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Abstract

Quantum error avoiding codes are constructed by exploiting a geometric interpreta-
tion of the C∗-algebra of measurements of an open quantum system. The notion of
a generalized Dirac operator is introduced and used to naturally construct families
of decoherence free subspaces for the encoding of quantum information. The mem-
bers of the family are connected to each other by the discrete Morita equivalences
of the algebra of observables, which render possible several choices of noiseless code
in which to perform quantum computation. The construction is applied to various
examples of discrete and continuous quantum systems.
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The basic unit of information stored and processed by a quantum computer (see [1]

for reviews) is called a quantum bit or qubit and it is a superposition of two states |0〉 and

|1〉 which together form an orthonormal basis of a two-dimensional Hilbert space. It has

been argued that quantum computers can solve certain problems much more efficiently

than classical computers. For example, Shor has shown [2] that quantum computers can

factorize large numbers in polynomial time. However, a scheme such as Shor’s factoriza-

tion algorithm requires large scale quantum computation and it is unclear whether it is

possible to implement such systems in a physically viable sense. One of the most severe

problems in performing a quantum computation is maintaining its fragile coherence, i.e.

avoiding the destructive effects of dissipation and decoherence caused by the interaction

between the quantum computer and its environment [3] which result in computational

errors. To deal with this problem, error correction codes have been developed [4]. The

idea behind error correction is to correlate the states with an ancilla in order to store

quantum information. Then even if an error occurs within a qubit, one can still recover

the original state with the correlated information from the ancillary states. On the other

hand, error avoiding methods have been developed over the last few years [5]–[7] as a

passive alternative to repeated applications of quantum error correction codes. Error

avoiding methods seek decoherence free subspaces within the total Hilbert space of the

system and attempt to contain the calculation within the boundaries of those subspaces

so that coherence can be maintained during the quantum computation. Such subspaces

correspond to subalgebras of operators which commute with the interaction Hamiltonian.

In this letter we will describe some new ways of generating decoherence free subspaces

by implementing a particular equivalence relation on the category of operator algebras.

This equivalence relation generates a symmetry on the total Hilbert space of the system

which we will call a “duality”. While noncommutative operator algebras are fundamental

to the foundations of quantum mechanics, it is only in the past two decades that such

structures have been applied to models of spacetime using the techniques of noncommu-

tative geometry (see [8, 9] for reviews). Noncommutative geometry replaces the usual

commutative C∗-algebra of continuous complex-valued functions on a topological space

with a noncommutative C∗-algebra. Examples are provided by physical models whose

observables generate vertex operator algebras [10]–[13], which have many natural projec-

tions onto commutative subalgebras that can be identified as genuine spacetimes [11]. In

the following we will be concerned with what these techniques tell us about the encoding

of quantum information. We will argue that, at the level of operator algebras acting on

a particular sector of the Hilbert space, one may associate the interacting system com-

posed of a quantum computer and its environment with a noncommutative space, and a

decoherence free subspace with a commutative subspace of the full quantum space. This

correspondence is depicted schematically in fig. 1. Heuristically, we may think of the en-

vironment induced decoherence as effectively “quantizing” the surrounding configuration

space, and the suppression of dissipation as removing the quantum deformation of the
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space. As the commutative space is obtained from the low-energy limit of the vertex

operator algebra [10, 11], the corresponding projection eliminates any dissipative effects

from the system.

Decoherence Free
subspace

Quantum computer

+ Environment

Commutative
Space

Quantum

Space

Figure 1: The identification of a quantum computer interacting with its environment as
a quantum space, described by some noncommutative operator algebra. The projection of
the noncommutative space onto a commutative subspace induces in this correspondence
a projection of the total Hilbert space of the interacting system onto a subspace whereby
coherence is protected by the structure of the reduced Hamiltonian.

