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Abstract

We give efficient quantum algorithms for the problems of Hidden Translation and
Hidden Subgroup in a large class of non-abelian solvable groups including solvable groups of con-
stant exponent and of constant length derived series. Our algorithms are recursive. For the base
case, we solve efficiently Hidden Translation in Z

n
p , whenever p is a fixed prime. For the induc-

tion step, we introduce the problem Translating Coset generalizing both Hidden Translation and
Hidden Subgroup, and prove a powerful self-reducibility result: Translating Coset in a finite solv-
able group G is reducible to instances of Translating Coset in G/N and N , for appropriate normal
subgroups N of G. Our self-reducibility framework combined with Kuperberg’s subexponential quan-
tum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum
algorithms for Hidden Translation and Hidden Subgroup in any solvable group.

1 Introduction

Quantum computing is an extremely active research area (for introductions see e.g. [31, 1, 38, 36]). Many of
the superpolynomial speedups achieved by quantum algorithms over their best known classical counterparts
have been in a group theoretical setting. In this setting, we are given a finite group G and, besides the group
operations, we also have at our disposal a function f mapping G into a finite set. The function f can be
queried via an oracle. The time complexity of an algorithm is measured by the overall running time including
both the queries (counting a query as one step) and the quantum and/or classical processing of these queries.
The most important unifying problem of group theory for the purpose of quantum algorithms has turned
out to be Hidden Subgroup, which can be cast in the following broad terms: Let H be a subgroup of G
such that f is constant on each left coset of H and distinct on different left cosets. We say that f hides the
subgroup H . The task is to determine the hidden subgroup H .

While no classical algorithm can solve this problem with polynomial query complexity even if G is abelian,
the biggest success of quantum computing until now is that it can be solved by a quantum algorithm efficiently
for any abelianG. We will refer to this quantum algorithm as the standard algorithm forHidden Subgroup.
The main tool for this solution is Fourier sampling based on the (approximate) quantum Fourier transform for
abelian groups which can be efficiently implemented quantumly [30]. Simon’s xor-mask finding [42], Shor’s
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factorization and discrete logarithm finding algorithms [41], and Kitaev’s algorithm [30] for the abelian
stabilizer problem are all special cases of this general solution. Quantum algorithms of Hallgren [21, 22] and
Schmidt and Vollmer [44] computing class groups and unit groups of number fields, including the solution
of Pell’s equation also follow these lines.

Finding an efficient algorithm for Hidden Subgroup for non-abelian groups G is considered to be one
of the most important challenges at present in quantum computing. Besides its intrinsic mathematical
interest, the importance of this problem is enhanced by the fact that it contains as a special case the graph
isomorphism problem. Unfortunately, although its query complexity is shown to be polynomial by Ettinger,
Høyer and Knill [15], non-abelian Hidden Subgroup seems to be much more difficult than the abelian case.
Although considerable efforts were spent on it in the last few years, only a small number of successes can be
reported. They can be divided into two categories. The standard abelian Fourier sampling based algorithm
has been extended to some non-abelian groups in [40, 23, 20, 17, 34, 13] using the quantum Fourier transform
over these (non-abelian) groups. Although efficient quantum Fourier transform implementations are known
for several non-abelian groups [7, 24, 37, 33], the power of the technique appears to be very limited. In a
different approach, Hidden Subgroup was efficiently solved in the context of specific non-abelian black-box
groups [8, 45] by [27] without using the Fourier transform on the group, and instead using Fourier transforms
over abelian groups only. Similarly, only abelian Fourier transforms were used by [25, 4, 10, 28, 29] to solve
the hidden subgroup problem in some specific kinds of non-abelian groups. See [11] for a more detailed
review of hidden subgroup algorithms and related problems.

In face of the apparent hardness of Hidden Subgroup in non-abelian groups, a natural line of research
is to address subproblems of Hidden Subgroup which, in some groups, capture the main difficulty of the
original problem. In a pioneering paper, Ettinger and Høyer [14], in the case of dihedral groups, implicitly
considered another paradigmatic group problem, Hidden Translation. Here we are given two injective
functions f0 and f1 from a finite group G to some finite set such that, for some group element u, the
equality f1(xu) = f0(x) holds for every x. The task is to find the translation u. In fact, whenever G is
abelian, Hidden Translation is an instance of Hidden Subgroup in the semi-direct product G ⋊ Z2,
where the hiding function is f(x, b) = fb(x). The group action in G ⋊ Z2 is defined as (x1, b1) · (x2, b2) =
(x1 + (−1)b1x2, b1 ⊕ b2), where + denotes the group operation in G and ⊕ denotes the group operation in
Z2. In G⋊ Z2, f hides the subgroup H = {(0, 0), (u, 1)}. Actually, there is an efficient quantum reduction
in the other direction as well, and the two problems are quantum polynomial time equivalent [14]. A nice
consequence of this equivalence is that instead of dealing with Hidden Subgroup in the non-abelian group
G⋊Z2, we can address Hidden Translation in the abelian group G. Ettinger and Høyer [14] have shown
that Hidden Translation can be solved by a two-step procedure when G = ZN is cyclic: a polynomial
number of Fourier samplings over the abelian group ZN ×Z2 followed by an exponential time classical stage
without further queries. The best known quantum algorithm for Hidden Translation in cyclic (and,
in general abelian) groups is Kuperberg’s subexponential time method [32]. Its relation to certain lattice
problems investigated by Regev [39] provides evidence that Hidden Translation in cyclic groups might
be in fact difficult.

In a related work, van Dam, Hallgren and Ip [12] gave efficient solutions for three cases of what they call
the hidden shift problem. They also define another problem called the hidden coset problem which generalizes
hidden shift. Their hidden coset problem can be viewed as a generalization of our Hidden Translation

to not necessarily injective functions. While their paper gives efficient quantum algorithms for some specific
hidden coset problems, in general the hidden coset problem is of exponential query complexity even in Zn

2 .
Our first result (Theorem 3.5) is an efficient quantum algorithm for Hidden Translation in the

case of elementary abelian p-groups, that is groups Zn
p , for any fixed prime number p. The quantum part

of our algorithm is the same as in Ettinger and Høyer’s [14] procedure: it consists of performing Fourier
sampling over the abelian group Zn

p × Z2. But while their classical post processing requires exponential
time, here we are able to recover classically the translation in polynomial time from the samples. It turns
out that Fourier sampling produces vectors y non-orthogonal to the translation u, that is we obtain linear
inequations for the unknown u. This is different from the situation in the standard algorithm for the abelian
Hidden Subgroup, where only vectors orthogonal to the hidden subgroup are generated. We show that,
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after a polynomial number of samplings, the system of linear inequations has a unique solution with high
probability, which we are able to determine in deterministic polynomial time. An immediate consequence of
Theorem 3.5 is that Hidden Subgroup in Zn

p ⋊ Z2 is efficiently solvable by a quantum algorithm.
To solve Hidden Translation in other groups (which include abelian groups of constant exponent), we

embark in a radically new direction whose basic idea is self-reducibility. Since Hidden Translation is not
well-suited for this self-reducibility based approach, we define a new paradigmatic group problem. Notice
that there is a natural combination of Hidden Translation with Hidden Subgroup. This is the version
of Hidden Translation where the functions f0 and f1 are not necessarily injective, but they are certain
subgroup hiding functions. Indeed, if f1 hides a subgroup H and f0(x) = f1(xu) for some u ∈ G and for
every x ∈ G then the set of all such elements u form a right coset of H . (In the context of graph isomor-
phisms, the corresponding problem would be determining all the bijections between the vertex sets which
are isomorphisms. This set is a coset of the automorphism group of one of the graphs.) The self-reducibility
will be based on “averaging” over normal subgroups so that we actually get a problem over the factor group.
We will give an averaging procedure which results in quantum superpositions. Therefore our new problem,
called Translating Coset, is a combination of Hidden Translation and Hidden Subgroup where we
have quantum states as input1. Translating Coset also involves quantum group actions, that is groups
acting on a finite set of mutually orthogonal quantum states. Given two such states |φ0〉 and |φ1〉, the
Translating Coset problem consists of finding their translating coset, which is defined to be the stabilizer
subgroup of |φ1〉 and a group element that maps |φ1〉 to |φ0〉.

It turns out that with a slight modification, our algorithm of Theorem 3.5 also works for
Translating Coset in Zn

p whenever many copies of the input states are given. Moreover, we
show that Translating Coset has the following self-reducibility property in any finite solvable group
G: it is reducible to instances of Translating Coset in G/N and N , for any normal subgroup
N ✁ G (Theorem 4.11). This is the first general self-reducibility result for a problem subsuming
Hidden Subgroup. The proof of the result involves a new technique which is based upon constructing
the uniform superposition of the orbit of a given quantum state (Orbit Superposition). The importance
of generating specific superpositions for solving important algorithmic problems has been observed before,
see for instance the paper of Aharonov and Ta-Shma [3]. For example generating the uniform superposi-
tion of all graphs isomorphic to a given graph, which in fact is an instance of the Orbit Superposition

problem of the symmetric group Sn acting on an n-vertex graph, would allow us to solve the graph isomor-
phism problem. We show howOrbit Superposition is related to Translating Coset (Theorem 4.10).
The self-reducibility of Translating Coset combined with its solvability for Zn

p enables us to design
an efficient quantum algorithm for Translating Coset in groups that we call smoothly solvable groups
(Theorem 4.16). These groups include solvable groups of constant exponent and constant length derived
series; in particular, unitriangular matrix groups of constant dimension over finite fields of constant char-
acteristic. For the special case of Stabilizer (i.e. Translating Coset when |φ1〉 = |φ0〉), we obtain
an efficient quantum algorithm for an even larger class of solvable groups viz. for solvable groups hav-
ing a smoothly solvable commutator subgroup (Theorem 4.16). As an immediate consequence, we get
efficient quantum algorithms for Hidden Translation and Hidden Subgroup in the same groups as
Translating Coset and Stabilizer respectively. By combining our self-reducibility results above with
Kuperberg’s [32] subexponential time algorithm for Hidden Translation in abelian groups, and using the
fact that every solvable group G has derived series of length O(log log|G|) [18], we get subexponential time
algorithms for Hidden Translation and Hidden Subgroup in all solvable groups (Theorem 4.18), and
quasi-polynomial time quantum algorithm for Hidden Translation and Hidden Subgroup in solvable
groups of constant exponent (Theorem 4.17).

