ1 · · ·σN

µN ,

where ρµ1···µN ∈ R and σq
0 ≡ 1 for notational convenience. The utility of this basis is

most simply demonstrated via a concrete example, namely NMR spectroscopy. Here
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one is given a liquid sample consisting of identical molecules whose nuclear spins
are chemically distinguishable, and hence constitutes an ensemble of multi-qubit
systems (see [CPH98, HCST00, HSTC00] and references therein). The energy
of interaction between the spins and an external magnetic field along z is given by an
observable called the Zeeman Hamiltonian, Z ≡ (ω1σ1

z + · · ·+ωNσN
z )/2, where ωq

is the energy difference between the | 0 〉 and | 1 〉 states of the q-th spin in the field.
In thermal equilibrium at room temperatures, the polarization of the spins relative
to the strongest available fields is typically α ∼ 10−6, and the density operator of
the ensemble is essentially ρeq = 2−N(1+α(σ1

z + · · ·+σN
z )). Via a suitable pulse of

radio-frequency radiation, this may be rotated to ρ′eq ≡ 2−N (1+α(σ1
x + · · ·+σN

x )),
which evolves under the interaction with the field as

(4.17) e−ιZtρ′eqe
ιZt = 2−N

(

1 + α(cos(ω1t)σ1
x − sin(ω1t)σ1

y + · · ·
· · ·+ cos(ωN t)σN

x − sin(ωN t)σN
y )

)

.

Thus on measuring the total magnetization Mx along the x axis, O ≡ γ(σ1
x +

· · ·+ σN
x ) (where γ is the nuclear gyromagnetic ratio), one obtains the sum of the

projections of the rotating magnetization vectors of the spins along the x-axis, i.e.

(4.18) Mx(t) = αγ(cos(ω1t) + · · ·+ cos(ωN t)) ,

whose Fourier transform reveals the contribution from each spin. The way in which
the factors of product operators transform like vectors under rotations accounts in
large part for the computational utility of the product operator basis. Of course,
unless it is a natural part of the problem at hand (as in NMR), one is better off
not chosing a basis at all!

A normal quantum operation is a linear transformation of the density operator
that may be written in operator sum form as [Kra83]

(4.19) ρ 7→ Ω(ρ) ≡ ∑

kQk ρQ
†
k ,

where the Kraus operators Qk ∈ G⊗N
3 /C satisfy

∑

kQ
†
kQk = 1. The term “normal”

here3 refers to the fact that such an operation preserves the scalar part of ρ, since

(4.20) 〈Ω(ρ)〉0 =
∑

k

〈

Qk ρQ
†
k

〉

0
=

〈

ρ
∑

kQ
†
kQk

〉

0
= 2−N .

It is also easily seen that such quantum operations are positive, in that they preserve
the positive-definiteness of ρ; in fact, these operations have a yet stronger property
known as complete positivity, meaning that if the qubits to which Ω applies are
embedded in a larger system, then applying Ω to just those qubits preserves the
positive-definiteness of the larger system’s density operator. That this is a nontrivial
extension of positivity is shown by the two-qubit “partial transpose” operator Ω1

T,
which carries σ1

y 7→ −σ1
y but leaves all the other operator factors unchanged; this

is clearly positive on density operators not involving the second qubit, but acts on
the density operator of the singlet state (Eq. (4.11)) as

ψ−≡ 1
4 (σ1

x + σ1
y − σ2

x − σ2
y )E1

+E
2
+(σ1

x + σ1
y − σ2

x − σ2
y )

= 1
4 (1− σ1

x σ
2
x − σ1

y σ
2
y − σ1

z σ
2
z )

7→ Ω1
T(ψ−) = 1

4 (1− σ1
x σ

2
x + σ1

y σ
2
y − σ1

z σ
2
z ) ,

(4.21)

which has eigenvalues [1/2, 1/2, 1/2, −1/2].

3 We prefer to avoid the more common but clumsy and matrix-bound term “trace-preserving”.



16 TIMOTHY F. HAVEL AND CHRIS J. L. DORAN

A quantum operation Ω is called unital if it preserves the identity itself, i.e.

