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We study the de Broglie–Bohm interpretation of bosonic relativistic quantum mechanics and
argue that the negative densities and superluminal velocities that appear in this interpretation
do not lead to inconsistencies. After that, we study particle trajectories in bosonic quantum field
theory. A new continuously changing hidden variable - the effectivity of a particle (a number
between 0 and 1) - is postulated. This variable leads to a causal description of processes of
particle creation and destruction. When the field enters one of nonoverlapping wave-functional
packets with a definite number of particles, then the effectivity of the particles corresponding to
this packet becomes equal to 1, while that of all other particles becomes equal to 0.
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1 INTRODUCTION

The de Broglie–Bohm (dBB) interpretation of nonrelativistic quantum mechanics (QM) and
relativistic quantum field theory (QFT) [1, 2, 3, 4, 5] offers a clear answer (see, e.g., Refs. [6, 7,
8]) to notoriously difficult ontological questions that arise from the conventional interpretation
of QM and QFT. Yet, the current form of the dBB theory of motion is still not completely
satisfactory. Relativistic wave equations of bosonic particles lead to superluminal velocities and
motions backwards in time [9, 10, 11]. Similarly, the particle density of relativistic bosonic
fields may be negative [4, 5]. There exist formal ways to overcome these problems by linearizing
the Klein-Gordon equation [12] or by using the energy-momentum tensor to define timelike
particle trajectories [13], but the resulting particle densities are not in correspondence with the
conventional notion of particle in QFT [5]. This led to a conclusion that bosons do not have
particle trajectories, i.e., that bosons are causally evolving fields [4, 5]. Thus, in contrast with
the conventional QFT, according to the current version of the dBB theory of motion there is
a great asymmetry between bosons and fermions because relativistic fermions do have particle
trajectories and are not described by quantum fields [3, 11, 5].

One of the arguments in favor of the nonexistence of particle trajectories for bosons is a
difficulty with a causal description of trajectories for particles that are created or destroyed or
for states with an indefinite number of particles [5]. However, the same problem remains for
fermion trajectories as well, so the current version of the dBB theory of fermions cannot describe
observed effects of fermion creation and destruction. There is also an alternative version of the
dBB theory of fermions that describes creation and destruction of fermions [14], but this version
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does not incorporate particle trajectories. It has been argued that processes of particle creation
and destruction cannot be described in a deterministic way [15, 16]. There is an attempt to
describe that in a deterministic way by introducing a direct particle interaction [17], but it does
not seem that it leads to the same statistical predictions as the conventional QFT. A recent
version of the dBB theory of fermions [18], based on earlier work [19, 20], describes creation and
destruction of fermions and incorporates particle trajectories.

In this paper we propose a solution of the problems with the dBB interpretation of relativistic
bosons discussed above. We argue that superluminal velocities, motions backwards in time and
negative densities do not lead to any inconsistencies. Moreover, it seems that these properties
are desirable for a causal description of some QFT effects. After that, we propose a causal
interpretation of multiparticle wave functions that result from QFT. In this interpretation, all
particles that may exist in a state with an indefinite number of particles do actually exist for all
time. Particles are never really created or destructed. However, to each particle, we attribute a
new deterministic continuously evolving nonlocal hidden variable - the effectivity e of a particle.
A particle with e = 0 has the effects as if it did not exist, while that with e = 1 has the effects as
a particle in the usual sense. We explain how in the process of measurement all effectivities take
values equal to either 0 or 1, which has the same effect as if the wave functional had “collapsed”
to a state with a definite number of particles.

The paper is organized as follows. In Sec. 2 we study the Bohmian particle trajectories in
“one-particle” relativistic QM. In Sec. 3 we study many-particle wave functions in interacting
QFT and give a causal interpretation of them in terms of Bohmian particle trajectories. A
critical discussion of our results is given in Sec. 4. In the Appendix, we present a short review
of the general theory of quantum measurements in the dBB interpretation.