1In the preliminary version [16] of the present paper, the problem Translating Coset was called Orbit Coset. This was
due to the fact that the problem is actually a constructive version of testing membership in orbits of permutation groups.
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2 Preliminaries

2.1 Quantum computation background

For a background on standard quantum computing, we refer the reader to [36, 31]. We will consider problems
whose inputs and outputs might be either classical or quantum. Moreover most of our problems are promise
problems where a part of the input is given by an oracle. A problem is a relation P ⊆ I ×O, where I is the
set of inputs, and O the set of possible outputs. For a family of functions F , an oracle problem is a family of
relations (Pf )f∈F , where f ranges over the family F . The function f is given by a quantum oracle, that is
a unitary matrix Uf implementing the map Uf |x〉|0〉 = |x〉|f(x)〉.

For any finite set S, we denote by |S〉 the uniform superposition of elements in S: |S〉 = 1√
|S|

∑
x∈S |x〉,

when S 6= ∅, and |S〉 = |∅〉 when S = ∅, where |∅〉 is a specific basis element.
A quantum algorithm is a quantum circuit consisting of a succession of quantum gates. Sometimes we

describe quantum algorithms using intermediate measurements, but they can always be replaced by unitary
operations acting on the system plus ancilla qubits [2]. The output state of the algorithm is defined to be the
reduced state at the end of the algorithm of a special register of qubits, called the output register. Namely,
the output state of the algorithm is obtained by tracing out all but the qubits of the output register at the
end of the algorithm.

In this paper, we consider problems with many possible correct answers. For example, an algorithm
for Hidden Subgroup is said to be correct if it outputs any generating set for the hidden subgroup.
Therefore we say that a quantum algorithm or a unitary transformation solves a problem P with error ε, if
for every input i ∈ I it produces an output state whose trace distance is at most ε from some mixture over
{o ∈ O : (i, o) ∈ P} (see e.g. [2] for a definition of trace distance).

The time complexity of an algorithm is the number of gates and oracle calls in the circuit. For every
problem, the input size is the number of classical or quantum bits of an input. We say that a computational
problem can be solved in quantum time t(n) if there exists a quantum algorithm which solves the problem
with bounded error in time t(n) where n is the input size.

2.2 Group theory background

Recall that the exponent of a finite group is the least common multiple of the order of its elements and an
elementary abelian group is a group isomorphic to Zn

p for some positive integer n and for some prime p.
Obviously, the exponent of Zn

p is p. Let G be a finite group. If X is a subset of G then 〈X〉 denotes the
subgroup of G generated by X .

2.2.1 Black-box groups

Our results concern groups represented in the general framework of black-box groups [8, 45] with unique
encoding. In this model, the elements of a finite group G are uniquely encoded by binary strings of length
ℓ, and the group operations are performed by an oracle (the black box). The group is given in terms of a
collection of generators and oracle may actually define operations for a potentially larger group. We formally
denote the encoding by a mapping enc from G to {0, 1}ℓ. For quantum algorithms, the group oracle performs
the group operations reversibly; see [45] for a detailed description. The encoding length ℓ has to be at least
log|G|, and is usually O(log|G|). We measure the running time of our algorithm in term of the input size ℓ.
Several times in this paper we will be dealing with subgroups or factor groups of black-box groups wherein
we will still continue to measure the running time in terms of the input length ℓ for the original group G,
since we continue to use the original encodings for the subgroup elements. But even in this case, all the
encoding lengths for all subgroups shall be O(log|G|), where G is the original group.

We do assume in all our problems that the groups are input by at most log|G| generators. This is
legitimate as there are several efficient methods, e.g., the quantum algorithms given in [46] or [27] that
produce at most log|G| generators for a solvable black-box group G, even if it is given by a larger set of
generators. The input size corresponding to G is set to ℓ, instead of ℓ× log|G|, for convenience.
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2.2.2 Solvable groups

A sequence G0 ≥ G1 ≥ . . . ≥ Gm of subgroups is a subnormal series of G if each Gi is a normal subgroup
of Gi−1. We use the notation G0 ✄G1 ✄ . . .✄Gm for a subnormal series. The length of such a series is m.

The group G is a solvable group when there exists a subnormal series G0 ✄ G1 ✄ . . . ✄ Gm such that
G = G0, Gm = {1G} and the factors Gi/Gi+1 (i = 0, 1, . . . ,m− 1) are abelian.

A natural way of constructing a subnormal series of the solvable group G is to considered its derived
subgroups. For any group H , let us first define and denote the commutator subgroup H ′ of H by H ′ =
〈{h−1k−1hk : h, k ∈ H}〉. Then the derived subgroups G(i) (i = 0, 1, 2, . . .) are defined by induction:
G(0) = G; and the (i + 1)th derived subgroup G(i+1) is defined as the commutator (G(i))′ of G(i). All the
subgroups G(i) are normal subgroups of G(j), for 0 ≤ j < i. Clearly the group G is solvable if G(d) = {1G}
for some positive integer d and the derived length of G is the smallest such integer d. The derived series of
a solvable group G is the chain G = G(0)

✄G(1)
✄ . . .✄G(d) = {1G}.

In the case of an abelian group G, we have at our disposal [9] an efficiently computable isomorphism for
the cyclic decomposition θ : Z

p
k1
1

× . . . × Zpkr
r

→ G, where pki

i are prime powers for primes pi. Whenever

G is solvable, the decomposition of G into its derived series can be computed by a classical randomized
procedure [5].

2.2.3 Smooth groups

We introduce a shorthand terminology for the specific class of solvable groups for which our method works
in polynomial time. We say that an abelian group G is (e, s)-smooth if it has a subgroup N of index at most
s with exponent at most e. A subnormal series G = G0 ✄ G1 ✄ . . . ✄ Gm = {1G} of a solvable group G is
(e, s)-smooth if each factor group Gi−1/Gi is (e, s)-smooth. A solvable group G is (e, s)-smooth if its derived
series is (e, s)-smooth.

The methods of this paper will work in polynomial time for (e, s)-smooth solvable groups G with constant
derived length and with constant e and s = poly(log|G|). We introduce the shorthand terminology smoothly
solvable for such groups. Solvable groups having constant derived length and satisfying the property that
the factors of the consecutive derived subgroups are of exponent bounded by a constant are the most typical
examples of smoothly solvable groups. An example of such a solvable group is a unitriangular matrix group
of constant dimension over a finite field of constant characteristic.

2.2.4 Quantum Fourier sampling

When G is a finite abelian group, we identify with G the set Ĝ of characters of G via some fixed isomorphism
y 7→ χy. (For a group G isomorphic to Zn

k , it is usual to define χy(x) as e
2πi
k

x·y, where x · y stands for the
standard inner product

∑n
i=1 xiyi (mod k). Of course, this definition requires – and depends on – an

isomorphism of G with Zn
k .) The orthogonal subgroup of H ≤ G is defined as H⊥ = {y ∈ G : ∀h ∈

H,χy(h) = 1}. The quantum Fourier transform over G is the unitary transformation defined for every x ∈ G
by QFTG|x〉 = 1√

|G|

∑
y∈G χy(x)|y〉. For the sake of convenience, we will use the exact abelian quantum

Fourier transform in our algorithm. Actual implementations [30, 35] introduce only exponentially small
errors.

The following well known quantum Fourier sampling algorithm will be used as a building block, where
G is a finite abelian group, S is a finite set and f : G → S is given by a quantum oracle. This algorithm is
actually the main ingredient for solving Hidden Subgroup in abelian groups when the function f hides a
subgroup H ≤ G. In that case, FourierSamplingf (G) generates the uniform distribution over H⊥. In the
algorithm, |0〉S stands for an arbitrary but fixed element of S.
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FourierSamplingf (G)

1. Create state 1√
|G|

∑

x∈G |x〉|0〉S.
2. Query function f.

3. Compute QFTG on first register.

4. Measure and output the first register.

A function f : G → CS is a quantum function if, for every x ∈ G, the vector |f(x)〉 has unit norm,
and, for every x, y ∈ G, the vectors |f(x)〉 and |f(y)〉 are either the same or orthogonal. We say that the
quantum function f is given by a quantum oracle if we have at our disposal a unitary transformation Uf

and its inverse U−1
f satisfying Uf |x〉|0〉 = |x〉|f(x)〉, for every x ∈ G.

2.2.5 Order finding and generalized discrete logarithm

We also assume for simplicity that have at our disposal a zero-error quantum algorithm for computing the
generalized discrete logarithm and for order finding. Given a basis h1, h2, . . . , hl of an abelian group H and
h ∈ H , the generalized discrete logarithm consists of finding nonnegative integers α1, α2, . . . , αl such that
h = hα1

1 hα2

2 . . . hαl

l . Given a group element g in any group, order finding consists of finding the smallest
positive integer r such that gr is the identity element.

