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Simultaneous decompositions of two states

Armin Uhlmann, Leipzig 1

Dedicated to Roman S. Ingarden

Abstract

Simultaneous decompositions of a pair of states into pure ones

are examined. There are privileged decompositions which are distin-

guished from all the other ones.

Presently we witness that quantum information theory is becoming an inter-
disciplinary, quickly growing field of research. In its history Roman S. In-
garden is playing a significant role, both by his own research and by posing
stimulating questions and problems [1]. It is about 40 years ago that I met
Roman the first time, and he was already thinking about the role of infor-
mation in quantum physics and, in particular, whether one can found the
concept of probability onto that of information [2].
I feel honored by the possibility to dedicate to him the following paper.

1 Decomposing one density operator

A density operator, representing a state, is a positive operator with trace
one. However, it is convenient for the following considerations not to insist
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in normalization.
We shall assume, mainly for technical simplicity, a finite dimensional Hilbert
space, H, the dimension of which is denoted by dimH = d. Thus, math-
ematically, we are just dealing with positive operators (and with the Null
operator) of a finite dimensional Hilbert space.

Let τ be a positive operator on our Hilbert space. Its decreasingly ordered
eigenvalues are denoted by λ1, λ2, . . ., i. e.

spec(τ) = {λ1 ≥ λ2 ≥ . . .}

By a decomposition of τ I denote every set of vectors |χj〉 such that

τ =
∑

|χj〉〈χj| (1)

As I showed in [3]
m∑

j=1

λj ≥
m∑

j=1

〈χj|χj〉 (2)

is valid for all 1 ≤ m ≤ dimH. Moreover, equality is reached if and only if
|χj〉 is an eigenvector for λj of τ for all j = 1, . . . , m.
The motivation for asking questions of that kind has been the problem
whether the von Neumann entropy of a density operator is already fixed
by its position as a point in the convex set of all density operators. The
result just quoted gives, if written with normalized vectors, an affirmative
answer. Indeed, my aim was to define on every (compact) convex set a func-
tion which just gives the von Neumann entropy if applied to state spaces of
a quantum system. Up to day I do not know whether the construction is of
any use for other convex sets than quantum state spaces.

In [4] M. A. Nielsen proved the reversed statement: If pj are positive numbers
which are majorized by spec(τ), then there exists a decomposition (1) such
that pj = 〈χj|χj〉.
The results mentioned above will be slightly extended to the case that there
are two decompositions of one and the same τ . Thus let

τ =
∑

|χ′
j〉〈χ′

j| (3)

be a further decomposition of τ . Adding (1) and (3) we get a decomposition
of 2τ and

m∑

j=1

(〈χj|χj〉 + 〈χ′
j |χ′

j〉) ≥ 2
m∑

j=1

|〈χj|χ′
j〉|
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Equality takes place iff |χj〉 differs from |χ′
j〉 by a phase factor only. Because

the eigenvalues of 2τ are just 2λj we get

Proposition 1: Let (1) and (3) be decompositions of τ and λ1 ≥ λ2 ≥ . . .

the decreasingly ordered eigenvalues of τ , and 1 ≤ m ≤ d. Then

m∑

j=1

λj ≥
m∑

j=1

|〈χj|χ′
j〉| (4)

Equality holds if and only if for 1 ≤ j ≤ m

τ |χj〉 = λj |χj〉, |χ′
j〉 = ǫj |χj〉 (5)

with unimodular numbers ǫj.

2 Decomposing two density operators

Let us now consider a pair, ρ and ω, of positive operators.
Definition: F+

m(ρ, ω) denotes the sum of the m largest eigenvalues of

(
√
ρω

√
ρ)1/2 (6)

The definition works well for 1 ≤ m ≤ d. It is sometimes convenient to
extend it by F+

m = F+

d if m ≥ d and to set F+
m = 0 for m = 0.

Remark that F+

d is the square root of the transition probability [6]. The
square root of the transition probability is called fidelity and is denoted by
F (ρ, ω) in the present paper. Notice, however, that Jozsa, who showed its
use in quantum information theory [5], identified the general transition prob-
ability with his fidelity concept (and not with its square root).
A further remark is the following: In [7] I considered another quantity: The
k-fidelity, Fk, which is the sum of all but the first k eigenvalues of (6). These
partial fidelities are jointly concave (and super-additive) in its arguments for
k = 0, 1, ... Obviously,

F+

m(ρ, ω) = F (ρ, ω) − Fm(ρ, ω)

In contrast to the partial fidelities, the quantity (8) seems to be neither
concave nor convex if m is smaller than dimH.
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Finally, let us rewrite (4) of proposition 1 as

F (τ, τ) ≥
m∑

j=1

|〈χj|χ′
j〉|, (7)

Remember that equality in (7) can be reached by eigenvector decompositions
of τ with decreasingly ordered eigenvalues.

Theorem 1: Let be 1 ≤ m ≤ d. It is

F+

m(ρ, ω) = max
m∑

j=1

|〈ψj|ϕj〉| (8)

where the maximum is to perform over all possible decompositions

ρ =
∑

|ψj〉〈ψj|, ω =
∑

|ϕj〉〈ϕj|. (9)

If the length of a decomposition is less than dimH, or if the length of the two
compositions (9) are different, one adds some zero vectors to get decomposi-
tions of equal and large enough length.