2 PARTICLE TRAJECTORIES IN RELATIVISTIC QM

2.1 Basic Equations

Consider a real scalar field φ(x) satisfying the Klein-Gordon equation (in a Minkowski metric
ηµν =diag(1,−1,−1,−1))

(∂2
0 −∇2 +m2)φ = 0. (1)

Let ψ=φ+ (ψ∗ =φ−) be the positive (negative) frequency part of the field φ = φ+ + φ−. The
particle current is [21, 22, 23]

jµ = iψ∗
↔
∂µψ, (2)

where A
↔
∂µB ≡ A∂µB −B∂µA. The quantity

N =

∫

d3x j0 (3)

represents the positive-definite number of particles (not the charge!). This is most easily
seen from the plane-wave expansion φ+(x) =

∫

d3k a(k)e−ikx/
√

(2π)32k0, because then N =
∫

d3k a†(k)a(k). (For more details, see Refs. [21, 22, 23], where it is shown that the particle
current and the decomposition φ = φ+ + φ− makes sense even when a background gravita-
tional field or some other potential is present.) The particle density j0 can also be written as
j0 = i(φ−π+ − φ+π−) (where π = π+ +π− is the canonical momentum), which is the form used
in Refs. [4, 5].

Alternatively, φ may be interpreted not as a field containing an arbitrary number of particles,
but rather as a one-particle wave function. Historically, this later interpretation was attempted
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before the former one. Contrary to a field, a wave function is not an observable. In this later
interpretation, which we employ in the rest of this section, it is convenient to normalize the wave
function φ such that N = 1.

The current (2) is conserved:
∂µj

µ = 0, (4)

which implies that (3) is also conserved: dN/dt = 0. In the causal interpretation, we postulate
that the particle has the trajectory determined by

dxµ

dτ
=

jµ

2mψ∗ψ
. (5)

The affine parameter τ may be eliminated by writing the equation for the trajectory as

dx

dt
=

j(t,x)

j0(t,x)
, (6)

where t = x0, x = (x1, x2, x3), j = (j1, j2, j3).
By writing ψ = ReiS , where R and S are real functions, we can also write all the equations

above in the Hamilton–Jacobi form. Eq. (5) can be written as

dxµ

dτ
= − 1

m
∂µS. (7)

The Klein-Gordon equation (1) is equivalent to a set of two equations

∂µ(R2∂µS) = 0, (8)

− (∂µS)(∂µS)

2m
+
m

2
+Q = 0, (9)

where (8) is the conservation equation (4), (9) is the Hamilton–Jacobi equation, and

Q =
1

2m

∂µ∂µR

R
(10)

is the quantum potential. From (7), (9), and the identity

d

dτ
=
dxµ

dτ
∂µ, (11)

we find the equation of motion

m
d2xµ

dτ2
= ∂µQ. (12)

It is easy to show that all the equations above have the correct nonrelativistic limit. In
particular, by writing

ψ =
e−imt

√
2m

χ (13)

and using |∂tχ| ≪ m|χ|, |∂2
t χ| ≪ m|∂tχ|, from (2) and (1) we find the approximate equations

j0 = χ∗χ, (14)

− ∇2

2m
χ = i∂tχ, (15)

which are the usual nonrelativistic equations for the conserved probability density and for the
evolution of the wave function χ, respectively.

When the nonrelativistic limit cannot be applied, then the quantity j0 is not positive definite,
so in that case it cannot be interpreted as a probability density. For such a general situation,
we give the interpretation of j0 in the following subsection.
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2.2 Physical Interpretation
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Figure 1: A part of a boson-particle trajectory. The particle moves backwards in time from
A to C. The dashed line represents a spacelike hypersurface Σ intersected by the trajectory
at 3 points. The particle density j0 is positive at the points marked by 1 and negative at the
point marked by −1. The number of particles at Σ is equal to 1 because 1 + (−1) + 1 = 1. In
the reinterpretation of negative densities, all particles move forwards in time and the physical
number of particles at Σ is equal to 3. A pair of particles is created at C and annihilated at A.
At these two points, j0 = 0.

A typical trajectory that may arise as a solution of (6) is sketched in Fig. 1. The velocity of a
particle may be superluminal. Moreover, the particle may move backwards in time, which occurs
at the points where j0 < 0. Of course, superluminal velocities and negative densities are closely
related, because any vector uµ with u0 > 0 may be transformed by a Lorentz transformation
to u′µ with u′0 < 0, if and only if uµ is spacelike. The 3-velocity is infinite at the points where
j0 = 0 and j 6= 0.