The actual implementations for period finding [41], for the single basis element case of discrete loga-
rithm [41] and for the general case [27] introduce only exponentially small errors. Note that for discrete
logarithm, one can also use a generalization of the single basis element case by [35] which runs without error
if one has access to single qubit rotation gates of arbitrary precision.

2.3 The problems

Here we define the problems we are dealing with. Each problem is parametrized by some fixed group, and
potentially by some group action. These are given, as we specified above, by oracles. Some inputs, usually
functions on the group, can also be given by oracles, we will refer to them as oracle inputs.

Let G be a finite group and let f0, f1 be two injective functions from G to some finite set S. The couple
of functions (f0, f1) can equivalently be considered as a single function f : G× Z2 → S, where by definition
f(x, b) = fb(x). We will use f for (f0, f1) when it is convenient in the coming discussion. We call an element
u ∈ G the translation of f if for every x ∈ G, we have f1(xu) = f0(x).

Hidden Translation(G)
Oracle input: Two injective functions f0, f1 from G to some finite set S such that f = (f0, f1) has
a translation u ∈ G.
Output: u.

For a finite group G and a finite set Γ of mutually orthogonal quantum states, we consider group actions
of G on Γ. By definition, α : G × Γ → Γ is a group action if for every x ∈ G the quantum function
αx : |φ〉 7→ |α(x, |φ〉)〉 is a permutation over Γ, such that the map x 7→ αx is a homomorphism from G to the
symmetric group on Γ, i.e., α1G is the identity map and αx ◦ αy−1 = αxy−1 , for every x, y ∈ G. We extend
α linearly to superpositions over Γ. (The conditon that G permutes the orthonormal system Γ of states
is essential; we do not consider general unitary actions G on Hilbert spaces.) When the group action α is
fixed, we use the notation |x · φ〉 for the state |α(x, |φ〉)〉. Having a group action α at our disposal means
having a quantum oracle realizing the unitary transformation |x〉|φ〉 7→ |x〉|x · φ〉. For any positive integer
t, we denote by αt the group action of G on Γt = {|φ〉⊗t : |φ〉 ∈ Γ} defined by αt(x, |φ〉⊗t) = |x · φ〉⊗t.
Observe that one can construct a quantum oracle for αt using t queries to a quantum oracle for α. We need
the notion of αt for the following reason. Below, we define problems involving group actions on quantum
superpositions where the input superpositions cannot, in general, be cloned (that is, it may be impossible
to make further copies of the input state from just one). However, it will be possible to generate multiple
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independent copies of the input superpositions by a separate process before the start of our algorithm. Hence,
in the interests of reducing the error of our algorithm, we start it off with several independent copies of the
input superpositions. Our self-reducibility arguments will reduce the main problem into a bunch of problems
involving actions of smaller groups on quantum superpositions. To solve each of these subproblems with
small error, we will require that the self-reduction process leave a sufficient number of independent copies
of the input superpositions for a subproblem. This is easy to ensure since we start with a large number of
independent copies of the input superpositions to the original problem. However, in order to achieve this
goal, the self-reduction process needs to act on several independent superpositions simultaneously by the
same group element. The group action αt captures this notion. This notion will be crucial for our induction
arguments. Also note that the stabilizer and the translating coset, defined later, are the same for group
actions α and αt.

The stabilizer of a state |φ〉 ∈ Γ is the subgroup G|φ〉 = {x ∈ G : |x · φ〉 = |φ〉}. Given |φ〉 ∈ Γ, the
problem Stabilizer(G,α, t) consists of finding O(log|G|) generators for the subgroup G|φ〉, given t copies of
|φ〉.

Proposition 2.1. Let G be a finite abelian group given as a black-box group with encoding length ℓ and let
α be a group action of G. When t = Ω(log(|G|) log(1/ε)), then Stabilizer(G,α, t) can be solved in quantum
time poly(ℓ) log(1/ε) with error ε.

Proof. Let |φ〉⊗t
be the input of Stabilizer. Let f be the quantum function on G defined by |f(x)〉 = |x · φ〉,

for every x ∈ G. Observe that f is an instance of the natural extension of Hidden Subgroup to quantum
functions and it hides the stabilizer G|φ〉.

The algorithm for Stabilizer is simply the standard algorithm for the abelian Hidden Subgroup with
error ε. In the standard algorithm, every query is of the form |x〉G|0〉S . We simulate the ith query |x〉G|0〉S
using the ith copy of |φ〉. The second register of the query is swapped with |φ〉, and then we let x act on
it. We remark that the standard algorithm for abelian Hidden Subgroup outputs O(log|G|) generators for
the hidden subgroup.

Note that in general, the input superposition |φ〉⊗t
gets destroyed by the above algorithm.

The orbit of a state |φ〉 ∈ Γ is the subset G(|φ〉) = {|x · φ〉 : x ∈ G}. Define |G · ϕ〉 =
1√

|G(|φ〉)|

∑
|ϕ′〉∈G(|ϕ〉) |ϕ′〉. Equivalently, |G · φ〉 = 1√

|G|

∑
x∈G |x · φ〉. The translating coset of two states

|φ0〉 and |φ1〉 of Γ is the set {u ∈ G : |u · φ1〉 = |φ0〉}. The translating coset of |φ0〉 and |φ1〉 is either
empty or a left coset uG|φ1〉 (or equivalently a right coset G|φ0〉u), for some u ∈ G. If the latter case occurs,
|φ0〉 and |φ1〉 have conjugate stabilizers: G|φ0〉 = uG|φ1〉u

−1. Translating Coset is a generalization of
Stabilizer:

Translating Coset(G,α, t)
Input: t copies of two quantum states |φ0〉, |φ1〉 ∈ Γ.
Output:

• reject, if G(|φ0〉) ∩G(|φ1〉) = ∅;
• u ∈ G such that |u · φ1〉 = |φ0〉 and O(log|G|) generators for G|φ1〉, otherwise.

For a function f on G, define the superposition |f〉 = 1√
|G|

∑
g∈G |g〉|f(g)〉, and for x ∈ G, define the

function x·f : g 7→ f(gx). Let Γ(f) = {|x · f〉 : x ∈ G}. Then a group element x acts naturally on |f ′〉 ∈ Γ(f)
by mapping it to the superposition |x · f ′〉. We call this group action the translation action. The mapping
|x〉|f ′〉 7→ |x〉|x · f ′〉 is realized by right multiplying the first register of |f ′〉 by x−1.

Proposition 2.2. Suppose G is a finite group and let t = poly(log|G|). Then Hidden Subgroup(G)
(resp. Hidden Translation(G)) can be solved with a call to Stabilizer(G, τ, t) (resp.
Translating Coset(G, τ, t)), where τ denotes the translation action.

7



Proof. Let f be an instance of Hidden Subgroup. Then the stabilizer of |f〉 is the group hidden by f . Let
(f0, f1) be an instance of Hidden Translation. Then the translating coset of |f0〉 and |f1〉 is a singleton
whose element is the translation of (f0, f1).

3 Hidden Translation in Zn
p

In this section, we show that Hidden Translation(G) can be solved in quantum polynomial time in the
special case when G = Zn

p for any fixed prime number p > 2. In this section we use the additive notation
for the group operation and x · y ∈ Zp stands for the standard inner product for x, y ∈ Zn

p . Since Zn
2 ⋊ Z2

is isomorphic to the abelian group Zn
2 × Z2, one already has a quantum polynomial time algorithm for

Hidden Translation in Zn
2 by reducing it to Hidden Subgroup in Z

n+1
2 by the method of [14].

For the convenience of the reader we present our method using intermediate measurements. However, the
measurements can always be eliminated, see [2], giving a unitary and therefore reversible algorithm, possibly
with errors.

The quantum part of our algorithm consists of performing FourierSampling over the abelian group
Zn
p × Z2. It turns out that from the samples we will only use elements of the form (y, 1). The important

property of these elements y is that they are not orthogonal to the hidden translation. Some properties of
the distribution of the samples are stated for general abelian groups in the following lemma.

Lemma 3.1. Let G be a finite abelian group. Let f = (f0, f1), f : G × Z2 → S be an instance of
Hidden Translation(G) having a translation u 6= 0. Then FourierSamplingf (G × Z2) outputs an el-
ement in G×{1} with probability 1/2. Moreover, the probability of sampling the element (y, 1) depends only
on χy(u), and is 0 if and only if y ∈ u⊥.

Proof. The state vector of FourierSamplingf (G× Z2) before the final observation is

1

2|G|
∑

x∈G

∑

y∈G

∑

c=0,1

χy(x)
(
1 + (−1)cχy(u)

)
|y〉|c〉|f0(x)〉.

Therefore the probability of sampling (y, 1) is proportional to |1− χy(u)|2, whence the statement follows as
χy(u) = 1 if and only if y ∈ u⊥ and

∑
y∈G |1− χy(u)|2 = 2|G| − 2

∑
y∈G χy(u) = 2|G|.

When G = Zn
p , the value χy(u) = e

2πi
p

y·u depends only on the inner product y · u over Zp, and y ∈ u⊥

exactly when y · u = 0. Therefore every (y, 1) generated satisfies y · u 6= 0. Thus the output distribution is
different from the usual one obtained for the abelian Hidden Subgroup where only vectors orthogonal to
the hidden subgroup are generated. We overcome the main obstacle, which is that we do not know the actual
value of the inner product y · u, by raising these inequations to the power (p− 1). They become a system of
polynomial equations of degree at most (p− 1) since ap−1 = 1 for every non-zero a ∈ Zp. In general, solving
systems of polynomial equations over any finite field is NP-complete. But using the other special feature of
our distribution, which is that the probability of sampling (y, 1) depends only on the inner product y · u, we
are able to show that – for fixed prime p – after a polynomial number of samplings, our system of equations
has a unique solution with constant probability, and the solution can be found in deterministic polynomial
time.