The advantage of this correspondence is that the symmetries of the quantum com-

puter, which constitute an important ingredient of the quantum information encoding [6],

can be obtained from the geometrical symmetries of the quantum space. These sym-

metry transformations generate the target space duality or T -duality group of the space

which leaves the Hamiltonian of the system invariant. The duality group interpolates dis-

cretely among sets of classically inequivalent commutative subspaces, which are however

identical from the point of view of the larger noncommutative space. Using these sym-

metries and the correspondence of fig. 1, we will show how to systematically construct

a family of decoherence free subspaces associated with the given quantum mechanical

system. The projections onto the commutative subspaces are reminescent of the projec-

tion of the operator algebra onto its physical subalgebra, i.e. that which is involved in

encoding and processing qubits [14]. Such state spaces are thereby characterized by the

irreducible representations of the corresponding C∗-algebra. As we will discuss, the cate-

gorical equivalence relation that we will use preserves these representations and hence the

corresponding state spaces. It thereby simply constitutes a different description of the

same coherent process which may however be simpler to realize in actual simulations of

quantum computation. Duality transformations then permit conclusions to be drawn for

the dual process. Moreover, duality maps the family of decoherence free subspaces into

itself, such that duality invariance constrains how one flows among these subspaces as ex-

ternal parameters are varied. As a concrete example, we will see that the transformations
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which preserve the state spaces of a certain system of N coupled harmonic oscillators is

the infinite discrete group O(N,N ; Z).

The novelty of this approach is that duality symmetries are not standard quantum

mechanical symmetries, in that they need not commute with the Hamiltonian of the sys-

tem. Although they preserve the spectrum of the given quantum mechanical problem,

they relate two different kinds of systems to one another. To illustrate the general ideas

involved, we will begin with some definitions and a simple example. Consider a purely

quantum observer, making measurements of a quantum mechanical system by a set of

operators which form a C∗-algebra A. We will suppose, for definiteness, that A = M2(C)

is the algebra of 2×2 matrices over the complex numbers, representing a two-level system,

i.e. a single qubit quantum computer. However, most of the arguments and definitions

presented below apply to any finite or infinite dimensional C∗-algebra representing, re-

spectively, a discrete or continuous system corresponding to the encoding of quantum

information through digital or analog signals. A state of A is a positive definite linear

functional Ψ : A → C of unit norm. To every state Ψ of the algebra there corresponds a

density matrix ρψ ∈ A which is positive, self-adjoint and has unit norm Tr(ρψ) = 1. The

correspondence between a state and its density matrix is through expectation values of

operators as

〈ψ|A|ψ〉 ≡ Ψ[A] = Tr(Aρψ) , A ∈ A . (1)

In fact, through the Gel’fand-Naimark-Segal (GNS) construction [9], there is a one-to-one

correspondence between Hilbert space representations of the C∗-algebra A and the state

space of A. There is also a natural notion of distance between any two quantum states

of the system. For this, we introduce a metric on the state space through the Connes

distance function

d(ψ, ψ′) = sup
‖[D/ ,A]‖≤1

∣

∣

∣Ψ[A] − Ψ′[A]
∣

∣

∣ , (2)

where ‖A‖ denotes the operator norm ofA ∈ A (i.e. ‖A‖2 is the largest eigenvalue of A†A).

HereD/ is a self-adjoint operator on the underlying Hilbert space, called a generalized Dirac

operator [8], which has compact resolvent and for which the commutators [D/ ,A], A ∈ A,

are bounded on a dense subalgebra of A.

A pure state of the quantum mechanical system is one that has been prepared by a

complete set of measurements. A pure state of A is therefore one that cannot be written

as the convex combination of two other states. In the present case the pure states may

be identified with the qubit basis states |0〉 and |1〉, and they can be written in density

matrix form as

ρψ0
=
(

1 0
0 0

)

, ρψ1
=
(

0 0
0 1

)

. (3)