The motion backwards in time does not lead to causal paradoxes when one realizes that it
is physically indistinguishable from a motion forwards in time but with negative energy [24].
Therefore, it is natural to reinterpret the negative densities by introducing the physical number
of particles

Nphys =

∫

d3x |j0|, (16)

where the physical particle density |j0| is nonnegative. Contrary to (3), the physical number of
particles is not conserved. A pair of particles, one with positive and the other with negative
energy, may be created at one point and annihilated at another point. (Recall that this is not a
particle-antiparticle pair because we are studying a real field φ). Needless to say, this creation
and annihilation of highly off-shell particles resembles the behavior of “virtual” particles in the
conventional QFT.

Note that superluminal velocities do not contradict existing experiments because, according
to the general theory of quantum measurements [1, 2, 5] (see also the Appendix), the outcome
of an ideal measurement of the 4-momentum may only be an on-shell eigenvalue pµ attributed
to the eigenfunction ψp(x) = exp(−ipµx

µ) that solves (1). This is because the total final wave
function that describes the entanglement between the measured particle and the measuring
apparatus during an ideal quantum measurement can be written as

ψ(x, y) =

∫

d3p cpψp(x)χp(y), (17)

where y denotes the coordinates of the measuring apparatus. The wave functions χp(y) do not
overlap, in the sense that χp(y)χp′(y) = 0 for p 6= p′. Therefore, as explained in Refs. [1, 2, 5]
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and the Appendix, the wave functions ψp(x)χp(y) constitute a set of nonoverlaping “channels”,
so a particle in a “channel” behaves as if the other “channels” did not exist.

The creation and annihilation of free particles described above does not occur during an
ideal measurement of a particle momentum because the trajectories are straight lines when
ψ(x) = ψp(x). Similarly, when a position of a particle is measured with good accuracy, then
ψp(x) are replaced by wave functions well localized in space, so multiple particles created during
the measurement are confined inside a volume too small to allow the experimental distinction
between the particles at different positions. This explains why the creation and annihilation
of free particles is not seen in experiments. However, in principle, it would not be impossible
to see such creations and annihilations if we knew how to perform measurements radically
different from the ideal ones. Thus, our theory leads to predictions that differ from those of the
conventional approach and might be observable in future.

There are also no causal paradoxes because the trajectories of particles, including those that
are created or annihilated, are uniquely and self-consistently determined by specifying the fields
φ(x) and π(x) at an initial spacelike Cauchy hypersurface and one initial position of the particle
at that hypersurface. It may appear, as in Fig. 1, that the specification of one particle position
implies the simultaneous existence of other particles at different positions, but this nonlocal
feature does not contradict the causality in the sense above.

Finally, note that the existence of motions backwards in time, which may be reinterpreted
as motions with negative energy, may be regarded as a desirable property, because the black-
hole evaporation is often viewed as a process in which a pair of particles is produced at the
horizon, so that the particle with positive energy escapes from the horizon, while the particle
with negative energy is absorbed by the black hole [25]. However, in this paper, we do not
further explore the causal description of a specific process of particle creation such as the black-
hole evaporation. Instead, we give a general formalism that describes the particle creation in
the dBB interpretation of interacting QFT.

3 PARTICLE TRAJECTORIES IN RELATIVISTIC QFT

3.1 Wave Functionals and Many-Particle Wave Functions

In the Heisenberg picture, the hermitian field operator φ̂(x) satisfies the equation of motion

(∂2
0 −∇2 +m2)φ̂ = J(φ̂), (18)

where J(φ̂) is a nonlinear function that describes the interaction. In a more general case, J may
also be a function of other quantum fields or a function of background classical fields. In the
Schrödinger picture, the time evolution is determined by the Schrödinger equation

H[φ,−iδ/δφ]Ψ[φ, t] = i∂tΨ[φ, t], (19)

where Ψ[φ, t] is a functional with respect to φ(x) and a function with respect to t. A normalized
solution of (19) can be expanded as

Ψ[φ, t] =
∞
∑

n=0

Ψ̃n[φ, t], (20)

where Ψ̃n are unnormalized n-particle wave functionals. Since any (well-behaved) function φ(x)
can be Fourier expanded, the functionals Ψ̃n can be further expanded as [5, 26]

Ψ̃n[φ, t] =

∫

d3k1 · · · d3kn cn(~k(n), t)Ψ
n,~k(n) [φ], (21)
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where ~k(n) = {k1, . . . ,kn}. The functionals Ψn,~k(n)[φ] constitute a complete orthonormal basis

for the expansion of an arbitrary functional Ψ[φ]. (This basis generalizes the complete orthonor-
mal basis consisting of the Hermite functions hn(x) = (