To solve our system of polynomial equations, we linearize it in the (p−1)th symmetric power of Zn
p .

We think of Zn
p as an n-dimensional vector space over Zp. For a prime number p and an integer k ≥ 0, let

Z
(k)
p [x1, . . . , xn] be the k

th symmetric power of Zn
p which will be thought of as the vector space, over the finite

field Zp, of homogeneous polynomials of degree k in variables x1, . . . , xn. The monomials of degree (p − 1)

form a basis of Z
(p−1)
p [x1, . . . , xn], whose dimension is therefore

(
n+p−2
p−1

)
, which is polynomial in n when p is

constant. Z
(1)
p [x1, . . . , xn] is isomorphic to Zn

p as a vector space. For two vectors Y1, Y2 ∈ Z
(p−1)
p [x1, . . . , xn],

we denote their standard inner product over the monomial basis by Y1 · Y2.
For every y = (a1, . . . , an) ∈ Zn

p and positive integer k, we define y(k) ∈ Z
(k)
p [x1, . . . , xn] as the poly-

nomial (
∑n

j=1 ajxj)
k. For y = (a1, . . . , an), z = (b1, . . . , bn) in Zn

p and positive integers k, l, we define

8



the product y(k)z(l) ∈ Z
(k+l)
p [x1, . . . , xn] as the polynomial (

∑n
i=1 aixi)

k(
∑n

j=1 bjxj)
l. Now observe that if

u = (u1, . . . , un) is the hidden translation vector , then the vector u∗ ∈ Z
(k)
p [x1, . . . , xn] which for every

monomial xe11 · · ·xenn has coordinate ue11 · · ·uenn satisfies y(p−1) · u∗ = (y · u)p−1. Therefore each linear in-

equation y ·u 6= 0 over Zn
p will be transformed into the linear equation y(p−1) ·U = 1 over Z

(p−1)
p [x1, . . . , xn],

where U is a dimZ
(p−1)
p [x1, . . . , xn]-sized vector of unknowns.

We will see below that the vectors y(p−1) span the space Z
(p−1)
p [x1, . . . , xn] when y ranges over Zn

p .

Moreover, in what is the main part of our proof, we show in Lemma 3.4 that whenever the span of y(p−1)

for the samples y is not Z
(p−1)
p [x1, . . . , xn], our sampling process furnishes with probability at least 1/p a

vector z ∈ Zn
p such that z(p−1) is linearly independent from the y(p−1) for the previously sampled y’s. This

immediately implies that if our sample size is of the order of the dimension of Z
(p−1)
p [x1, . . . , xn], the span

of y(p−1) for the samples y is Z
(p−1)
p [x1, . . . , xn] with high probability. In that case, the linear equations

y(p−1) · U = 1 have exactly one solution which is u∗. From this unique solution one can easily recover a
vector v such that v = au for some 0 < a < p (note that v∗ = u∗). Now u can be found by checking the
(p− 1) possibilities.

The following combinatorial lemma is at the basis of the correctness of our procedure.

Lemma 3.2 (Line Lemma). Let y, z ∈ Zn
p . For 1 ≤ k ≤ p − 1, define L

(k)
z,y = {(z + ay)(k) : 0 ≤ a ≤ k}.

Then for all 0 ≤ l ≤ k, z(l)y(k−l) ∈ Span(L
(k)
z,y), where the span is taken with Zp-coefficients.

Proof. Let M
(k)
z,y = {z(l)y(k−l) : 0 ≤ l ≤ k}. Clearly, Span(L

(k)
z,y) ⊆ Span(M

(k)
z,y ). We claim that the

inverse inclusion is also true since the determinant of L
(k)
z,y in M

(k)
z,y is non-zero in Zp. Indeed, it is(∏k

l=0

(
k
l

))
V (0, 1, . . . , k), where V denotes the Vandermonde determinant.

Proposition 3.3. For 1 ≤ k ≤ p− 1, Z
(k)
p [x1, . . . , xn] is spanned by y(k) as y ranges over Zn

p .

Proof. We prove the proposition by induction on k. The base case k = 1 is trivial. Suppose the statement
holds for k, 1 ≤ k < p − 1. Consider a monomial M in x1, . . . , xn of degree k + 1. If M = xk+1

i for some
1 ≤ i ≤ n, thenM trivially lies in the span of y(k+1) as y ranges over Zn

p . Else,M = xiM
′ for some 1 ≤ i ≤ n

and degree k monomial M ′. Let z ∈ Zn
p . From Lemma 3.2, we see that xiz

(k) ∈ Span({(xi + az)(k+1) : 0 ≤
a ≤ k+1}). By induction hypothesis,M ′ lies in the span of z(k) as z ranges over Zn

p . Hence, xiM
′ lies in the

span of xiz
(k) as z ranges over Zn

p . Thus, M ∈ Span({(xi + az)(k+1) : 0 ≤ a ≤ k + 1, z ∈ Zn
p}). This shows

that Z
(k+1)
p [x1, . . . , xn] is spanned by y(k+1) as y ranges over Zn

p , completing the proof of the induction step
and also that of the proposition.

We are now ready to prove the main lemma.

Lemma 3.4. Let u ∈ Zn
p , u 6= 0 and W be a subspace of Z

(p−1)
p [x1, . . . , xn]. We set R = {y ∈ Zn

p : y(p−1) ∈
W}. For k = 0, . . . , p− 1, let Vk = {y ∈ Zn

p : y · u = k} and Rk = R ∩ Vk. If W 6= Z
(p−1)
p [x1, . . . , xn], then

|Rk|/|Vk| ≤ (p− 1)/p for k = 1, . . . , p− 1.

Proof. Observe that Rk = {ky : y ∈ R1} for 0 < k < p. Therefore the sets Rk, 0 < k < p have the same
size. Observe also that the sets Vk, 0 ≤ k < p have the same size, and they partition Zn

p . Hence the values
|Rk|/|Vk| are the same for 0 < k < p.

Since W 6= Z
(p−1)
p [x1, . . . , xn], Proposition 3.3 implies that R 6= Zn

p . We consider two cases. In the
first case, V0 ⊆ R. This implies that R1 is a proper subset of V1. Choose any y ∈ V1 \ R1. Then by
Lemma 3.2, in every coset of 〈y〉 there is an element outside of R. A coset of 〈y〉 contains exactly one
element from each Vk, k = 0, . . . , p − 1. Hence ∪k 6=0Vk is partitioned into equal parts, each part of size
(p − 1), by intersecting with the cosets of 〈y〉. In each part, there is an element outside of R. Therefore
|∪k 6=0Rk|/|∪k 6=0Vk| ≤ (p − 2)/(p− 1). Hence, |Rk|/|Vk| ≤ (p − 2)/(p− 1) < (p − 1)/p for k = 1, . . . , p − 1,
and the statement follows.
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In the second case, V0 6⊆ R. Therefore, there is an element y ∈ V0 \R0. Then every Vk, k = 0, . . . , p− 1,
is a union of cosets of 〈y〉. Lemma 3.2 implies that every coset of 〈y〉 contains an element outside of R. This
proves that |Rk|/|Vk| ≤ (p− 1)/p for k = 0, . . . , p− 1. This completes the proof of the lemma.

We now specify the algorithm TranslationFinding and prove that, with high probability, it finds the
hidden translation in quantum polynomial time when p is constant.

TranslationFindingf (Zn
p )

0. If f0(0) = f1(0) then output 0.

1. N ← 13p
(

n+p−2
p−1

)

.

2. For i = 1, . . . , N do

(zi, bi)← FourierSamplingf (Zn
p × Z2).

3. {y1, . . . , yM} ← {zi : bi = 1}.
4. For i = 1, . . . ,M do Yi ← y

(p−1)
i .

5. Solve the system of linear equations

Y1 · U = 1, . . . , YM · U = 1.

6. If there are no solutions or more than one solution then abort.

7. Let 1 ≤ j ≤ n be such that the coefficient of xp−1
j is 1 in U.

8. Let v = (v1, . . . , vn) ∈ Z
n
p be such that vj = 1 and vk is the coordinate of xkx

p−2
j in U for

k 6= j.

9. Find 0 < a < p such that f0(0) = f1(av).

10. Output av.

Theorem 3.5. For every prime number p, every integer n ≥ 1, and every function f : Zn
p ×Z2 → S having

a translation given via a quantum oracle, algorithm TranslationFindingf (Zn
p ) aborts with probability less

than 1/2, and when it does not abort it outputs the translation of f . The query complexity of the algorithm
is O(p(n+ p)p−1), and its time complexity is (n+ p)O(p).

Proof. Because of Step 0 of the algorithm, we can suppose w.l.o.g. that the translation u of f is non-zero.
If the algorithm does not abort, then U = u∗ is the unique solution of the system in Step 5. When the

coefficient of xp−1
j is 1 in U , then uj 6= 0. Also, uk = ujvk for every k. Thus, u = ujv and u is found in

Step 9 for a = uj.
From Lemma 3.1, we see that the probability that the algorithm FourierSamplingf (Zn

p × Z2) outputs
(y, 1) for some y is 1/2. Therefore the expected value of M is N/2, and M < N/3 with probability at most
e−N/18 < 1/4 because of Chernoff’s bound. If the system Y1, . . . , YM has full rank, then it has a unique
solution. By Lemmas 3.1 and 3.4, the expected number of linear equations that guarantee that the system
has full rank is at most p

(
n+p−2
p−1

)
. Since N/3 > 4p

(
n+p−2
p−1

)
, by Markov’s inequality, the solution U is unique

with probability at least 3/4. Thus, the total probability of aborting is less than 1/2.