The proof of the theorem starts by stating the invariance of the eigenvalues
of (6) with respect of a transformation

{ρ, ω} ⇒ {ρ, ω}X := {XρX∗, (X−1)∗ωX−1} (10)

for any invertible operator X, see [7]. ((In the present paper the Hermitian
adjoint of an operator A is denoted by A∗ and not by A†.)) Hence the sum
of the m largest eigenvalues of (6) cannot be changed by such a transforma-
tion. On the other hand, if we simultaneously transform decompositions (9)
according to

|ψj〉 → X|ψj〉, |ϕj〉 → (X−1)∗|ϕ〉 (11)

then the right hand side of (8) remains unchanged. Therefore, if the assertion
of the theorem is true for a pair of density operators {ρ, ω}, it is true for every
pair {ρ, ω}X .
Let now ρ and ω be invertible (i. e. faithful). If we then can choose X such
that

{ρ, ω}X := {τ, τ} (12)
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with a certain τ yet to be determined, we are done: For the pair {τ, τ} the
theorem is equivalent to proposition 1. But

XωX∗ = (X−1)∗ρX−1 := τ (13)

is valid if X∗X is the geometric mean [8] of ρ and ω−1, i.e.

X∗X = ω−1/2(ω1/2ρω1/2)1/2
ω−1/2 (14)

Hence, the theorem is true for invertible ρ and ω.
Indeed, the proof covers the case of any pair ρ, ω, with equal supports: To
see it we only have to replace H by the supporting Hilbert subspace because
neither to F+

m nor to the decompositions there is a non-zero contribution
from the null spaces (i.e. the kernels) of ρ and ω.

We now prove that the right hand side of (8) never exceeds F+
m . Denote by

P0, Q0 the projection operators onto the null spaces of ρ and ω. We choose
decompositions of P0 and Q0 with vectors |ψ′

i〉 and |ϕ′
i〉 respectively. We

complement arbitrarily chosen decompositions (9) to those of ρ′ = ρ + c1P0

and ω′ = ω + c2Q0 with cj > 0. For ρ′ this is done by

ρ′ = ρ+ c1P0 =
∑

|ψj〉〈ψj| + c1
∑

|ψ′
j〉〈ψ′

j|

and similarly we proceed with ω′. Because ρ′ and ω′ are invertible, we already
can apply theorem 1 to them. Because F+

m(ρ′, ω′) is approaching F+
m(ρ, ω) if

cj → 0 we are done.

What remains to show is the following: There are decompositions (9) such
that

∑ |〈ψi, ϕi〉| is equal to F+
m , whatsoever the support properties of ρ and

ω may be. To get this we first assert:
Let Q be the projection operator onto the supporting space of ω. For all
decompositions (9) we get

〈Qψi|ϕ〉 = 〈ψi|Q|ϕ〉 = 〈ψi|ϕ〉

because every vector of a decomposition of ω must be an eigenvector of Q.
That is, every one of the sums in question for ρ, ω gives one for QρQ, ω
yielding the same value. On the other hand, if we start with decompositions
of QρQ, ω, we can add terms orthogonal to ω into the decomposition of ρ to
get a decompositions of ρ, ω without changing the value of the sum. Below
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we shall show the equality of F+
m(ρ, ω) with F+

m(QρQ, ω), and, all together,
we obtain: If and only if theorem 1 is true for the pair QρQ, ω it is true
for the pair ρ, ω. Now we can proceed as following: If the supports of QρQ
and ω are equal, we are done. If not, we consider the projection operator
P1 onto the support of QρQ, yielding the same statement for the pairs ρ, ω,
QρQ, ω, and QρQ, P1ωP1. Either the last pair is of equal support, and we
are done, or continue the same game with the projection operator Q1 onto
the support of P1ωP1. This procedure must terminate after a finite number
of steps yielding a pair with equal supports. The obvious reason: In every
necessary step, the rank of one member of the pair under consideration is
diminished, and we are in finite dimensions.
The proof of theorem 1 is done after showing the equality of F+

m(ρ, ω) with
F+

m(QρQ, ω) if Q is the support projection of ω. This assertion is a particular
case with X = Q of the equation

F+

m(ρ,X∗ωX) = F+

m(XρX∗, ω) (15)

For invertible X the transformation (10) does not change the eigenvalues of
(6). By the replacement ω → X∗ωX we thus get (15) for invertible X. But
F+

m is continuous in its arguments, and (15) is valid for all X.

Let us underline the main point in constructing decompositions (9) satisfying

F+

m(ρ, ω) =
m∑

j=1

〈ψj |ϕj〉, m = 1, 2, . . . (16)

We have to solve (13) so that X and τ are at our disposal. From the spectral
decomposition of τ ,

τ =
∑

|χj〉〈χj|, 〈χj |χk〉 = λjδjk (17)

we get an optimal decomposition satisfying (16) by

|ψj〉 = X−1|χj〉, |ϕj〉 = X∗|χj〉 (18)

Such a choice fulfills the bi-orthogonal relations

〈ψk|ϕj〉 = 〈ψj |ϕk〉 = λjδjk (19)

Acknowledgement. I like to thank P. M. Alberti, B. Crell, Ch. Fuchs, and
M. Nielsen for valuable discussions and correspondence.
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