The GNS representation spaces corresponding to the pure states (3) are both naturally

isomorphic to C
2. These representations are irreducible, because it is a general fact that

a state of A is pure if and only if its associated GNS representation is irreducible. The
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two representations are in fact equivalent, consistent with the fact that the algebra of

matrices has only one irreducible representation (its defining one) as a C∗-algebra. The

geometrical role played by the pure states comes into play at the level of the commutative

subalgebra C of A which consists of diagonal matrices

C =
(

a11 0
0 a22

)

. (4)

Using (1), the expectation values of the observable (4) in each of the pure states (3) are

computed to be

Ψ0[C] = a11 , Ψ1[C] = a22 . (5)

According to the Gel’fand-Naimark theorem [9], starting from any commutative C∗-

algebra one may construct a topological space. One way to do this is through the pure

states of the algebra. For example, for the algebra of smooth complex-valued functions

f(x) on the real line R, there is a continuous one-parameter family of pure states defined

by Ψx[f ] = f(x), x ∈ R. The subspace of pure states is equivalent to the space of irre-

ducible representations of the algebra, and the points of the topological space R may be

reconstructed from the space of pure states (equivalently irreducible representations). A

simple example of a Dirac operator in this case is D/ = i d
dx

and the formula (2) gives the

usual metric d(ψx, ψy) = |x− y| on R. For the algebra C of 2× 2 diagonal matrices, there

are two pure states, consistent with the fact that there are two irreducible representations.

The resulting topological space contains two points. The Dirac operator in this case can

be taken to be a 2 × 2 off-diagonal matrix

D/ λ =
(

0 λ∗

λ 0

)

, λ ∈ C − {0} , (6)

since any diagonal elements would drop out upon taking commutators with elements of

C. The commutator of (6) with an element (4) of C is

[D/ λ, C] = (a11 − a22)
(

0 −λ∗
λ 0

)

, (7)

and the distance (2) between the two points of the space is then d(0, 1) = 1
|λ|

.

The expectation values (5) extend to the full algebra A as follows. For a generic matrix

Ã =
(

a11 a12

a21 a22

)

, (8)

the mapping (1) with the pure states (3) yields

Ψ0[Ã] = Tr
(

a11 0
a21 0

)

= a11 , Ψ1[Ã] = Tr
(

0 a12

0 a22

)

= a22 . (9)

The arguments of the traces in (9) belong to the two ideals of elements of vanishing norm

in the states Ψ0 and Ψ1. These ideals are quotiented out in taking the completion of A to
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form the corresponding irreducible GNS representation spaces. Although the pure states

of the entire algebra A yield the same information as in the commutative subalgebra C,

due to the noncommutativity of the C∗-algebra there is now an ambiguity in identifying

a topological space. While the space of pure states identifies a space with two points, the

space of irreducible representations identifies one with only a single point. There is more

than one topological space corresponding to the full matrix algebra A.

This ambiguity can be removed by the realization that these pure states in the noncom-

mutative algebra correspond to a mixed state in the commutative subalgebra C. Consider

the density matrix

ρψ̃ =
( 1

2
0

0 1
2

)

(10)

corresponding to a mixed state Ψ̃ of A, and encode the information provided by the single

observable (8) into the two algebra elements

A0 =
(

a11 a∗21
a21 a11

)

, A1 =
(

a22 a12

a∗12 a22

)

. (11)

The expectation values (9) of the single operator Ã in the two pure states Ψ0 and Ψ1 are

then given equivalently by the expectation values of the two operators A0 and A1 in the

single mixed state Ψ̃,

Ψ̃[A0] = a11 , Ψ̃[A1] = a22 . (12)

The arguments of the corresponding traces in (1) now belong to the full matrix algebra.

We are interested in states corresponding to physical density matrices, and so we require

that the expectation values of operators be real-valued. Then the observables (11) can be

diagonalized and essentially belong to the commutative subalgebra C. Therefore, one can

in this way think of the subspaces of pure states among the general mixed states in terms of

the commutative subalgebras of the full noncommutative algebra. This may be regarded

as a toy model of the correspondence depicted in fig. 1. Furthermore, it is easy to see that

the way we have mapped a mixed state in the noncommutative algebra to the pure states

of the commutative one is not unique. There are many choices of abelian subalgebras of A
and their irreducible representations are related by unitary transformations [12]. This is

just a very simple example of what is known as a Morita equivalence of C∗-algebras [8, 9].