Corollary 3.6. Let p be a prime. Then the problem of Hidden Translation(Zn
p ) can be solved in quantum

time (n+ p)O(p) log(1/ε) with error ε using t = Θ(p(n+ p)p−1 log(1/ε)) accesses to the oracles for f0, f1.

Proof. We perform two modifications in the algorithm TranslationFinding. First, to get error ε, the
integer N is multiplied by O(log(1/ε)). Moreover, we assumed in the algorithm that there is an oracle for
f = (f0, f1), which was used to choose fb knowing b. This is not possible in general when f0 and f1 are
given by two distinct oracles. Therefore we replace the oracle access |x〉|b〉|0〉S 7→ |x〉|b〉|fb(x)〉S by

|x〉|b〉|0〉S |0〉S 7→ |x〉|b〉|fb(x)〉S |f1−b(−x)〉S .

This type of quantum oracle corresponds to the function f ′ = (f ′
0, f

′
1), where f

′
0(x) = (f0(x), f1(x)) and

f ′
1(x) = (f1(x), f0(−x)). Obviously, f ′

0 is injective and f ′
0(x) = f ′

1(x+ u). We can apply Theorem 3.5 in this
new setting.

10



Let us now show how to simulate this new oracle access. From |x〉|b〉|0〉S |0〉S we compute
|(−1)

bx〉|b〉|0〉S |0〉S , and then we call f0 and get |(−1)
bx〉|b〉|f0((−1)

bx)〉S |0〉S . We multiply the first regis-
ter by (−1) and call f1 which gives |(−1)

b+1x〉|b〉|f0((−1)
bx)〉S |f1((−1)

b+1x)〉S . Finally, we multiply the first
register by (−1)

b+1, and swap the last two registers when b = 1.

As there is a quantum reduction from Hidden Subgroup in Zn
p ⋊ Z2 to Hidden Translation in Zn

p

by the method of [14], we obtain the following corollary.

Corollary 3.7. Let p be a fixed prime. Then Hidden Subgroup(Zn
p ⋊ Z2) can be solved in quantum time

poly(n).

The algorithm TranslationFinding can also be extended to solve Translating Coset in Zn
p .

Corollary 3.8. Let p be a prime. Let α be a group action of Zn
p . When t = Ω(p(n + p)p−1 log(1/ε)),

Translating Coset(Zn
p , α, t) can be solved in quantum time (n+ p)O(p) log(1/ε) with error ε.

Proof. Let the input of the Translating Coset(Zn
p , α, t) be (|φ0〉⊗t

, |φ1〉⊗t
). We can suppose w.l.o.g.

that the stabilizers of |φ0〉 and |φ1〉 are trivial. Indeed the stabilizers can be computed by Proposition 2.1.
If they are different then the algorithm obviously has to reject, otherwise we work in the factor group
Zn
p/G|φ0〉

∼= Zn′

p , for some n′ ≤ n. To be more specific, we can compute a (Zp-basis for) a subgroup G1 of Zn
p

which is a direct complement of G|φ0〉 by augmenting a basis for G|φ0〉 to a basis of Zn
p and we can actually

work with G1 in place of G.
For b = 0, 1, let fb be the injective quantum function on G defined by |fb(x)〉 = |x · φb〉, for every x ∈ G.

If the translating coset of (|φ0〉, |φ1〉) is empty, then f0 and f1 have distinct ranges. Otherwise the translating
coset of (|φ0〉, |φ1〉) is a singleton {u}, and (f0, f1) have the translation u.

The algorithm for Translating Coset on input (|φ0〉⊗t
, |φ1〉⊗t

) is the algorithm TranslationFinding

on input (f0, f1) with a few modifications described below. The oracle access to (f0, f1) is modified in the
same way as in Corollary 3.6. We simulate the ith query |x〉|b〉|0〉S |0〉S using the ith copy of |φ0〉|φ1〉. The
two registers |0〉S |0〉S are swapped with |φb〉|φ1−b〉, and then we let act x on |φb〉 and (−x) on |φ1−b〉.

The equality tests in steps 0 and 9 are replaced by the swap test [6, 19] iterated O(log(1/ε)) times. Finally,
N is multiplied by O(log(1/ε)), and the algorithm rejects whenever the algorithm TranslationFinding

aborts or there is no solution in step 9.

4 Translating Coset in solvable groups

4.1 Preparation

4.1.1 Quantization of the problems

Let G be a black-box group with unique encoding and let α be a group action on Γ.
We now describe quantum analogues of problems with classical outcomes, as unitary transformations

whose output are basically uniform superposition on the possible classical outcomes.
We will give quantum circuit implementations for the new problems. A quantum circuit has both in-

put/output registers and ancilla registers. The latter ones are initialized to some default value, usually a
0-string, that we denote |0〉. We will explicitly mention when we consider a different default value. We
identify a quantum circuit with the unitary transformation it defines.

Let U be a unitary transformation. A quantum circuit C implements U if C = U ⊗ Id, where the tensor
product is between input/output registers and ancilla registers. Most often, our unitary transformations
will be only partially specified and our quantum circuits will only approximately implement them. This
motivates the following generalization of implementation.

A partial unitary U is a transformation defined on a subset S of a Hilbert space H , such that there exists
a unitary transformation V on H which coincides with U on S. A quantum circuit C implements U on S
with error ε if C(|ψ〉 ⊗ |0〉) and U |ψ〉 ⊗ |0〉 are of trace distance at most ε, for every |ψ〉 ∈ S. We will omit ε
when ε = 0, and also S when it is understood from the context.
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Given a circuit that implements a unitary U , one can design a circuit with same size that implements the
unitary U−1 by applying backward the circuit for U , where each gate is replaced by its inverse. Therefore
in our model, the complexity for implementing a unitary transformation or its inverse is the same. Thus we
will say that a circuit uses as black boxes t implementations of U whenever it uses t gates U or U−1.

Our notion of implementation does not allow any garbage in the computation: at the end of the com-
putation the ancilla registers must come back to their initial default value, potentially approximately. It is
not always true for a quantum circuit, even if it computes the desired outcomes. In that case we will say
that the computation is with garbage. Nonetheless, when a quantum circuit computes a classical function
without error, we can assume that the computation is without garbage using the standard cleaning method:
run the circuit C, XOR the output in a new register (initialized to the 0-string), undo the circuit by running
C−1. In such a situation, we will therefore always assume that we have at our disposal such a circuit without
garbage.

Definition 4.1. Let g1, g2, . . . , gk ∈ G and H = 〈g1, g2, . . . , gk〉.
Subgroup Superposition(G, g1, g2, . . . , gk) is a partial unitary transformation that maps state |1G〉
to state |H〉.

In the following description of a quantum circuit, we write in boldface the input registers of the circuit,
whereas fresh registers are in regular font. The output registers are a priori the same as the input registers.
We also assume for simplicity that we have at our disposal a zero-error quantum algorithm for computing
the generalized discrete logarithm and for order finding. The actual implementations for the single basis
element case [41] and for the general case [27] introduce only exponentially small errors. Note that one can
also use a generalization for the single basis element case of [35] which is without error. We also note that
the heart of the circuit is not to compute H from the generators, but rather to create the superposition over
H by uncomputing the discrete log.

AbelianGS(G, g1, g2, . . . , gk)
Hypothesis: H = 〈g1, g2, . . . , gl〉 is abelian.

Input: |1G〉

1. Compute a basis h1, h2, . . . , hl such that 〈h1〉 × 〈h2〉 × . . . × 〈hl〉 = H, and the respective

orders rj of hj.

2. Compute in a fresh register the superposition

∑

0≤aj<rj

|a1, a2, . . . , al〉|1G〉

3. Perform fast exponentiation h
aj

j in fresh register:

∑

0≤aj<rj

|a1, a2, . . . , al〉|ha1
1 , ha2

2 , . . . , h
al
l 〉|1G〉

4. Multiply 1G by all the h
aj

j :

∑

0≤aj<rj

|a1, a2, . . . , al〉|ha1
1 , ha2

2 , . . . , hal
l 〉|ha1

1 h
a2

2 . . . h
al

l 〉

5. Undo Step 3.
∑

0≤aj<rj

|a1, a2, . . . , al〉|ha1

1 h
a2

2 . . . h
al

l 〉

6. Undo the computation of the generalized discrete logarithm of the group elements

ha1
1 ha2

2 . . . h
al
l in the basis (h1, h2, . . . , hl):

∑

0≤aj<rj

|ha1

1 h
a2

2 . . . h
al

l 〉 = |H〉
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7. Undo Step 1.

Theorem 4.2. Let G be a black-box group with unique encoding of length ℓ. Let g1, g2, . . . , gk ∈
G be generators of an abelian subgroup H. Then AbelianGS(G, g1, g2, . . . , gk) implements
Subgroup Superposition(G, g1, g2, . . . , gk) in quantum time poly(kℓ).

Proof. Since the description of the algorithm is clear, the proof consists in checking that all the tasks involved
in AbelianGS(G, g1, g2, . . . , gk) can be done in the requested complexity.

The main potential difficulty is for Step 1. This step can be done in quantum time poly(kℓ) using the
method of [9], without error since we assume that we can do quantum Fourier transform without error on
abelian groups.