√
π2nn!)−1/2e−x2/2Hn(x), where Hn(x)

are the Hermite polynomials. For more details, see Ref. [26]). They have a property
∫

DφΨ∗
0[φ]φ(x1) · · · φ(xn′)Ψ

n,~k(n) [φ] = 0 for n′ 6= n. (22)

For free fields, i.e., when J = 0 in (18), the coefficients cn(~k(n), t) have a simple oscillating
behavior of the form

cn(~k(n), t) = cn(~k(n))e−iωn(~k(n))t, (23)

where

ωn(~k(n)) = E0 +
n

∑

j=1

√

k2
j +m2 (24)

and E0 is the vacuum energy. In this case, the quantities |cn(~k(n), t)|2 do not depend on time,
which means that the number of particles (corresponding to the quantized version of (3)) is
conserved. In a general case with interactions, the Schrödinger equation (19) leads to a more
complicated time dependence of the coefficients cn(~k(n), t), so the number of particles is not
conserved.

For free fields, the (unnormalized) n-particle wave function is [27]

ψn(~x(n), t) = 〈0|φ̂(t,x1) · · · φ̂(t,xn)|Ψ〉, (25)

where ~x(n) = {x1, . . . ,xn}. (The multiplication of the right-hand side of (25) by (n!)−1/2 would
lead to a normalized wave function only if Ψ = Ψ̃n in (20).) The generalization of (25) to the
interacting case is not trivial because, in systems with an unstable vacuum, it is not obvious what
the analog of the state 〈0| in (25) is. To treat this problem correctly, we find the Schrödinger
picture more convenient. Using the Schrödinger picture, (25) becomes

ψn(~x(n), t) =

∫

DφΨ∗
0[φ]e−iϕ0(t)φ(x1) · · · φ(xn)Ψ[φ, t], (26)

where ϕ0(t) = −E0t. For the interacting case, we define the wave function to be given by (26),
but with a different phase ϕ0(t). This phase is defined by an expansion of the form of (20):

Û(t)Ψ0[φ] = r0(t)e
iϕ0(t)Ψ0[φ] +

∞
∑

n=1

. . . , (27)

where r0(t) ≥ 0 and Û(t) = U [φ,−iδ/δφ, t] is the unitary time-evolution operator. From (20),
(21), and (22) we see that, even in the interacting case, only the Ψ̃n-part of Ψ contributes to
(26), which justifies to call Ψ̃n the n-particle wave functional.

The wave function (25) can also be generalized to a nonequal-time wave function

ψn(~x(n)) = S{xj}〈0|φ̂(x1) · · · φ̂(xn)|Ψ〉. (28)

Here S{xj} denotes symmetrization over all xj, which is needed because the field operators do
not commute for nonequal times. For the interacting case, the nonequal-time wave function is
defined as a generalization of (26) with the replacements

φ(xj) → Û †(tj)φ(xj)Û(tj),

Ψ[φ, t] → Û †(t)Ψ[φ, t] = Ψ[φ],

e−iϕ0(t) → e−iϕ0(t1)Û(t1), (29)
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followed by symmetrization.
For free fields, the wave function (28) satisfies the equation

n
∑

j=1

[(∂µ∂µ)j +m2]ψn(~x(n)) = 0. (30)

Taking the nonrelativistic limit first and then putting t1 = · · · = tn = t in (30), we find the
multiparticle generalization of (15)

n
∑

j=1

−∇2
j

2m
χn(~x(n), t) = i∂tχn(~x(n), t). (31)

This is the standard nonrelativistic multiparticle Schrödinger equation, usually postulated with-
out reference to QFT.

3.2 Causal Interpretation

In the dBB interpretation, the field φ(x) has a causal evolution determined by [4, 5]

(∂2
0 −∇2 +m2)φ(x) = J(φ(x)) −

(

δQ[φ, t]

δφ(x)

)

φ(x)=φ(x)

, (32)

where

Q = − 1

2|Ψ|

∫

d3x
δ2|Ψ|
δφ2(x)

(33)

is the quantum potential. However, the n particles attributed to the wave function ψn also have
causal trajectories. They are determined by a generalization of (6) as

dxn,j

dt
=





ψ∗
n(~x(n))

↔
∇j ψn(~x(n))

ψ∗
n(~x(n))