Morita equivalent algebras have the same representation theory, and therefore determine

the same space. At the level of the noncommutative algebra, this resolves the paradox

raised above. However, at the level of commutative subalgebras, the representations may

seem quite different and determine different systems.

In the following we will describe a geometric way to interpolate among these subalge-

bras using the generalized Dirac operator. We shall see in fact that these subspaces can be

used for suppressing decoherence and dissipation in a quantum computer. The construc-

tion is based on the quantum procedures discussed in [6] for obtaining decoherence free

subspaces using group symmetrization techniques. Consider the state space H of a quan-

tum computer coupled with the environment by a set of error operators which generate a
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finite group G of order |G|. The G-invariant dynamics of the system can be constructed

by choosing a unitary representation µ of G in the Hilbert space H, µ : g 7→ e iΘ
µ
g , where

g ∈ G and Θµ
g = Θµ †

g is a Hermitian operator on H. More precisely, µ(G) is generated by

the smallest associative subalgebra of the algebra A = M(H) of operators acting on H
which contains the error generating operators. The space H then decomposes according

to the irreducible representations of G. We are interested in particular sector that lives

in the trivial representation,

H0 =
⋂

g∈G

ker Θµ
g ⊂ HG

inv =
{

|ψ〉 ∈ H
∣

∣

∣ e iΘ
µ
g |ψ〉 = |ψ〉 ∀g ∈ G

}

, (13)

where HG
inv is the subspace spanned by the vectors in H that are invariant under the

action µ of G. The orthogonal projector Πµ : H → HG
inv onto the subspace (13) is given

by

Πµ =
1

|G|
∑

g∈G

e iΘ
µ
g , (14)

and its image represents the optimalG-invariant approximation of the states of the original

quantum mechanical system. In the dual picture, the representation µ naturally extends

to the algebra A via the adjoint action Ad ◦ e iΘ
µ
g : A 7→ e −iΘµ

g A e iΘ
µ
g , for A ∈ A. The

dual version of the invariant subspace (13) lives in the centralizer of the representation µ

in the algebra A,

A0 =
⋂

g∈G

EndΘµ
g
(A) =

{

A ∈ A
∣

∣

∣

[

Θµ
g , A

]

= 0 ∀g ∈ G
}

, (15)

which is the subalgebra of G-invariant observables. It is the largest subalgebra of A which

acts densely on the Hilbert subspace (13).

The projection of the Hamiltonian H of the system onto the subalgebra (15) is the

G-invariant operator

H0 = ΠAd◦µ(H) =
1

|G|
∑

g∈G

e −iΘµ
g H e iΘ

µ
g , (16)

which represents the most natural G-invariant approximation of the Hamiltonian of the

quantum system. In [6] it is shown how to use the group algebra ofG as ancillary space and

repeated measurements to systematically conduct projection and preparation procedures

which produce unitary dynamics over the code A0. Any evolution in the singlet sector

H0 can be obtained by a restriction to H0 of the G-symmetrization ΠAd◦µ of an evolution

over the full Hilbert space H [7]. The noise inducing component of the Hamiltonian H

may in this way be filtered out and the resulting dynamics over the subspace (13) remain

decoherence free. The system-environment interaction Hamiltonian may be averaged away

in the symmetrized dynamics, because it couples different symmetry sectors and therefore

cannot belong to the subalgebra A0 of invariant operators, and one can systematically

construct noiseless codes in which quantum information can be reliably stored.
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The generic situation is that the dynamics of a quantum system S coupled to the

environment E is governed by a Hamiltonian operator of the form

H = HS ⊗ 11E + 11S ⊗HE +HI (17)

acting on the Hilbert space H = HS⊗HE , where HI is the Hamiltonian for the interaction

between system and environment. Then the G-symmetrization procedure can be used

to effectively remove potentially dangerous terms in H , for instance ΠAd◦µ(HI) = 0.