For solvable groups, we consider the following extension which produces the required superposition, but
with garbage.

Theorem 4.3 ([46]). Let G be a black-box group with unique encoding of length ℓ. Given generators
g1, g2, . . . , gk ∈ G of a solvable subgroup H, the state |H〉 can be produced with error ε and with garbage
in quantum time poly(kℓ) log(1/ε).

Now we define the quantized versions of Translating Coset and Stabilizer. (These are descriptions
of certain unitary transformations.) Recall that if T is empty then |T 〉 = |∅〉, where |∅〉 is a specific basis
element.

Definition 4.4. Translating Coset Superposition(G,α, t) is the partial unitary transformation that
maps state |φ0〉⊗t|φ1〉⊗t|1G〉 to state |φ0〉⊗t|φ1〉⊗t|T 〉, where T = {u ∈ G : |u · φ1〉 = |φ0〉}.
Stabilizer Superposition is the special case of Translating Coset Superposition with |φ1〉 = |φ0〉.

In general O(log|G| log 1
ε ) copies of the coset superposition |T 〉 are sufficient to determine T classically

with error probability ε. To see this, assume that we have state |T 〉⊗s
. We then multiply the contents of the

second, third, etc. register by the inverse of the group element in the first register. Then the first register will
contain an element representing the coset while in the remaining register there are elements of the stabilizer
subgroup which, if s is large enough, will contain a system of generators with high probability.

ElementaryAbelianTCS(G, α, t)
Hypothesis: G ∼= Z

n
p

Input: |φ0〉
⊗t|φ1〉

⊗t|1G〉

1. Apply the algorithm of Corollary 3.8 on the first 2t input registers, using a fresh

register for the computation:

∑

u∈G,X∈G≤log|G|

αu,X |u,X〉|θu,X〉|1G〉,

where |u,X〉 denotes the output of the algorithm of Corollary 3.8, and |θu,X〉 denotes

the other remaining registers.2

2. Apply AbelianGS(G, X) to the last input register:

∑

u∈G,X∈G≤log|G|

αu,X |u,X〉|θu,X〉|〈X〉〉

3. Left multiply the last input register by u:

∑

u∈G,X∈G≤log|G|

αu,X |u,X〉|θu,X〉|u〈X〉〉

2The sum is over all elements u ∈ G and all list X consisting of at most log|G| elements of G. If there were no errors, αu,X

would be zero for pairs (u,X) which do not describe the coset translating φ0 to φ1. Due to errors of the algorithm, some of
such coefficients can be nonzero, although very small.
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4. Undo Step 1.

Corollary 4.5. Let G ∼= Zn
p be a black-box group with unique encoding of length ℓ. Let α be a group action of

G and let t = Ω(p(n+p)p−1 log(1/ε)) be a positive integer. Then ElementaryAbelianTCS(G,α, t) implements
Translating Coset Superposition(G,α, t) with error ε in quantum time ℓO(1)(n+ p)O(p) log(1/ε).

Proof. In the first step of the algorithm, X denotes a set of generators for G|φ1〉 and u a group element such
that |u · φ1〉 = |φ0〉. When no solution exists, we simply request the algorithm of Corollary 3.8 to set X = ∅,
and let u be any group element, instead of rejecting.

Let v be a fixed group element such that |v · φ1〉 = |φ0〉. Because of the choice of the parameters
and by Corollary 3.8, the states |u〈X〉〉 and |vG|φ1〉〉 are of trace distance at most ε. This implies that
the final state of the algorithm is of trace distance at most ε from the following state without garbage:
|φ0〉⊗t|φ1〉⊗t|vG|φ1〉〉.

For an arbitrary abelian group G, we can modify procedure ElementaryAbelianTCS(G,α, t) by replacing
the algorithm of Corollary 3.8 with an adapted version of Kuperberg’s subexponential method (see Theo-
rem 7.1 of [32]) to solve Translating Coset. (We only need modifications to Kuperberg’s algorithm like
the ones to TranslationFinding described in the proof of Corollary 3.8: We use the “conditionally swapped
pairs of functions” trick presented in the proof of Corollary 3.6 and simulate the oracle with input quantum
states.) Let us call the resulting procedure ArbitraryAbelianTCS(G,α, t). We obtain the following.

Corollary 4.6. Let G be a black-box abelian group with unique encoding of length ℓ. Let α be a group

action of G and let t = 2Ω(
√

log|G|) be a positive integer. Then ArbitraryAbelianTCS(G,α, t) implements

Translating Coset Superposition(G,α, t) with error ε in quantum time ℓO(1)2O(
√

log|G|) log(1/ε).

4.1.2 Compatible encodings

We will apply recursion into factor groups of solvable groups. Therefore we need an efficient procedure to
design a unique encoding for these factor groups. Moreover, for the purpose of our algorithm we will require
this encoding to be compatible with the original encoding of the group in the following sense.

Definition 4.7. Let G be a black-box group with unique encoding enc of length ℓ. Let N be a normal subgroup
of G. A unique encoding encN for G/N is compatible with enc if:

1. for every x ∈ G, there is y ∈ xN such that encN (xN) = enc(y),

2. the partial unitary |enc(x)〉|0〉 7→ |enc(x)〉|encN (xN)〉, where x ∈ G, can be implemented in quantum
time poly(ℓ).

Note that if G has encoding length ℓ, then a compatible encoding for G/N also has encoding length ℓ.
From now on, we assume for simplicity that we have at our disposal a multiple r of |G| such that r = O(ℓ).

This multiple is given or computed once for a group, and we keep the same value for all its subgroups. This
assumption is reasonable since for solvable groups the cardinality of G can be computed in time poly(ℓ) [46].

In the following theorem, we assume for simplicity that have at our disposal a zero-error quantum
algorithm for computing the generalized discrete logarithm and for order finding.

Theorem 4.8. Let G be a black-box solvable group with unique encoding enc of length ℓ. Let N be a normal
subgroup of G such that G/N is abelian. Assume that O(ℓ) copies of |N〉 are given. There exists a unique
encoding encN for G/N such that:

1. A set of generators for G/N , whose size is at most log|G/N |, can be computed in quantum time poly(ℓ).

2. Group operations over G/N using encoding encN can be computed in quantum time poly(ℓ).

3. encN is compatible with enc.
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Note that even if all the tasks (1) and (2) will use as ancilla several copies of |N〉, these copies are always
restored at the end of the computations. Indeed, since the outcomes of tasks (1) and (2) are classical, one
can XOR their value in a fresh register, and reverse the procedure in order to be garbage free and restore
the used copies of |N〉.

Proof. Let g1, g2, . . . , gk ∈ G be the generators defining G, where k = O(ℓ), and let r be a known multiple
of |G| such that log r = O(ℓ). The cosets g1N, g2N, . . . , gkN are generators of G/N . We now show how to
learn the structure of the abelian group G/N , and in particular how to extract a subset of at most log|G/N |
generators.

Following the approach of [27], we consider extensions of the quantum algorithms for computing the
generalized discrete logarithm and for order finding to functions having quantum ranges. More precisely for
order finding, the function a ∈ Zr 7→ |xaN〉 hides the subgroup Zrx , where rx is the order of xN . This
function is encoded by the partial unitary map |a〉|N〉 7→ |a〉|xaN〉, which admits a poly(ℓ) size circuit, since
it can be implemented using O(log r) group operations. Thus the algorithm requires as many copies of |N〉
as the number of function evaluations, that is O(ℓ). Similarly, given x ∈ G and y ∈ xaN , for some unknown
0 ≤ a < |G/N |, one can compute a using O(ℓ) copies of |N〉.

More generally, one can learn the structure of G/N as in [9] using O(ℓ) copies of |N〉 and the unitary

|a1, a2, . . . , ak〉|N〉 7→ |a1, a2, . . . , ak〉|ga1

1 ga2

2 . . . gak

k N〉,

where ai ∈ Zr , and the group elements gi are implicitly encoded using enc. Given the structure of
G/N , we are able to find the lexicographically smallest non-redundant subset of generators for G/N from
g1N, g2N, . . . , gkN by throwing out gi if it is contained in the subgroup of G generated by g1, . . . , gi−1 and
N . Without loss of generality we can assume that this set is g1N, g2N, . . . , gjN . By non-redundancy, we
must have j ≤ log|G/N |. This full construction of generators g1N, g2N, . . . , gjN can be done in quantum
time poly(ℓ), and therefore condition (1) is satisfied.

For every i = 1, 2, . . . , j, let li be the least positive integer such that glii ∈ 〈N, g1, g2, . . . , gi−1〉. Then we
can define our compatible encoding by

encN (xN) = enc(ga1

1 ga2

2 . . . g
aj

j ), where xN = ga1

1 ga2

2 . . . g
aj

j N , and 0 ≤ ai < li.

Since the exponents ai are uniquely defined, the encoding is unique and satisfies condition (1) of the definition
of compatible encodings (Definition 4.7). In order to satisfy the conditions of compatible encodings, and
therefore condition (3) of the theorem, we show how to compute in quantum time poly(ℓ) encN (xN) from
enc(x). Again we follow the approach of [27]. Consider the unitary

|b, b1, b2, . . . , bj〉|N〉 7→ |b, b1, b2, . . . , bj〉|x−bgb11 g
b2
2 . . . g

bj
j N〉.