↔
∂tj ψn(~x(n))





t1=···=tn=t

, (34)

for j = 1, . . . , n. The norms of the wave functions ψn change with time because the coefficients
|cn| change with time. However, in (34), the norms are irrelevant. Even when cn → 0 (for some,
but not all n) during the evolution (for example, this may occur for t → ±∞ in a scattering
process), the ratio on the right-hand side of (34) is well defined. Of course, there may exist
isolated points at which the ratio diverges, but we already know how to physically interpret
these points as points at which the velocity is infinite. This means that these n-particles have
well-defined trajectories even when the probability (in the conventional interpretation of QFT)
of their experimental detection is equal to zero. In the dBB interpretation of QFT, we can
introduce a new causally evolving parameter en[φ, t] defined as

en[φ, t] =
|Ψ̃n[φ, t]|2

∞
∑

n′=0

|Ψ̃n′ [φ, t]|2
. (35)

The evolution of this parameter is determined by the evolution of φ given by (32) and by the
solution (20) of (19), so one does not need a separate evolution equation for en[φ, t]. This
parameter might be interpreted as a probability that there are n particles in the system at
the time t if the field is equal (but not measured!) to φ(x) at that time. However, in the
dBB interpretation, we do not want an intrinsically stochastic interpretation. Therefore, we
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postulate that en is an actual property of the particles guided by the wave function ψn. We
call this property the effectivity of these n particles. From the point of view of the conventional
interpretation of QFT, this is a nonlocal hidden variable attributed to the particles. We introduce
this parameter in order to provide a deterministic description of the creation and destruction
of particles. We postulate that the effective mass of a particle guided by ψn is meff = enm,
and similarly for the energy, momentum, charge, and other measurable quantities that are
proportional to the number of particles. This is achieved by postulating that the mass density
ρmass is given by

ρmass(x, t) = m
∞
∑

n=1

en

n
∑

j=1

δ3(x − xn,j(t)), (36)

and similarly for the other quantities. Therefore, if en = 0, then these n particles are ineffective,
i.e., their effect is as if they did not exist. Similarly, if en = 1, then their effect is as they exist
in the usual sense. However, since the trajectories are defined even for the particles for which
en = 0, the initial condition for particle positions contains one initial condition for the particle
guided by ψ1, two initial conditions for the particles guided by ψ2, and so on, which leads to an
infinite number of initial positions. In this way, QFT is really a theory of an infinite number of
particles, although some of them may be ineffective. (This resembles the conventional picture of
QFT as a theory of an infinite number of particles, although some of them may be “virtual”.)

The formalism may also be generalized to a case with many different particle species described
by various bosonic fields. The wave functional Ψ̃n generalizes to Ψ̃{n}, where {n} = {n1, . . . , nNs

}
and Ns is the number of different particle species. Equation (35) generalizes to

e{n}[{φ}, t] =
|Ψ̃{n}[{φ}, t]|2

∑

{n′}

|Ψ̃{n′}[{φ}, t]|2
, (37)

where {φ} = {φ1, . . . , φNs
}.

In experiments in which the number of particles is measured, one finds that a particle either
exists or does not exist. In other words, the measured effectivity is either 0 or 1. At first
sight, this is in contradiction with our theory that allows effectivities to take any value from the
compact interval [0, 1]. However, there is no contradiction! If different Ψ̃n’s in the expansion
(20) do not overlap in the φ space, then these Ψ̃n’s constitute a set of nonoverlapping “channels”
for the causally evolving field φ. The field necessarily enters one and only one of the “channels”.
From (35) we see that en = 1 for the “channel” Ψ̃n that is not empty, while en′ = 0 for all
other empty “channels” Ψ̃n′ . (This is because, owing to the assumption that different Ψ̃n’s do
not overlap, Ψ̃n′ = 0 at the configuration φ which is from the support of Ψ̃n.) The effect is the
same as if the wave functional Ψ “collapsed” into one of the states Ψ̃n with a definite number
of particles.

In a more general situation, different Ψ̃n’s of the measured particles may overlap. However,
the general theory of ideal quantum measurements [1, 2, 5] provides that the total wave functional
can be written again as a sum of nonoverlapping wave functionals in the {φ} space, where one
of the fields represents the measured field, while the others represent the fields of the measuring
apparatus. In this general case, one and only one of Ψ̃{n}’s in (37) becomes nonempty, so the
corresponding e{n} becomes equal to 1, while all other e{n′}’s become equal to 0.