This technique of course imposes some stringent symmetry constraints on the system-

environment couplings, and it selects a special class of correlated decoherent interactions.

A basic example is provided by a system of linear oscillators interacting with a decohering

environment through the Hamiltonians

HS =
∑

i,j

Kij a
i † aj ,

HE =
N
∑

α,β=1

Λαβ e
α † eβ ,

HI =
∑

i,α

(

wiα a
i ⊗ eα † + w∗

iα a
i † ⊗ eα

)

, (18)

where Kij = K∗
ji, Λαβ = Λ∗

βα, and wiα are coupling constants. The Hilbert space of this

system is H = spanC{
⊗

i,α |ni〉ai ⊗ |mα〉eα |ni, mα ∈ Z
+}, where |ni〉ai and |mα〉eα are the

number bases for the operators ai and eα, respectively. On H there is a representation of

the group G = (Z2)
N which is generated by the set of operators {11S⊗11E, e

iΘ1, . . . , e iΘN},
where Θα = π eα † eα. The interaction Hamiltonian HI is averaged away because it has

odd parity under this group action, e−iΘi ei e iΘi = −ei. Note that the projection onto

the invariant subspace (13) in this case retains only the ground state |0〉e1 ⊗· · ·⊗ |0〉eN of

HE and so H0 consists only of excitations of the system particles, i.e. the excited states

of the environment are also averaged away. Thus the method described above can be

effectively used to re-standardize and protect encoded quantum states from decoherence.

There is a complementary way to introduce these decoherence free subspaces using

the generalized Dirac operator. To understand this point, let us return to the two-level

system that we studied earlier. The Dirac operator (6) generates a Z2 group action on

the state space which permutes the qubit states |0〉 and |1〉. The commutant EndD/λ
(A) =

{A ∈ A | [D/ λ, A] = 0} of (6) in the C∗-algebra A = M2(C) is just the two-dimensional

abelian algebra generated by D/ λ itself which depends on λ ∈ C − {0}. For instance, if λ

is purely imaginary it is easily seen to be generated by the two matrices

C0 =
(

1 0
0 1

)

, C1 =
(

0 −i
i 0

)

. (19)

The commutant of the Dirac operator is therefore unitarily equivalent to the commutative

subalgebra C spanned by the pure states (3). Furthermore, from (7) we see that the com-

mutant of D/ λ in C is generated by the matrix C0. Therefore, the invariant subspace of the
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Z2 action coincides with the commutative subspaces of the quantum space generated by

A, and a further projection within this subspace selects a particular commutative subal-

gebra corresponding here to a single point. As we have mentioned earlier, these subspaces

are unitarily equivalent, with the unitary transformation implementing the equivalence

belonging to the full matrix algebra A. The Dirac operator can thereby be used to elim-

inate the usual uniform dissipative couplings of spin operators to the environment of the

form HI =
∑

αwα σα⊗ eα. These constructions readily generalize to an N qubit quantum

computer interacting with its environment by taking appropriate N -fold tensor products

of these operators, giving G = S2N , the symmetric group of qubit permutations. It then

applies to systems of equivalent uncoupled qubits, whereby HS = εD/ λ, and also to those

of the generic form HS =
∑

i,jKij ~σ
i ·~σ j which generate the conditional dynamics required

in quantum computation. In all of these discrete systems, the kernel kerD/ λ of the Dirac

operator yields a set of decoherence free subspaces which correspond to commutative

subspaces and are connected to one another unitarily through the full dissipative system-

environment noncommutative space.1 Within each of the various subspaces the system

Hamiltonian is the same, and they are all related to one another via Morita equivalence

through the coupling to the environment. Notice that these decoherence free subspaces

are generated by the pure states.