This unitary hides a subgroup H of Zr×Zl1 ×· · ·×Zj generated by a generator of type u = (1, a1, a2, . . . , aj),
where xN = ga1

1 ga2

2 . . . g
aj

j N . Therefore encN (xN) = enc(ga1

1 ga2

2 . . . g
aj

j ). The subgroup H , and therefore
the generator u of this particular form, can be found in quantum time poly(ℓ) since this is the solution of
Hidden Subgroup for abelian groups extended to functions having quantum ranges [27].

Finally, condition (2) is easily satisfied. Indeed, by the compatibility of our encoding, group operations
over G/N can be simulated by one call to the group oracle for G. Then the result enc(x), for some x ∈ G,
has to be converted to encN (xN), using the above procedure.

4.2 Orbit Superposition

In this section, we show that computing the uniform superposition of the orbit of a given state is reducible
to instances of Translating Coset Superposition. In the following definition, we denote by |G · ϕ〉 the
state 1√

|G(|φ〉)|

∑
|φ′〉∈G(|φ〉) |φ′〉

⊗s
, where |ϕ〉 = |φ〉⊗s

.

Definition 4.9. Let |φ〉 ∈ Γ. Let s be a positive integer and |ϕ〉 = |φ〉⊗s. Orbit Superposition(G,α, s)
is the partial unitary transformation that maps state |ϕ〉|ϕ〉|G〉 to |G · ϕ〉|ϕ〉|1G〉.
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Then the following algorithm implements Orbit Superposition.

OS(G, α, s)
Input: |φ〉⊗2s|G〉

1. Apply the group element in 3rd register to the first s registers:

∑

x∈G

|x · φ〉⊗s|φ〉⊗s|x〉 =
∑

|ϕ′〉∈G(|ϕ〉)

|ϕ′〉|ϕ〉|xG|φ〉〉,

where |ϕ〉 = |φ〉⊗s

2. Perform the inverse of Translating Coset Superposition(G,α, s)
(which maps |x · φ〉⊗s|φ〉⊗s|1G〉 to |x · φ〉⊗s|φ〉⊗s|xG|φ〉〉):

|G · ϕ〉|ϕ〉|1G〉

Theorem 4.10. Let G be a black-box group with unique encoding of length ℓ and let α be
a group action on Γ. Let |φ〉 ∈ Γ. Let s be a positive integer and |ϕ〉 = |φ〉⊗s

.
OS(G,α, s) implements Orbit Superposition(G,α, s) using as a black box one implementation of
Translating Coset Superposition(G,α, s) and quantum time poly(ℓs) for the remaining computation.

4.3 Translating Coset self-reducibility in solvable groups

The purpose of this section is to prove Theorem 4.11 stating the reducibility of Translating Coset in
some solvable group G to Translating Coset in proper normal subgroups and factors of G under some
conditions. Given a group action α of G on a finite set Γ of mutually orthogonal quantum states, we
define for every proper normal subgroup N ✁ G the group action αN of G/N on {|N · φ〉 : |φ〉 ∈ Γ} by
αN (xN, |N · φ〉) = |x · (N · φ)〉, for every x ∈ G and |φ〉 ∈ Γ. Note that this action is independent of the
chosen coset representative x, it only depends on the coset xN .

For a group action like αs on Γs the group action (αs)N will act on states such as |N · ϕ〉 =
1√

|N(|φ〉)|

∑
|φ′〉∈N(|φ〉) |φ′〉

⊗s
, where |φ〉 ∈ Γ and |ϕ〉 = |φ〉⊗s

.

Note that, the use of our notion of compatible encodings allows us to treat the oracle for α as an oracle
for αN .

In the following algorithm, we implicitly use the encoding enc ofG for its elements z ∈ G, and a compatible
encoding encN for G/N (given by Theorem 4.8) for its cosets zN ∈ G/N . Last, for a subset S ⊆ G, the
notation S/N is the following subset of G/N : S/N = {xN : x ∈ S}. In particular, for any subgroup H ≤ G,
we have uHN/N = {uhN : hN ∈ HN/N}.

TCS(G,N,α, s(t+ 1))
Hypothesis: N ✁G with compatible encoding for G/N

Input: |φ0〉
⊗s(t+1)|φ1〉

⊗s(t+1)|1G〉
Ancilla: |N〉⊗2t|0〉
1. Perform t times OS(N, α, s) on blocks |φ0〉⊗s|N〉

and then t times on blocks |φ1〉⊗s|N〉:

|N · ϕ0〉
⊗t|φ0〉

⊗s|N · ϕ1〉
⊗t|φ1〉

⊗s|1G〉|1G〉⊗2t|0〉,

where |ϕ0〉 = |φ0〉⊗s
and |ϕ1〉 = |φ1〉⊗s

2. XOR the compatible encoding of 1G/N into the ancilla register |0〉:

|N · ϕ0〉
⊗t|φ0〉

⊗s|N · ϕ1〉
⊗t|φ1〉

⊗s|1G〉|1G〉⊗2t|1G/N 〉
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3. Perform Translating Coset Superposition(G/N, (αs)N , t) on |N · ϕ0〉⊗t|N · ϕ1〉⊗t|1G/N 〉:

|N · ϕ0〉
⊗t|φ0〉

⊗s|N · ϕ1〉
⊗t|φ1〉

⊗s|1G〉|1G〉⊗2t|uHN/N〉,

where H = G|φ1〉 and |u · φ1〉 = |φ0〉, if there is any;

|N · ϕ0〉
⊗t|φ0〉

⊗s|N · ϕ1〉
⊗t|φ1〉

⊗s|1G〉|1G〉⊗2t|∅〉,

otherwise

4. Undo Step 1:

|φ0〉
⊗s(t+1)|φ1〉

⊗s(t+1)|1G〉|N〉⊗2t|uHN/N〉,
or

|φ0〉
⊗s(t+1)|φ1〉

⊗s(t+1)|1G〉|N〉⊗2t|∅〉.
In the second case, Stop the algorithm here

5. Perform s applications of inverse of group element in the last register to registers

|φ0〉 (viewed as an element of G thanks to the compatible encoding of G/N):

∑

zN∈uHN/N

|z−1 · φ0〉
⊗s

|φ0〉
⊗st|φ1〉

⊗s|φ1〉
⊗st|1G〉|N〉⊗2t|encN (zN)〉, 3

6. Perform Translating Coset Superposition(N,α, s) on |z−1 · φ0〉⊗s|φ1〉⊗s|1G〉:
∑

zN∈uHN/N

|z−1 · φ0〉
⊗s

|φ0〉
⊗st|φ1〉

⊗s|φ1〉
⊗st|nz(H ∩ N)〉|N〉⊗2t|encN (zN)〉

(see the proof of Theorem 4.11 for notation and justification)

7. Apply the group element in the last register to the first s registers |z−1 · φ0〉:
∑

zN∈uHN/N

|φ0〉
⊗s(t+1)|φ1〉

⊗s(t+1)|nz(H ∩ N)〉|N〉⊗2t|encN (zN)〉

8. Left multiply by the group element in the last register the group element in the 2s(t +
1) + 1st register

∑

zN∈uHN/N

|φ0〉
⊗s(t+1)|φ1〉

⊗s(t+1)|znz(H ∩ N)〉|N〉⊗2t|encN (zN)〉

9. Inverse in the last and the 2s(t + 1) + 1st registers the computation of the compatible

encoding |zn〉|0〉 7→ |zn〉|encN (zN)〉, for every n ∈ N:

|φ0〉
⊗s(t+1)|φ1〉

⊗s(t+1)|uH〉|N〉⊗2t|0〉

Theorem 4.11. Let G be a black-box solvable group with unique encoding of length ℓ and let N be a
normal subgroup of G such that G/N is abelian. Let α be a group action of G and let s, t be posi-
tive integers. Then TCS(G,α, s(t+ 1)) implements Translating Coset Superposition(G,α, s(t + 1))
using (4t + 1) implementations of Translating Coset Superposition(N,α, s), 2 implementations of
Translating Coset Superposition(G/N, (αs)N , t), 2t copies of |N〉 as ancilla, and quantum time
poly(ℓts) for the remaining computation.

3We explicitly mention here the encoding used for the last register in order to avoid any ambiguity in the notation. Observe
also that z has the same encoding as zN (encN (zN) = enc(z)).
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Proof. The complexity analysis of the algorithm is direct, only its analysis need to be detailed. First observe
that when the translating coset of |φ0〉 and |φ1〉 is empty, the algorithm sets H = ∅ and its correctness is
clear.

From now, we assume that the translating coset is not empty, and it is uH , for some unknown u ∈ G,
where H is the unknown stabilizer of |φ0〉 and |φ1〉. Note that the translating coset of |N · φ0〉 and |N · φ1〉
for αN in G/N is uHN/N , and therefore non empty. At Step 1, Theorem 4.10 is applied, then after Step 4,
the algorithm has therefore computed the state |uHN/N〉 in its last register.

In Step 5, the group element in the last register is encoded using encN . But when its inverse is applied to
the first register as an element of G, we mean to use the encoding enc. Thanks to our definition of compatible
encoding, this makes sense as long as z satisfies encN (zN) = enc(z). That is why the computed state

becomes a uniform superposition of states |z−1 · φ0〉⊗s
. . . |φ1〉⊗s

. . . |encN (zN)〉, where the superposition is
over zN ∈ uHN/N , and z is chosen such that encN (zN) = enc(z). For each such z, we prove that states
|z−1 · φ0〉 and |φ1〉 have the translating coset nz(H ∩ N) over the subgroup N for some nz ∈ N such that
|nz · φ1〉 = |z−1 · φ0〉, meaning that znz ∈ uH .