Ω(1) = 1, or equivalently,
∑

kQkQ
†
k = 1. Perhaps the most important example

of a normal unital operation is found in the contraction4 by a single qubit q ∈
{1, . . . , N}, which may be written in operator sum form as [SCH98]:

(4.22) 2 〈ρ 〉q ≡ E
q
+ρE

q
+ +Eq

−ρE
q
− + σq

x (Eq
+ρE

q
+ +Eq

−ρE
q
−)σq

x

This may also be expressed by dropping all terms in the product operator expansion
of ρ depending on q, and multiplying the remaining terms by a factor of 2. Note
that, while 〈 〉q is normal and unital, this factor means that the contraction itself
is neither. The factor is nevertheless required if the result is to be interpreted as
a density operator for the remaining qubits, since the contraction by the second

qubit of the above singlet state is 〈ψ− 〉2 = 1/4 (not 1/2).
This example also illustrates an important way in which general quantum

operations are realized in practice, despite the fact that the universe as a whole
evolves unitarily. As shown previously, the superposition state with spinor Ψ1 =
(1 − ισ1

y )/
√

2 is converted into the singlet state with density operator ψ− by let-

ting it interact with a second qubit so as to effect the c-NOT operation N 2|1. The
contraction then corresponds to “discarding” the second qubit (i.e. ensuring that it
does not further interact with the first and hence can be ignored), which yields the
density operator 1/2 of the totally mixed state for the first qubit. Since the basis

states E 1
± are unaffected by N2|1, the net quantum operation on the first qubit

corresponds to what is known in quantum communications theory as the phase

damping channel

(4.23) ρ 7→ (1 − p)ρ + pE+ρE+ + pE−ρE−

with damping parameter p = 1. Phase damping is also known as T2 relaxation in
NMR, and as decoherence in quantum information processing; it is widely believed
to be the dominant mechanism by which classical statistical mechanics arises from
the underlying unitary dynamics [GJK+96].

To illustrate the utility of geometric algebra in the study of general quan-
tum operations, an eigenvalue characterization of normal, unital, one-bit quantum
operations Ω will now be derived. This characterization was originally given by
Fujiwara & Algoet [FA99], although the derivation here parallels that more re-
cently obtained using matrix methods King & Ruskai [KR00]. This derivation
will regard the Kraus operators Qk ∈ G3 as “complex quaternions” Ak + ιBk with
Ak,Bk ∈ G+

3 , and consider the action of an arbitrary operation Ω on the scalar
and vector parts of ρ ≡ (1 + r)/2 separately.

First, the action on 1 is

Ω(1) =
∑

k (Ak + ιBk)(Ak + ιBk)
†

=
∑

k

(

AkÃk +BkB̃k

)

+ ι
∑

k

(

BkÃk −AkB̃k)
)

.
(4.24)

The first summation is symmetric with respect to spatial reversion and inversion,
i.e. scalar, while the second (excluding the ι) is reversion antisymmetric but in-
version symmetric, i.e. a bivector. Writing A ≡ α + ιa and B ≡ β + ιb, so that

4Otherwise known as the “partial trace”.
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AkÃk + BkB̃k = α2
k + ‖ak‖2 + β2

k + ‖bk‖2, we may further expand the second
summation as follows:

∑

k [ (βk + ιbk)(αk − ιak)− (αk + ιak)(βk − ιbk) ]

=
∑

k

[

(αkβk + ι(αkbk − βkak) + bkak) −

(αkβk + ι(βkak − αkbk) + akbk)
]

=
∑

k [ 2ι(αkbk − βkak)− 2ak ∧ bk ]

(4.25)

Thus Ω is unital if and only if

(4.26)
∑

k (αkbk − βkak) =
∑

k ak × bk ,

(where “×” denotes the cross product) and

(4.27)
∑

k

(

α2
k + ‖ak‖2 + β2

k + ‖bk‖2
)

= 1 .

Similarly, the action on r ∈ R3 is

Ω(r) =
∑

k (Ak + ιBk) r (Ãk − ιB̃k)

=
∑

k

(

AkrÃk +BkrB̃k

)

+ ι
∑

k

(

BkrÃk −AkrB̃k

)

.
(4.28)

The first summation is over different dilation/rotations of r; the second summation
(excluding the ι) is reversion and inversion antisymmetric, i.e. a trivector, and may
be further expanded as above:

∑

k [ (βk + ιbk) r (αk − ιak)− (αk + ιak) r (βk − ιbk) ]

=
∑

k

[

(αkβkr + ι(αkbkr − βkrak) + bkrak) −

(αkβkr + ι(βkakr − αkrbk) + akrbk)
]

=
∑

k [ 2ιαkbk · r − 2ιβkak · r + 2bk ∧ r ∧ ak ]

(4.29)

Multiplying through by −ι/2 converts this to

(4.30)
∑

k [αkbk · r − βkak · r − (ι(ak ∧ bk)) · r ] ,

which vanishes if and only if

(4.31)
∑

k (αkbk − βkak ) · r =
∑

k (bk × ak) · r .
If Ω is normal, this must be true for all r, which is equivalent to

(4.32)
∑

k (αkbk − βkak ) =
∑

k bk × ak .