This simple example demonstrates that the group actions required for the symmetriza-

tion procedures can be generated by an appropriate choice of Dirac operator on the Hilbert

space H, and decoherence free subspaces are thereby generated as H0 = kerD/ . We will

now describe a rich example of this procedure for a continuous system which is a modi-

fication of the oscillator model (17,18). For the system Hamiltonian we take a modified

version of a coupled system of N harmonic oscillators,

HS =
1

2

N
∑

i,j=1

ηij
(

a(+)i a(+)j + a(−)i a(−)j
)

, (20)

where

a(±)i =
1√
2



pi ±
N
∑

j=1

Kij
± xj



 , Kij
± = ηij ± ξij . (21)

Here ηij is a real-valued and non-degenerate symmetric N ×N matrix, with ηij its matrix

inverse, and ξij is a real-valued antisymmetric matrix. The operators xi and pj are

the usual canonically conjugate position and momentum operators, [xi, p
j] = i δji . The

environment Hamiltonian is constructed from a collection of field operators as

HE =
N
∑

i,j=1

∞
∑

n=1

ηij
(

e(+)i †
n e(+)j

n + e(−)i †
n e(−)j

n

)

, (22)

1Of course, in these simple instances in which the Dirac operator D/
λ

is invertible, the subspaces are

all trivial, corresponding to the fact that the underlying space has only two points.
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where e(+)i
n and e(−)i

n form mutually commuting sets of operators which each generate a

generalized Heisenberg-Weyl algebra

[

e(±)i
n , e(±)j †

m

]

= n ηij δnm . (23)

The total Hamiltonian (17) acts on the Hilbert space H = S ⊗Ha⊗F+ ⊗F−, where Ha

is spanned by the usual number basis of the oscillators a(±)i, and F± are bosonic Fock

modules constructed from the field operators e(±)i
n , respectively. There are two natural

Dirac operators acting on this Hilbert space which are given by

D/ ± =
N
∑

i=1

Γ±
i

[

a(±)i +
∞
∑

n=1

(

e(±)i
n + e(±)i †

n

)

]

, (24)

where Γ+
i and Γ−

i are mutually anticommuting sets of matrices which generate the Dirac

algebras {Γ±
i ,Γ

±
j } = ±2ηij , and which act on the 2N -dimensional complex vector space

S. We will use the self-adjoint combinations D/ = D/ + + D/ − and D/ = D/ + − D/ − of the

operators (24) in what follows.

The quantum system just introduced is that which is associated with a lattice vertex

operator algebra [10]–[13]. The Dirac operators (24) together generate a level 2 rep-

resentation of the infinite-dimensional affine algebra based on the abelian Lie algebra

u(1)N+ ⊕u(1)N− . The operators (20), (22) and (24) thereby describe an infinite dimensional

(field theoretic) model for the collective decoherence of a quantum register made of N

one-dimensional cells. It is straightforward to generalize the symmetrization construction

described above for a finite group G to the case of a continuous symmetry group which is

generated by a Lie algebra [7]. Again one finds a coding decoherence free subspace within

which any quantum computation can be completely performed. From the Dirac operators

D/ and D/ we have two sets of decoherence free subspaces H0 = kerD/ and H0 = kerD/

onto which to project. However, as shown in [11], there are several unitary transforma-

tions U ∈ A which are inner automorphisms of the operator algebra A = M(H), i.e.

UAU−1 = A, and which define a unitary equivalence between the two Dirac operators,

D/ U = U D/ . (25)

This leads to a whole web of dualities which correspond to a set of Morita equivalences

of the algebra A [13]. We will not present a detailed discussion of the various transfor-

mations, but refer to [11] for the mathematical details. Below we describe some features

of these noiseless subspaces.