The essential point is that, from the point of view of an observer who does not know the
actual field configurations, the probability for such an effective “collaps” of the wave functional
is exactly equal to the usual quantum mechanical probability for such a “collaps”. This is why
our theory has the same statistical predictions as the usual theory. In the case in which all the
effectivities are smaller than 1, which corresponds to a situation in which the wave functional
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has not “collapsed” into a state with a definite number of particles, our theory is neither in
agreement nor in contradiction with the standard theory. This is why the effectivity is a hidden
variable. This is completely analogous to the Bohmian particle positions, which agree with the
standard quantum mechanical predictions only when the wave function effectively “collapses”
into a state with a definite particle position, while in other cases it is neither in agreement nor
in contradiction with standard QM.

Thus our approach explains why detectors detect integer number of bosonic particles. There
are also other attempts to explain this in the framework of causal interpretation of QFT [3, 28],
but these attempts do not incorporate particle trajectories. Here we repeat that there are also
stochastic approaches to explain this for all fields [19, 20, 16] and a deterministic approach for
fermions [18].

Finally, it is fair to note that our approach explains why detectors detect integer number
of particles only if an ideal measurement, based on nonoverlaping wave functionals, is assumed.
One might consider this as a serious problem and conclude that a stochastic approach [19, 20, 16]
better explains integer numbers of bosonic particles. However, we note that this problem is anal-
ogous to a problem with the Bohmian interpretation of a nonrelativistic particle in a harmonic
potential, which will be found to have energy equal to a Hamiltonian eigenvalue ω(n + 1/2)
(with n being an integer) only if the energy is measured through an ideal measurement (see
the Appendix for a general argument). If a theory of quantum measurements is not taken into
account, then Bohmian mechanics leads to statistical predictions that agree with the conven-
tional quantum-mechanical predictions only when the statistical predictions refer to the preferred
observables. The preferred Bohmian observables are particle positions in the case of nonrela-
tivistic QM and field configurations in the case of bosonic QFT. Particle momenta and energy
in nonrelativistic QM and number of particles in bosonic QFT are not preferred observables
in Bohmian mechanics, so the explanation of the conventional quantum-mechanical rules for
statistical distributions of these observables requires a theory of quantum measurements.

4 DISCUSSION

The results of this paper offer a solution to the problems of the current version of the dBB
interpretation of relativistic bosonic QM and QFT. We believe that they provide a deterministic
interpretation of all physical effects of the conventional bosonic QFT, including a deterministic
interpretation of the processes of creation and destruction of particles. We have explicitly pre-
sented equations for real spin-0 fields, but the generalization to complex fields and other integer
spins is straightforward. In particular, particles and antiparticles resulting from a complex field

φ possess the separate particle currents j
(P )
µ and j

(A)
µ , respectively, such that the usual charge

current is jµ = iφ∗
↔
∂µ φ = j

(P )
µ − j

(A)
µ [21, 22, 23]. This means that particles and antiparti-

cles should be treated as different particle species, even when electromagnetic interactions are
present [22]. Refs. [22, 23] also contain the generalization of (2) to spin-1/2 fields, so it is also
straightforward to generalize the results of Sec. 2 to fermionic particles and antiparticles. How-
ever, it is not trivial to generalize the results of Sec. 3 to anticommuting fermionic fields, so this
will be discussed in a separate paper.

It is also fair to note that the theory proposed in this paper may not be the only consis-
tent solution to the problems of the current version of the dBB interpretation of relativistic
bosonic QM and QFT. Moreover, it is possible that some parts of the theory will turn out to be
inconsistent, which will require further modifications of the theory.

For example, we propose that both particles and fields objectively exist and that the macro-
scopic objects are made of both, but the question of consistency of such a picture requires further
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research. It is still possible that only particles or only fields should be fundamental objects in a
dBB-type theory.

Also, although (34) seems to us to be the most natural generalization of (6), other gener-
alizations are also possible. In general, particles moving according to (34) do not need to be
distributed according to j0 even if they were distributed so initially. However, this is not in
contradiction with the conventional QFT simply because the conventional relativistic QFT, in
general, does not make clear probability predictions for distributions of particle positions. There-
fore, our theory is able to give testable predictions on phenomena on which the conventional
theory is not able to do that.