A comparison with Eq. (4.26) shows further that Ω is both unital and normal if
and only if

∑

k αkbk =
∑

k βkak and
∑

k ak × bk = 0.
If we regard a normal Ω as an affine transformation, i.e.

(4.33) Ω(1
2 (1 + r)) = 1

2 (1 + t+
∑

µ (σµ · r)sµ)

(sµ, t ∈ R3), we see from the derivation leading up to (4.26) that

t = 2
∑

k (αkbk − βkak − ak × bk)

= 4
∑

k (αkbk − βkak) = 4
∑

k bk × ak (by (4.32)) .
(4.34)

Similarly, the above vectors sµ = 〈Ω(σµ)〉1 are

(4.35) sµ =
∑

k

(

AkσµÃk +BkσµB̃k

)

(µ ∈ {x, y, z}) ,
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i.e. a sum of independent dilation/rotations of each basis vector.
It follows that normal and unital quantum operations Ω may be characterized

by finding conditions for the linear map r 7→ 〈Ω(r)〉1 = Ω(r) to be written as a

sum of dilation/rotations of r. To this end, we expand AkrÃk as

(αk + ιak) r (αk − ιak) = α2
kr + αkι(akr − rak) + akrak

= α2
kr + 2αkr × ak + 2(r · ak)ak − ‖ak‖2r ,

(4.36)

with a similar expansion forBkrB̃k . Thus on assuming that Ω is diagonal, i.e. sµ ≡
λµσµ = Ω(σµ), we get

(4.37) λµσµ = σµ

∑

k(α2
k + β2

k − ‖ak‖2 − ‖bk‖2) + 2σµ ×
∑

k(αkak + βkbk)

+ 2
∑

k ((σµ · ak)ak + (σµ · bk)bk) .

Dotting both sides by σµ now yields

λµ =
∑

k

(

α2
k + β2

k − ‖ak‖2 − ‖bk‖2 + 2 (σµ · ak)2 + 2 (σµ · bk)2
)

= 1− 2
∑

k

(

‖ak‖2 + ‖bk‖2 − (σµ · ak)2 − (σµ · bk)2
)

= 1 + 2
∑

k

(

(σµ ∧ ak)2 + (σµ ∧ bk)2
)

,

(4.38)

so we have simple expressions for the eigenvalues. Now consider the vector obtained
from the first line of this equation, i.e.

∑

µ∈{x,y,z} λµσµ

=
∑

µ σµ

∑

k

(

α2
k + β2

k − ‖ak‖2 − ‖bk‖2 + 2 (σµ · ak)2 + 2 (σµ · bk)2
)

= p0

∑

k

(

α2
k + β2

k

)

+
∑

µ pµ

∑

k

(

(σµ · ak)2 + (σµ · bk)2
)

,
(4.39)

where

p0 ≡ σx + σy + σz , px ≡ σx − σy − σz ,(4.40)

py ≡ − σx + σy − σz , pz ≡ − σx − σy + σz .

Since the coefficients of the p’s are nonnegative and sum to 1 by (4.27), this shows
that the vector

∑

µ λµσµ lies within the tetrahedron 〈p0,px,py,pz〉, which is the

condition on the eigenvalues found by Fujiwara and Algoet [FA99] as well as by
King and Ruskai [KR00].

It is also known that an arbitrary linear map Ω has an operator sum repre-
sentation if and only if it is completely positive [Sch96], so the above can also
be viewed as a characterization of complete positivity for normal and unital maps
of a single qubit’s density operator. Finally, it is worth stressing once again that,
because of the isomorphisms which exist between the Pauli algebra and the even
subalgebra of the Dirac algebra, every step of the above derivation carries with it
a natural interpretation in space-time, and is in fact even easier to carry out when
the full power of the Dirac algebra is used.

In conclusion, it is hoped that the forgoing has given the reader a taste of
the new insights which geometric algebra can provide into quantum information
processing — and an appetite for more!
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