The first noteworthy property is that the corresponding orthogonal projectors ΠD/ and

ΠD/ project the two Fock spaces F± onto their vacuum states |0〉±. Again the excitations

of the environment are averaged away. This is a general feature of the symmetrization

process which acts as a sort of generalized Fourier transformation that eliminates all

non-zero (i.e. non-translation invariant) components. Let us first consider the remaining
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subspace H0 of S ⊗Ha. It further decomposes into 2N subspaces which are characterized

as follows. For a given state, the i-th excitation corresponding to the i-th oscillators

a(±)i can have either zero momentum quantum number pi = 0 and action of the Dirac

matrices as
∑

jK
ji
+ Γ+

j =
∑

j K
ji
− Γ−

j , or else xi = 0 and Γ+
i = −Γ−

i . We denote by H(−)
0

the subspace in which the latter condition holds for all i = 1, . . . , N . Similarly, for a

given state of H0, the i-th excitation can have either xi = 0 and Γ+
i = Γ−

i , or else pi = 0

and
∑

jK
ji
+ Γ+

j = −∑jK
ji
− Γ−

j . Let H(−)
0 be the subspace in which the latter property

holds for all i = 1, . . . , N . Within each of the spaces H0 and H0, there are natural

isomorphisms between their 2N subspaces. But there also exist unitary equivalences

between each pair of subspaces of H0 and H0 [11]. For example, it can be shown that

the map between the subspaces H(−)
0 and H(−)

0 acts on the operator algebra A as a(±)i 7→
±∑j,k η

ik(K−1
± )kj a

(±)j and e(±)i
n 7→ ±∑j,k ηjkK

ij
± e

(±)k
n . This is tantamount to an inversion

of the matrix of coupling constants K± 7→ K−1
± and an interchange of the momentum

and position variables pi ↔ xi. In addition, the corresponding subalgebras of A0 =

EndD/ (A) and A0 = EndD/ (A) are commutative and correspond to N -dimensional tori

when pi and xi have the appropriate discrete spectra (This corresponds to a quantum

rotor or a particle in a finite periodic box). The unitary equivalences then describe

the well-known maps between T -dual tori [10]–[13]. They may be constructed as inner

automorphisms of the operator algebra A using the generators of the affine u(1)N+ ⊕u(1)N−
Lie algebraic symmetry [11]. Note that the projection of the Dirac operator onto H0 is

given by ΠAd◦D/ (D/ ) =
∑

j i γj p
j, where γi = Γ+

i = −Γ−
i , which upon using the canonical

commutation relations is the usual Dirac operator acting on square integrable spinors

ψ(x) of the N -torus. The distance function (2) then computes the geodesic distance

in the metric ηij . Under the duality map, the Dirac operator ΠAd◦D/ (D/ ), obtained by

interchanging the roles of position and momentum, then yields the N -torus with a dual

metric

η̃ij =
N
∑

k,l=1

Kik
+ ηklK

lj
− . (26)

To see in simpler terms what this duality represents, let us momentarily set ξij = 0

in (21), so that Kij
± = ηij . Then the system Hamiltonian becomes that of N ordinary

coupled harmonic oscillators,

Hosc =
1

2

N
∑

i,j=1

(

ηij p
i pj + ηij xi xj

)

. (27)

The duality described above corresponds to the interchange of the matrix of couplings in

(27) with its inverse, ηij ↔ ηij, along with an interchange of position and momentum,

xi ↔ pj . This duality leaves the Hamiltonian (27) invariant and is just the well-known

strong-weak coupling duality of the harmonic oscillator. It simply reflects the fact that

the quantum problem in this case may be equivalently formulated in either the position or

momentum space representations. The novelty of the duality within the present context
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is that it is realized as a unitary evolution between two (equivalent) decoherence free

sectors of the system-environment coupling, i.e. as a unitary operator acting on the full