The remark above on nonexistence of predictions for distributions of particle positions in
QFT requires additional explanations. In Refs. [19, 20, 18], the operator of fermion-number
density ψ†ψ is defined, which, in turn, leads to predictions for distributions of particle positions
in fermionic QFT. These predictions do not need to agree with the predictions that result from
our theory, which might be considered as a problem for our theory. However, we do not consider
this as a serious problem because, contrary to the claim in Refs. [19, 20], we do not consider
the interpretation of the operator ψ†ψ above as a part of the conventional interpretation of
fermionic QFT. Instead, by the conventional interpretation (see, e.g., Ref. [29]) we understand
the interpretation based on taking the normal ordering of the product ψ†ψ. This, owing to the
anticommutative nature of fermionic fields, leads to an operator with both positive and negative
eigenvalues. Such normal-ordered operator is interpreted as the operator of charge density,
which, in turn, leads to predictions for distributions of charge, not of particles. For example,
if the probability of finding charge at some point is equal to zero, it tells us nothing about the
probability of finding particle-antiparticle pairs at that point. Similarly, for complex bosonic

fields, the operator iφ†
↔
∂0φ defines the charge density, not the particle density. For more details

on the difference and similarities between the charge density and the particle density in QFT,
see Refs. [21, 22, 23].

The conventional QFT has definite predictions on angular distributions of particles produced
in a scattering process, assuming that the particles are found in states with definite momenta.
This assumption corresponds to wave functions of the form of (17). In such a case, our theory
predicts that particles move according to classical trajectories (straight lines) determined by their
momenta, so the predictions on angular distributions are identical to those of the conventional
QFT. Similarly, in the nonrelativistic limit without quantum field interactions, our theory of
particle trajectories reduces to the usual dBB interpretation of QM, for which it is already known
that it is in agreement with the predictions of the conventional nonrelativistic QM. Therefore,
as far as we can see, all definite predictions of the conventional theory are also the predictions
of our theory, provided that measurements are based on ideal quantum measurements (see the
Appendix).

Note also that different definitions of the effectivity, replacing the definition (35), are con-
ceivable. However, as already mentioned, the definition (35) corresponds to a theory in which
the probability of the particle existence in a stochastic interpretation is equal to the effectivity
of particles in a deterministic interpretation. This leads to an appealing ontological picture
in which the probability of existence is reinterpreted as a kind of “degree of existence” (called
effectivity) which is not a probabilistic quantity.

Finally, note that if all physical meaning of the quantity en is given by Eq. (36), then this
equation explains precisely enough the physical meaning of this quantity, so in this case it is not
really necessary to use a funny name for it, such as “effectivity”. However, we view Eq. (36)
only as the simplest example of a possible precise meaning of en. Different realizations of the
general idea that (in some way) the effective mass is equal to the product enm are conceivable.
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Therefore, to keep in mind the possibility of different realizations of the general abstract idea of
a notion of effectivity, we retain the name “effectivity” for the quantity en.

The theory presented in this paper is certainly opened for further modifications, refinements,
and reinterpretations. We hope that new ideas introduced in this paper, such as the abstract
(and perhaps still somewhat vague) notion of effectivity, will motivate further research.
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S. Goldstein. The author is also grateful to anonymous referees for their constructive critical
objections that stimulated a more clear presentation. This work was supported by the Ministry
of Science and Technology of the Republic of Croatia under Contract No. 0098002.

APPENDIX:

THE GENERAL THEORY OF QUANTUM MEASUREMENTS

In our experience, many physicists familiar with the dBB interpretation of QM are not familiar
with the corresponding general theory of quantum measurements, despite the fact that this
theory is explained in often cited works on the dBB interpretation, such as Refs. [1, 2, 5]. More
abstract presentations of this theory can also be found in Refs. [30, 31]. Since this theory
of quantum measurements is also important for understanding of the present paper, in this
Appendix we present a short review of this theory. For simplicity, we present this theory for the
case of nonrelativistic QM with only one measured degree of freedom, but the same ideas can
be easily adjusted to other quantum theories as well. Although this Appendix is intended to
be self-contained, we note that an interested reader can find more details in the references cited
above.