Indeed, since |u · φ1〉 = |φ0〉, we get |(z−1u) · φ1〉 = |z−1 · φ0〉. Therefore |z−1 · φ0〉 and |φ1〉 have the
translating coset z−1uH over G. Since zN ∈ uHN/N , one can write znz = uhz, for some hz ∈ H and
nz ∈ N . Note that that both hz and nz are uniquely defined up to some element in H ∩ N . Then the
translating coset can be rewritten as nzH , implying that |z−1 · φ0〉 and |φ1〉 have a non empty translating
coset over N , which is nz(H ∩N).

Set now H1 =
⋃

z

(
hz(H ∩ N)

)
. Then after Step 9, the state of the input register is |uH1〉. The end

of the proof consists in proving that H1 = H . First observe that by definition H1 ⊆ H . For the reverse
inclusion, define for every h ∈ H , the coset zN = uhN ∈ uHN/N . Chose a representative z of zN such
that encN (zN) = enc(z). Since by construction, zN = uhN = uhzN , we get hz(H ∩N) = h(H ∩N), and
therefore h ∈ H1.

If |φ1〉 = |φ0〉 then |N · ϕ1〉 = |N · ϕ0〉 as well. Therefore the same proof shows the following.

Theorem 4.12. Let G, N , α, s and t be as in Theorem 4.11. Then TCS(G,α, s(t+ 1))
implements Stabilizer Superposition(G,α, s(t + 1)) using as black boxes (4t + 1) im-
plementations of Translating Coset Superposition(N,α, s), 2 implementations of
Stabilizer Superposition(G/N, (αs)N , t), 2t copies of |N〉 as ancilla, and quantum time poly(ℓts)
for the remaining computation.

4.4 Applications to various groups

In this section, we study the consequences of the self-reducibility of Translating Coset for various families
of solvable groups. We start by proving the following technical statement.

Theorem 4.13. Let G be a solvable black-box group with unique encoding of length ℓ and let α be a group
action of G on Γ. Assume that we are given a subnormal series G = G0 ✄ G1 ✄ . . . Gr−1 ✄ Gr = {1G}
such that for every 1 ≤ i ≤ r, the factor group is either elementary abelian of prime exponent bounded by e,

or Gi−1/Gi is an abelian group of order at most s. Let T =
((

log|G| + e + 2
√
log s

)Ω(e)
log(1/ε)

)r

. Then

there exists a quantum circuit that implements Translating Coset Superposition(G,α, T ) with error ε
in quantum time poly(ℓT ).

Proof. We actually show that, given a subnormal series G = G0✄G1✄. . .Gr−1✄Gr = {1G} such that for ev-
ery 1 ≤ i ≤ r, the factor group Gi−1/Gi is either isomorphic to Zni

pi
where pi is a prime not greater than e and

ni < n or Gi−1/Gi is an abelian group of order at most s, then, for T =
((
r+n+ e+2

√
log s

)Ω(e)
log(1/ε)

)r

,

there exists a quantum circuit that implements Translating Coset Superposition(G,α, T ) with error
ε in quantum time poly(ℓT ). From this the assertion follows as ni and r are obviously bounded by log|G|.

Set u =
(
n + e + 2

√
log s)θ(e) so that for every prime p ≤ e and integer 0 < n′ ≤ n, for every ε > 0 and

for every permutation action α′, by Corollary 4.5 ElementaryAbelianTCS(Zn′

p , α
′, ⌊u log 1

ε⌋ − 1) implements
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Translating Coset Superposition(Zn′

p , α
′, ⌊u log 1

ε⌋ − 1) with error less than ε/4 and also, for every

abelian group A of size at most s, Translating Coset Superposition(A,α′, ⌊u log 1
ε⌋−1), is implemented

by ArbitraryAbelianTCS(A,α′, ⌊u log 1
ε⌋ − 1) (by Corollary 4.6) with error at most ε/4 in quantum time

less than c1(u log
1
ε )

d1 .
Define ε1 = ε and εj+1 = εj/(9u log

1
εj
). Put T ′ =

∏r
j=1⌊u log 1

εj
⌋. We define a circuit by induction on

r that implements Translating Coset Superposition(G,α, T ′) with error at most ε. In the base case
r = 1 we use either of the two circuits discussed above.

For r > 1, we construct the circuit by induction. Put s =
∏r

j=2⌊u log 1
εj
⌋ and

t = ⌊u log 1
ε⌋ − 1. Let N = G1. Then, by Theorem 4.11, TCS(G,α, s(t+ 1)) implements

Translating Coset(G,α, s(t + 1)) using (4t + 1) implementations of Translating Coset(N,α, s), 2
implementations of Translating Coset(G/N, (αs)N , t), 2t copies of |Nr−1〉. and quantum time less than
c2(ℓst)

d2 .
By the assumption on u, Translating Coset(G/N, (αs)N , t) can be implemented by with error less

than ε/4 in quantum time less than c1(ℓts)
d1 . (The oracle for αs is implemented by s applications of the oracle

for α.) Now, by induction Translating Coset(N,α, s) can be implemented with error ε/9t < ε/(8t+ 2)
in quantum time c(ℓs)d, using O(s) copies of |Ni〉, for 1 ≤ i ≤ r − 2. The overall error is clearly less than ε.

We show that T ′ =
(
(ru)O(1) log 1

ε

)r
. To see this, observe that log 1

εj+1
= log 1

εj
+ log 9u+ log log 1

εj
. By

induction on j, we can show that log 1
εj

≤ j2u log 1
ε , if u is large than an appropriate constant. (Indeed, the

induction hypothesis gives log 1
εj+1

≤ j2u log 1
ε +log 9u+2 log j+log log 1

ε ≤ (j+1)2u log 1
ε if u is sufficiently

large.) Therefore T ′ ≤ ur
∏r

j=1 log
1
εj

≤ (ru)2r
(
1
ε

)r
.

The quantum time is bounded by c2(ℓst)
d2 + c1(ℓst)

d1) + c(4t + 2)sd < cℓT ′d if c and d are sufficiently
large.

The theorem above gives a polynomial time algorithm for Translating Coset in abelian groups of
constant exponent. More generally, we have the following.

Theorem 4.14. Let G be an abelian black-box group with unique encoding of length ℓ and let α be a group
action of G on Γ. Assume that G has a subgroup N of exponent at most e such that G/N has size an most

s. Let T =
(
(log|G| + e + 2

√
log s)Ω(e) log(1/ε)

)log e
. Then there exists a quantum circuit that implements

Translating Coset Superposition(G,α, T ) with error ε in quantum time poly(ℓT ).

Proof. Using for instance [35], a decomposition of G as a direct product of cyclic subgroups H1, . . . , Hm of
prime power order pαi

i can be can be computed in quantum time poly(ℓ). Considering only indices i such that
pi ≤ e, by an exhaustive search we can find in time polynomial in log|G|O(e) integers βi ≤ αi (i = 1, . . . ,m)

subject to the constraint lcm{pβi

i |i = 1, . . . ,m} ≤ e such that
∏m

i=1 p
βi

i is maximal. Then the sum G1 of the

subgroups H
p
αi−βi
i

i is the largest (by cardinality) subgroup of exponent at most e, consequently |G/G1| ≤ s.
Let e = q2 · · · qr where qi are not necessarily distinct primes and let Gi+1 = Gqi

i (i = 2, . . . , r). Then r ≤ log e
and we can apply Theorem 4.13 to the sequence G > G1 > . . . > Gr .

Using a similar proof we obtain the following generalization.

Theorem 4.15. Let G be a solvable black-box group with unique encoding of length ℓ and let α be a group
action of G on Γ. Assume that G has derived length m and that for every index 0 < i ≤ m, the factor of

the subsequent derived subgroups G̃i−1 = G(i−1)/G(i) have a subgroup Ñi−1 of exponent at most e such that

|Ñi−1/Ñi−1| ≤ s. Let T =
(
s
(
(log|G| + e)Ω(e) log(1/ε)

)log e
)m

. Then there exists a quantum circuit that

implements Translating Coset Superposition(G,α, T ) with error ε in quantum time poly(ℓT ).

The following theorem describes the class of groups for which our methods give polynomial time hidden
subgroup algorithms. Recall that a smoothly solvable group has constant derived length and the factors

G̃i−1 = G(i−1)/G(i) satisfy the condition of the preceding corollary with constant e and s = poly(|log|G).
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Theorem 4.16. Translating Cosetand Hidden Translation can be solved over smoothly solvable
groups in quantum polynomial time. Furthermore, Stabilizer and Hidden Subgroup can be solved over
solvable groups having a smoothly solvable commutator subgroup in quantum polynomial time.

Proof. The first statement follows directly from the preceding theorem, using Proposition 2.2. For the second
part we additionally use Theorem 4.12.

By [18], every solvable group has derived series of length m = O(log log|G|). Using this result and
Theorem 4.15, we get a quasi-polynomial quantum algorithm for all solvable groups of constant exponent.

Theorem 4.17. Let G be a solvable black-box group with unique encoding of length ℓ and of constant expo-
nent. Then Hidden Translation(G) can be solved in quantum time ℓO(1)(log|G|)O(log log|G|). Furthermore,
the Hidden Subgroup can be solved in quantum time ℓO(1)(log|G|)O(log log|G|) in groups G for which G′ has
constant exponent.

Finally, an application of Theorem 4.13 with e = 1 and s = |G| to the derived series of a solvable group
gives the following.

Theorem 4.18. Let G be a solvable black-box group with unique encoding of length ℓ. Then
Hidden Subgroup(G) and Hidden Translation(G) can be solved with constant error in quantum time

ℓO(1)(log|G|)O(
√

log|G|·log log|G|).
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