Hilbert H = HS ⊗ HE . By reinstating the antisymmetric matrix ξij, the complete web

of dualities coming from the unitary transformations between all of the subspaces of H0

and H0 generate a larger duality group than the Z2 symmetry group we have thus far

described. In addition, there are shifts ξij 7→ ξij+cij, which can be absorbed into a “gauge”

transformation of the momentum as pi 7→ pi −∑

j c
ij xj, and also rotations by elements

of SL(N), that all preserve the quantum spectrum. Together, when the spectra of the

position and momentum operators are discrete (as in the case of a harmonic oscillator

on an N -torus), these transformations can be shown to generate the infinite discrete

group O(N,N ; Z) which is known to be the group generating Morita equivalences in this

case [13]. The full duality group is actually the semi-direct product O(N,N ; Z)>�Z2,

where the group Z2 acts by interchanging the ± labels in (20) and (22). This example

exemplifies the fact that it is possible to obtain many noiseless computing codes for

the same quantum mechanical Hamiltonian but in quite different settings. The main

advantage of the construction is that it may be simpler to perform a quantum computation

in one system than in another.

Thus far we have said nothing about the interaction Hamiltonian HI in this particular

example. The coupling between system and environment in the present case can in prin-

ciple be any one which is odd under the affine u(1)N+ ⊕u(1)N− symmetry. However, there is

already an implicit coupling present in the problem which illuminates the physical signifi-

cance of the environment Hamiltonian (22). Although the subalgebra A0 is commutative,

there is a natural way of deforming its product [13]. Given two elements V0 = ΠAd◦D/ (V )

and W0 = ΠAd◦D/ (W ) of A0, with V,W ∈ A, we define a noncommutative product on A0

by V ∗W = ΠAd◦D/ (VW ). The natural basis of A induces a basis U i of functions of A0,

and it can be shown that they obey the algebra [13]

U i ∗ U j = e iΩ
ij

U j ∗ U i , (28)

where Ωij = sgn(j−i) ηij+ξij, i 6= j, is the natural antisymmetrization of the matrix Kij
+ .

This noncommutative algebra comes from a subtle interplay between the oscillators of the

system Hamiltonian (20) and those of the environment Hamiltonian (22). It represents

an interaction which can be attributed to the quantum mechanical Hamiltonian

HL =
1

2

N
∑

i=1



pi − 1

2

N
∑

j=1

Ωij xj





2

, (29)

which for N = 2 is just the well-known Landau Hamiltonian for a single charged particle

in a uniform magnetic field Ω in two dimensions. The algebra (28) may be represented

by ordinary operator products of the magnetic translation operators

U j = exp i

(

pj − 1

2

N
∑

k=1

Ωjk xk

)

, (30)
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whose arguments are the gauge invariant, mechanical momenta of the system. Generic

translations in a magnetic field do not commute because the wavefunction of a charged

particle which is transported around a closed path acquires an Aharonov-Bohm phase

e iΩ, where Ω is the magnetic flux enclosed by the path.

When the flux Ω is a rational fraction of the elementary flux quantum Ω0 = 2π,

the operators U j are closely related to the logical operators which are used in the con-

struction of shift-resistant quantum codes that exploit the noncommutative geometry to

protect against errors which shift the values of the canonical position and momentum

variables [15]. The generated noncommutative algebra represents a sort of threshold in-

teraction between the system and environment. It arises because the operator product

in the full algebra A and the projections onto the decoherence free subspaces do not

commute with each other. The corresponding interaction Hamiltonian (29) contains the

characteristic non-translation invariant terms that are removed by the symmetrization

procedure (Note that here the affine symmetry generated by the Dirac operators pro-

duces reparametrizations of the coordinates xi). The examples presented in this paper

thereby illustrate the rich geometrical structure that can emerge by introducing a gen-

eralized Dirac operator into the operator algebraic approach to quantum measurement

theory. The main point is that the interaction between an open quantum system and its

environment may be given the natural structure of a geometric space. By exploiting the

wealth of symmetries that noncommutative spaces possess, it is possible to systematically

construct families of codes in which quantum information can be stored. Although the

applications that we have presented here have been directed towards relatively simple

quantum systems, more complicated quantum mechanical problems possess such duality

symmetries and are amenable to the analysis presented in this letter. Noncommutative

geometry is inspired in large part by ideas from quantum theory [8, 9]. The results of this

paper certainly indicate an intimate relationship between noncommutative geometry and

quantum information theory.
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