Let x denote the coordinate of particle position in the configuration space. Let ψ(x, t) be
the corresponding wave function. The dBB theory of particle motion is based on the postulate
that the velocity v of the particle is given by

v =
1

m
∂xS, (38)

where S(x, t) is the phase of the wave function. This postulate provides that the statistical dis-
tribution of particle positions is given by |ψ(x, t)|2 for any time t, provided that this distribution
is given by |ψ(x, t0)|2 for some initial time t0. However, this fact by itself is not sufficient to
provide the agreement of the dBB interpretation with the standard interpretation of QM. A
simple way to see this is to consider the statistical distribution of momenta, which, according
to the dBB interpretation, is

ρ(p, t) =

∫

dx |ψ(x, t)|2δ(p − ∂xS(x, t)). (39)

In general, this distribution is not equal to the quantum mechanical distribution |ψ̃(p, t)|2 [where
ψ̃(p, t) is the Fourier transform of ψ(x, t)]. In order to see how the dBB interpretation recovers
all the statistical results of standard QM, it is necessary to understand the general theory of
quantum measurements.

Any measurement eventually reduces to an observation of some macroscopic quantity of the
measuring apparatus, such as the position of a needle. In fact, this macroscopic observation can
allways be eventually reduced to an observation of the position (in the configuration space) of
something. Let us idealize and simplify the analysis by introducing only one configuration-space

11



variable y corresponding to the measuring apparatus. (Introducing a larger number of such
variables does not change the conclusions.) Assume that we want to construct a measuring
apparatus that measures an observable represented by a hermitian operator Â that acts on the
x space. The wave function ψ(x, t) can be expanded as

ψ(x, t) =
∑

a

ca(t)ψa(x), (40)

where ψa(x) are complete normalized eigenfunctions of the operator Â:

Âψa(x) = aψa(x). (41)

For simplicity, we assume that the spectrum of the eigenvalues a is not degenerate. According
to standard QM, the probability of finding the state to have the value a of the observable Â
is equal to |ca(t)|2. On the other hand, Eq. (39) suggests that this may not be the case in the
dBB interpretation, unless Â is equal to x. To see how this problem resolves, it is essential
to realize that, when the system consisting of the variables x and y can be considered as a
configuration suitable for measurement of the x subsystem, the total wave function is not of
the form ψ(x, t)χ(y, t). Instead, the interaction between the x subsystem and the y subsystem
should be such that the total wave function takes the form

Ψ(x, y, t) =
∑

a

ca(t)ψa(x)χa(y), (42)

where the normalized wave functions χa(y) with different labels a do not overlap in the y space.
Therefore, if the position y is found to have the value in the support of a wave function χa(y),
then this value is not in the support of any other wave function χa′(y). In other words, if the
position y is found to have the value in the support of χa(y), then, according to the usual rules of
QM, we know that the total wave function is, effectively, equal to ψa(x)χa(y). The probability
for this to happen is, according to (42), equal to |ca(t)|2, just as it should be without taking into
account any theory of quantum measurements.

The discussion of the preceding paragraph is valid without taking into account the dBB
interpretation of QM. However, without the dBB interpretation, it is not clear why and how the
variable y takes a definite value. On the other hand, if the variable y is also described by the dBB
interpretation, then it becomes clear why and how it takes a definite value. From the Bohmian
mechanics of composed systems and the fact that the wave functions χa(y) do not overlap, it is
easy to show that if the particle describing the measuring apparatus has the position y in the
support of χa(y), then the measured particle with the position x moves in the same way as it
was described by the wave function ψa(x)χa(y). In such a case, the value of the observable Â is
a constant of motion equal to a. In this way, the wave function Ψ(x, y, t) effectively “collapses”
into a wave function ψa(x)χa(y), by y taking a definite value from the support of χa(y). In the
same sense, the wave function ψ(x, t) effectively “collapses” into a wave function ψa(x). It only
remains to see that the probability for this to happen is equal to |ca(t)|2. We know that, in the
dBB interpretation, the probability density in the configuration space is

|Ψ(x, y, t)|2 =
∑

a

|ca(t)|2|ψa(x)|2|χa(y)|2, (43)

where the fact that different χa(y) do not overlap has been used, which has eliminated the
nondiagonal terms proportional to χaχa′ = 0 for a 6= a′. By averaging over x, we find the
probability distribution in the y space to be

ρ(y, t) =
∑

a

|ca(t)|2|χa(y)|2 = |χ(y, t)|2, (44)
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where
χ(y, t) ≡

∑

a

ca(t)χa(y). (45)

This shows that the dBB interpretation predicts that the probability for y to take a value from
the support of χa(y) is equal to |ca(t)|2.
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